Микрополосковый полосно-пропускающий фильтр

Изобретение относится к технике сверхвысоких частот и может быть использовано в селективных трактах приемных и передающих систем. Микрополосковый полосно-пропускающий фильтр содержит диэлектрическую подложку, на одну сторону которой нанесено заземляемое основание, а на вторую - нанесены электромагнитно связанные полосковые проводники: смещенные относительно друг друга протяженные широкие отрезки полосковых проводников, заземляемые на основание со стороны свободных концов, с противоположных - соединены между собой посредством протяженных отрезков полосковых проводников, с внутренней стороны - соединены с отрезками протяженных узких полосковых проводников, дважды изогнутых под прямым углом, при этом вдоль по их периметрам, внутри каждого расположены свернутые П-образно отрезки полосковых проводников, заземляемые на основание со стороны свободных концов, соединенные с внешней стороны с ортогонально расположенными протяженными широкими отрезками полосковых проводников, являющихся портами фильтра. Изобретение обеспечивает расширение рабочей полосы пропускания и высокочастотной полосы заграждения, а также улучшение селективных свойств. 2 ил.

 

Изобретение относится к технике сверхвысоких частот и может быть использовано в селективных трактах приемных и передающих систем.

Известен полосно-пропускающий фильтр (Патент РФ №2480867, Н01Р 1/203), содержащий диэлектрическую подложку, на одну сторону которой нанесено заземляемое металлизированное основание, а на вторую сторону нанесен полосковый проводник, частично расщепленный продольной щелью с одного конца. Относительная длина нерасщепленного участка двухмодового резонатора составляет от 16% до 65% его длины. Полосно-пропускающий фильтр, состоящий из одного двухмодового шпилькового микрополоскового резонатора имеет две низкочастотные моды колебаний, одна из которых четная, а другая - нечетная. Для четной моды колебаний токи на расщепленном участке проводника по обе стороны щели текут в одном направлении и продолжают течь на нерасщепленном участке. Для нечетной моды токи на расщепленном участке текут в противоположных направлениях и отсутствуют на нерасщепленном участке.

В трехрезонаторном фильтре полосу пропускания формируют шесть резонансов, но подавление мощности около низкочастотного склона не превышает - 60 дБ, а около высокочастотного - -40 дБ. Во всех таких фильтрах ближайшая паразитная полоса пропускания фильтра располагается приблизительно на удвоенной частоте основной полосы пропускания. Затухание становится неприемлемо низким, когда относительная ширина полосы пропускания превышает приблизительно 40%.

Недостатком описанных полосно-пропускающих фильтров является узкая рабочая полоса пропускания и недостаточно высокая селективность вследствие слабого подавления мощности электромагнитных волн в низкочастотной и нерасширенной высокочастотной полосах заграждения.

Наиболее близким по совокупности существенных признаков является микрополосковый полосно-пропускающий фильтр (Патент РФ №2475900, Н01Р 1/00, Н03Н 9/46), содержащий диэлектрическую подложку, на одну сторону которой нанесено заземляемое основание, а на вторую сторону нанесены соединенные в замкнутую прямоугольную рамку, два полосковых проводника, имеющих разную ширину и два полосковых проводника, имеющих ступенчатое изменение ширины. На этой же стороне подложки параллельно длинным сторонам прямоугольной рамки нанесены полосковые проводники, электромагнитно связанные с замкнутой прямоугольной рамкой. Многомодовый режим работы микрополоскового резонатора осуществляется за счет особой формы проводников, конструктивно представляющих собой замкнутую прямоугольную рамку. Благодаря такому соединению полосковых проводников и их нерегулярностям можно сблизить частоты нижайших резонансов так, чтобы они сформировали первую полосу пропускания фильтра. Еще два резонанса, формирующих полосу пропускания, образуются на тех частотах, где суммарная электрическая длина (набег фазы) полосковых проводников рамки равна 360°.

К недостаткам прототипа относятся узкая рабочая полоса пропускания и недостаточно высокая селективность вследствие слабого подавления мощности электромагнитных волн в низкочастотной и высокочастотной полосах заграждения.

Задачей изобретения является расширение рабочей полосы пропускания и высокочастотной полосы заграждения, а также улучшение селективных свойств микрополоскового полосно-пропускающего фильтра.

Указанная задача решается благодаря тому, что в микрополосковом полосно-пропускающем фильтре, содержащем диэлектрическую подложку, на одну сторону которой нанесено заземляемое основание, а на вторую - нанесены электромагнитно связанные полосковые проводники, согласно техническому решению, смещенные относительно друг друга протяженные широкие отрезки полосковых проводников, заземляемые на основание со стороны свободных концов, с противоположных - соединены между собой соосными протяженными отрезками полосковых проводников, с внутренней стороны - соединены с отрезками протяженных узких полосковых проводников, дважды изогнутых под прямым углом, при этом вдоль по их периметрам, внутри каждого расположены свернутые П-образно отрезки полосковых проводников, представляющие собой протяженные узкие отрезки, заземляемые на основание со стороны свободных концов и соединенные между собой широким полосковым отрезком на другом конце, также с внешней стороны - соединенные с ортогонально расположенными протяженными широкими отрезками полосковых проводников, являющихся портами фильтра.

Техническим результатом изобретения является расширение рабочей полосы пропускания и высокочастотной полосы заграждения, а также улучшение селективных свойств за счет заявляемого расположения полосковых проводников на диэлектрической подложке.

Изобретение поясняется чертежами: Фиг. 1 - устройство заявляемого микрополоскового полосно-пропускающего фильтра, Фиг. 2 - измеренные амплитудно-частотные характеристики (АЧХ) изготовленного фильтра (S21, S11).

Заявляемый микрополосковый полосно-пропускающий фильтр (Фиг. 1) содержит диэлектрическую подложку 1, на одну сторону которой нанесено заземляемое основание 2, а на вторую - нанесены полосковые проводники: смещенные относительно друг друга по горизонтали и по вертикали протяженные (длина в несколько раз превышает ширину) широкие отрезки полосковых проводников 3, заземляемые на основание со стороны свободных концов, на противоположных - соединены между собой протяженными соосными отрезками полосковых проводников 4, 5, также с внутренней протяженной стороны каждый из них соединен с дважды изогнутыми под прямым углом отрезками протяженных узких полосковых проводников 6-8, при этом отрезки полосковых проводников электромагнитно связаны как между собой, так и с электромагнитно связанными отрезками полосковых проводников 9-12, представляющими собой П-образные, заземляемые на основание со стороны свободных концов параллельные протяженные узкие отрезки полосковых проводников 9 и 10, соединенных между собой с противоположной стороны широким полосковым отрезком 11, а с внешней стороны - с ортогонально расположенными протяженными широкими отрезками полосковых проводников 12, являющихся портами фильтра.

Принцип действия микрополоскового широкополосного полосно-пропускающего фильтра заключается в следующем. Заземляемые на основание 2 с противоположных сторон, расположенные на диэлектрической подложке 1, соединенные между собой отрезки полосковых проводников различной длины и ширины 3-8 представляют собой резонатор, который имеет четыре моды колебаний, резонансные частоты которых близки и участвуют в формировании рабочей полосы пропускания. Также полосу пропускания формируют еще два резонанса, по одному от каждого полуволнового резонатора, также представляющего собой размещенные на диэлектрической подложке, соединенные друг с другом и заземляемые на основание отрезки полосковых проводников 9-12. Таким образом, в фильтре используется два одномодовых и один четырехмодовый резонаторы.

В результате конструктивных особенностей используемых полосковых проводников, таких как их расположение и заземление на основание, расширяется рабочая полоса пропускания фильтра, сформированная шестью резонансами (Фиг. 2) и высокочастотная полоса заграждения, а также увеличивается затухание электромагнитных волн на частотах полос заграждений.

Существенному увеличению подавления мощности на частотах высокочастотной полосы заграждения вблизи полосы пропускания способствует ортогональное расположение отрезков полосковых проводников 6 относительно отрезков 3. В результате, как видно из рисунка Фиг. 2, на АЧХ рядом с полосой пропускания наблюдаются полюс затухания сверхвысокочастотной (СВЧ) мощности, важно, что и вблизи низкочастотного склона полосы пропускания за счет электромагнитных связей четырехмодового резонатора он также присутствует. При этом значительно повышается прямоугольность АЧХ. Происхождение полюсов затухания мощности связано с тем, что на этих частотах емкостная и индуктивная связи полосковых проводников взаимно компенсируют друг друга.

Пример выполнения: фильтр был изготовлен на подложке из традиционного материала СВЧ техники (поликор) толщиной 1 мм с диэлектрической проницаемостью ε=9.8. Конструктивные параметры фильтра были следующими: длина и ширина отрезков полосковых проводников четырехмодового резонатора в мм: (3) - 21.00×12.18, (4) - 9.13×3.70, (5) - 5.00×1.39, (6) - 8.71×0.19, (7) - 10.01×0.35, (8) - 3,54×0.30, соответственно. Длина и ширина отрезков полосковых проводников одномодовых резонаторов в мм: (9) - 20.70×0.19, (10) - 20.70×0.20, (11) - 4.20×3.49, (12) - 6.33×3.09, соответственно. Зазоры между отрезками полосковых проводников (3) и (10) - 3.67 мм, (6) и (11) - 0.11 мм, (7) и (9) - 0.10 мм, (8) и (12) - 0.12 мм, соответственно. Площадь подложки, на которой расположены все полосковые проводники, составила 30.28×48.01 мм2.

Амплитудно-частотные характеристики прямых и обратных потерь (потерь на прохождение S21 и на отражение S11) заявляемого фильтра, снятые в широкой полосе частот, показаны на Фиг. 2. Фильтр имеет относительную ширину полосы пропускания , измеренную по уровню -3 дБ от уровня минимальных потерь, которые составляли величину Lmin≈0.63 дБ на центральной частоте полосы пропускания . Преимуществами такого микрополоскового полосно-пропускающего фильтра являются наблюдаемые на АЧХ, расположенные рядом по частотам с рабочей полосой пропускания полюса затухания, которые значительно повышают крутизну ее склонов, а также сильное подавление мощности, превышающее -80 дБ на частотах низкочастотной полосы заграждения (см. Фиг. 2), и превышающее -50 дБ в диапазоне частот (1.74-3.46) ГГц и -25 дБ в диапазоне частот (3.46-5.85) ГГц высокочастотной, значительно расширенной полосы заграждения. Это значительно улучшает селективные свойства устройства.

Таким образом, заявляемое устройство имеет более широкую рабочую полосу пропускания, а также лучшие частотно-селективные свойства, проявляющиеся в более сильном подавлении мощности электромагнитных волн на частотах низкочастотной и значительно расширенной высокочастотной полосах заграждения.

Микрополосковый полосно-пропускающий фильтр, содержащий диэлектрическую подложку, на одну сторону которой нанесено заземляемое основание, а на вторую - нанесены электромагнитно связанные полосковые проводники, отличающийся тем, что смещенные относительно друг друга протяженные широкие отрезки полосковых проводников, заземляемые на основание со стороны свободных концов, с противоположных - соединены между собой посредством протяженных отрезков полосковых проводников, с внутренней стороны - соединены с отрезками протяженных узких полосковых проводников, дважды изогнутых под прямым углом, при этом вдоль по их периметрам, внутри каждого расположены свернутые П-образно отрезки полосковых проводников, заземляемые на основание со стороны свободных концов, соединенные с внешней стороны с ортогонально расположенными протяженными широкими отрезками полосковых проводников, являющихся портами фильтра.



 

Похожие патенты:

Изобретение относится к технике СВЧ и может быть использовано в волноводных трактах передатчиков, приемников, антенн РЛС для направленной передачи электромагнитных волн.

Тем-камера // 2606173
Изобретение относится к электротехнике. Сущность изобретения заключается в том, что ТЕМ-камера содержит корпус в форме пирамиды, при этом в поперечном сечении центральная и сужающиеся части корпуса являются прямоугольником с соотношением сторон 1:1,15, причем длина центральной части равна ее ширине, а сужающиеся части выполнены с линейными углами сужения 32,7° и 36,7°, открытые концы которого имеют размер 7,2×8,4 мм и вдоль продольной составляющей сгибы для соединения со стягивающим кольцом, которое выполнено в форме цилиндра с прямоугольным вырезом внутри и отношением сторон 1:1,15, по краям которого имеются по меньшей мере четыре отверстия с резьбовым соединением для крепления с помощью винтов через токопроводящую пасту держателя под соединитель, который также имеет цилиндрическую форму с по меньшей мере четырьмя резьбовыми отверстиями и по меньшей мере пятью отверстиями под высокочастотный соединитель, четыре из которых выполнены с одинаковым диаметром, а пятое выполнено в виде коаксиального волновода с волновым сопротивлением 50 Ом, центральный проводник которого соединен при помощи пайки и соединения в паз с центральной пластиной, которая выполнена из проводящего материала толщиной 2 мм и шириной 1:1,3 по отношению к ширине центральной части корпуса, а на концах центральной пластины выполнено линейное сужение со ступенчатыми вырезами на кромках в форме дуги, причем сужение в начале выполнено под углом 46° на расстоянии толщины стягивающего кольца и под углом 61° на расстоянии от толщины стягивающего кольца до 5,5 мм, превышающем расположение ребер корпуса, в одной из стенок которого имеется прямоугольный вырез, кромки которого выполнены с фаской под угол 45°, для испытательного стола из проводящего материала, который имеет по меньшей мере одно отверстие для соединителя и фаску под углом 45°.

Использование: для создания волноводной нагрузки. Сущность изобретения заключается в том, что волноводная нагрузка содержит короткозамкнутый отрезок прямоугольного волновода, внутри которого вдоль двух широких стенок установлены поглотители, которые выполнены в виде плоских пластин из поглощающего материала, имеют одинаковую толщину, заполняют всю площадь двух широких стенок прямоугольного волновода, узкие стенки короткозамкнутого отрезка прямоугольного волновода выполнены с уменьшающейся высотой от начала нагрузки к ее концу и на короткозамкнутом конце нагрузки высота узких стенок волновода выбрана равной двум толщинам пластин из поглощающего материала.

Изобретение относится к радиотехнике. Полосовой фильтр образован прямоугольными волноводами, отделенными друг от друга вдоль середины имеющей большую ширину поверхности фильтра, и тонкой металлической пластиной, заключенной между прямоугольными волноводами.

Изобретение относится к радиотехнике, а именно к технике СВЧ, и предназначено для создания полосно-заграждающих фильтров на основе диэлектрических резонаторов преимущественно в дециметровом диапазоне длин волн.

Изобретение относится к области радиотехники и радиоэлектроники и может быть использовано для поглощения электромагнитного излучения на выходе сверхвысокочастного волноведущего тракта, а также входить в состав сложных сверхвысокочастотных функциональных узлов и устройств.

Предлагаемое изобретение относится к технике СВЧ и может быть использовано в волноводных трактах передатчиков, приемников, антенн РЛС для направленной передачи электромагнитных волн.

Предлагаемое изобретение относится к технике СВЧ и может быть использовано в волноводных трактах передатчиков, приемников, антенн РЛС для направленной передачи электромагнитных волн.

Изобретение относится к области радиосвязи. Технический результат изобретения заключается в повышении эффективности устройств генерации и частотной модуляции за счет увеличения линейного участка частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента.

Изобретение относится к радиоэлектронике и измерительной технике и может быть использовано для заданного ослабления высокочастотного сигнала большой мощности в широкой полосе рабочих частот.

Изобретение относится к областям радиотехники и связи. Высокочастотный фазовращатель выполнен на основе КМОП-технологии, при этом усилители с переменным коэффициентом усиления построены на основе модифицированных ячеек Гильберта, а аналоговый дифференциальный квадратурный сумматор подключен к квадратурному полифазному фильтру напрямую. Каждая модифицированная ячейка Гильберта состоит из десяти МОП-транзисторов. При этом затворы первого и четвертого МОП-транзисторов являются высокочастотными входами, истоки первого и второго МОП-транзисторов соединены со стоком девятого МОП-транзистора, истоки третьего и четвертого МОП-транзисторов соединены со стоком десятого МОП-транзистора, исток девятого и десятого МОП-транзисторов подключен к общему узлу, затворы девятого и десятого МОП-транзисторов подключены к первому выходу источника напряжений смещения, затворы второго и третьего МОП-транзисторов подключены ко второму выходу источника напряжений смещения, стоки первого и третьего МОП-транзисторов подключены к узлу, к которому подключены истоки пятого и шестого МОП-транзисторов, стоки второго и четвертого МОП-транзисторов подключены к узлу, к которому подключены истоки седьмого и восьмого МОП-транзисторов, затворы пятого и восьмого МОП-транзисторов и затворы шестого и седьмого МОП-транзисторов представляют собой управляющие дифференциальные входы соответственно, стоки пятого и седьмого МОП-транзисторов и стоки шестого и восьмого МОП-транзисторов подключены к двум входам цепи нагрузки соответственно Высокочастотный фазовращатель на МОП-транзисторах с конструкцией согласно изобретению обладает уменьшенной ошибкой установки фазы и потребляемой мощностью, а также более низкой себестоимостью. 3 ил.

Изобретение относится к автотранспортным средствам, в частности специального назначения, может быть использовано для повышения помехозащищенности бортового электрооборудования к внешнему высокочастотному электромагнитному полю при эксплуатации АТС в условиях сложной электромагнитной обстановки. Повышение помехозащищенности электрооборудования АТС к внешнему высокочастотному ЭМП достигается нанесением широкополосного радиопоглощающего материала как минимум на три взаимно перпендикулярные металлические внутренние поверхности того объема кузова АТС, в котором расположено защищаемое электрооборудование. Параметры широкополосного радиопоглощающего материала выбираются из учета начала ослабления ЭМП на заданной минимальной частоте диапазона частот, в котором наблюдается не менее 90% нарушений работоспособности электрооборудования при воздействии внешнего высокочастотного ЭМП. Способ позволяет перейти из режима стоячих волн на режим смешанных волн, за счет чего уменьшить во внутреннем объеме кузова АТС максимальные уровни ЭМП, вследствие чего улучшается электромагнитная обстановка и снижается влияние ЭМП на бортовое электрооборудование, тем самым происходит повышение его помехозащищенности. 3 ил.
Наверх