Способ восстановительной обработки деталей из жаропрочных никелевых сплавов


 


Владельцы патента RU 2610379:

Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО "НПЦ газотурбостроения "Салют") (RU)

Изобретение относится к металлургии, а именно к восстановительной обработке деталей из жаропрочных сплавов на никелевой основе, и может быть использовано в авиационной и энергетической промышленности для продления ресурса работы деталей газотурбинных двигателей и установок. Способ восстановительной обработки деталей из жаропрочных никелевых сплавов включает поверхностную пластическую деформацию и термическую обработку путем нагрева, выдержки и последующего охлаждения. Поверхностную пластическую деформацию проводят со степенью упрочнения поверхностей деталей не менее 20%. Термическую обработку осуществляют в вакууме путем нагрева деталей до температуры на 30-300°С ниже температуры полного растворения γ'-фазы со скоростью не более 5°С/мин, выдержки в течение 0,25-1,0 ч и охлаждения со скоростью не менее 15°С/мин. Повышаются прочностные и пластические характеристики восстанавливаемых деталей, а также их эксплуатационный ресурс. 1 табл.

 

Изобретение относится к металлургии, а именно к восстановительной обработке деталей из жаропрочных сплавов на никелевой основе, и может быть использовано в авиационной и энергетической промышленности для продления ресурса работы деталей газотурбинных двигателей (ГТД) и энергетических установок (ЭУ).

Известен способ восстановительной обработки деталей из жаропрочных никелевых сплавов, включающий нагрев деталей, их выдержку и последующее охлаждение деталей, при этом нагрев и выдержку проводят в среде инертного газа при температуре на 230-280°С ниже температуры полного растворения γ'-фазы при давлении 1800-2200 атм в течение 15-20 ч (см. патент РФ №1547355, кл. C22F 1/10, 1994 г.).

В результате анализа известного способа необходимо отметить, что при его реализации в указанных пределах температур и давлений уже при выдержке деталей в течение 1 часа значительно снижается предел текучести сплава (по данным исследований с 1000 МПа до 500 МПа), при требованиях технических условий (ТУ) не менее 1000 МПа (например, для сплава ЭП741НП).

Известен способ восстановительного ремонта деталей ГТД из жаропрочных никелевых сплавов, включающий удаление старого защитного покрытия деталей, обработку деталей горячим изостатическим прессованием (ГИП), термообработку и нанесение нового защитного покрытия, при этом ГИП деталей осуществляют в две ступени, на первой ступени производят нагрев деталей в газостате в среде аргона до 1110-1150°С, выдерживают при данной температуре и давлении 130-140 МПа в течение 1-2 часов, а на второй ступени осуществляют нагрев деталей до температуры закалки при давлении 150-160 МПа и осуществляют выдержку в течение 1,5-3,0 часов с последующим охлаждением в газостате (см. патент РФ №2346799, кл. C22F 1/10, 2008 г.).

Недостатком способа является то, что нагрев «состаренных» деталей до температуры закалки (1200-1250°С) приводит к потере их первоначальных пластических характеристик и появлению внутренних напряжений, способствующих скручиванию деталей, что приводит к сокращению срока эксплуатации восстановленных деталей.

Известен способ восстановительной обработки деталей из жаропрочных никелевых сплавов, включающий поверхностное пластическое деформирование и термическую обработку, причем при термической обработке детали нагревают свыше 600°С, но ниже температуры фазовых переходов, охлаждают жидкостью со скоростью отвода теплоты, обеспечивающей достижение коэффициента теплоотдачи не менее (1,5⋅10 - 2,5⋅10)⋅104 (Вт/м2)⋅°C, причем детали, прошедшие упрочнение, полируют, проводят термическую обработку, обеспечивающую снятие деформационного упрочнения, а затем восстанавливают их циклическую прочность термопластическим упрочнением (см. патент РФ №2171857, кл. C22F 1/10, 2001 г. - наиболее близкий аналог).

В результате анализа известного способа необходимо отметить, что длительная выдержка изделий при высоких температурах вызывает огрубление границ зерен и, как следствие, понижение механических свойств восстанавливаемых изделий, кроме того, повторный нагрев изделий также приводит к снижению их первоначальных механических свойств.

Все это значительно сокращает ресурс работы восстановленных изделий.

Техническим результатом предлагаемого способа является повышение эксплуатационного ресурса восстанавливаемых деталей за счет проведения восстановительной обработки, обеспечивающей повышение их прочностных и пластических характеристик.

Указанный технический результат обеспечивается тем, что в способе восстановительной обработки деталей из жаропрочных никелевых сплавов, включающем поверхностную пластическую деформацию и термическую обработку путем нагрева, выдержки и последующего охлаждения, новым является то, что поверхностную пластическую деформацию проводят со степенью упрочнения поверхностей деталей не менее 20%, термическую обработку осуществляют в вакууме путем нагрева деталей до температуры на 30-300°C ниже температуры полного растворения γ'-фазы со скоростью не более 5°С/мин, выдержки в течение 0,25-1,0 часа и охлаждения со скоростью не менее 15°С/мин.

Восстановительную обработку деталей наиболее целесообразно проводить в вакууме.

Известно, что в процессе эксплуатации у конструкционных материалов основных деталей под воздействием силовых полей напряжений (статических и динамических), теплового и агрессивного воздействия окружающей среды происходит деградация механических свойств (снижение пластичности, повышение склонности к хрупкому разрушению) (см. Петухов А.Н. «Особенности формирования свойств поверхностного слоя основных деталей ГТД при применении традиционных и современных методов упрочнения», «Вестник двигателестроения», Herald of aeroenginebuilding - Запорожье, «Мотор Сич», 2006 г., №2, С. 20-24).

Снижение пластичности и повышение склонности к хрупкому разрушению деталей ГТД и ЭУ из жаропрочных никелевых сталей связано с охрупчиванием границ зерен сплавов, из которых они изготовлены. При эксплуатации деталей они постепенно теряют свои первоначальные пластические свойства, в том числе вязкость, так как температуры их эксплуатации близки к температурам старения.

В результате детали становятся склонными к образованию поверхностных трещин и хрупкому разрушению.

При проведении восстановительной обработки по предложенному способу нагрев деталей из «перестаренных» жаропрочных никелевых сплавов до температуры на 30-300°С ниже температуры полного растворения γ'-фазы и выдержка при этой температуре приводят к растворению в матрице «охрупченной», низкотемпературной граничной γ'-фазы и миграции границ зерен. В результате зерна сплава укрупняются с одновременным обновлением их границ. Поэтому после такой обработки возрастают пластические характеристики сплава и ударная вязкость, незначительно снижается предел текучести при росте предела прочности (см. таблицу). Торможение скольжения новыми границами зерен уменьшается и увеличивается протяженность полос скольжения.

Значение времени выдержки деталей в процессе восстановительной обработки (0,25-1,0 ч) назначают в зависимости от размеров сечения детали и заданной температуры ее нагрева. Чем ниже температура нагрева, тем больше выдержка. Длительные, больше часа, выдержки приводят к снижению (ниже ТУ) предела текучести сплава. Выдержка менее 0,25 часа, как показали исследования, применима только к очень узкой группе деталей.

Охлаждение деталей со скоростью не менее 15°С/мин обеспечивает получение структуры сплава со свойствами, превышающими требования ТУ.

Применение перед термической обработкой поверхностной пластической деформации (ППД) деталей со степенью упрочнения их поверхности не менее 20% позволяет повысить пластические характеристики и ударную вязкость сплава с одновременным увеличением предела прочности. Это обусловлено образованием в поверхностном слое детали текстуры, не снимаемой последующей закалкой от температур на 30-300°С ниже температуры полного растворения γ'-фазы. ППД деталей может быть осуществлена по известной технологии STRESSONIC (обработка дробью в ультразвуковом поле).

При степени упрочнения поверхностей деталей менее 20% существенного повышения их свойств не наблюдается. Также как и поверхностная пластическая деформация без термической обработки не изменяет в значительной степени исходных свойств жаропрочных никелевых сплавов.

При проведении ППД перед термической обработкой в поверхностном слое деталей формируется смешанная наномикрокристаллическая (НМК) структура упрочняющей γ'-фазы, которая обеспечивает одновременное повышение пластических и прочностных свойств сплава (см. Чувильдеев В.Н., Нохрин А.В., Лопатин Ю.Г. и др. «О предельной прочности и пластичности при комнатной температуре нано- и микрокристаллических металлов, полученных методами интенсивного пластического деформирования. Эффект одновременного повышения прочности и пластичности». «Тяжелое машиностроение», 2011. №1, с. 2).

Нагрев деталей до заданной температуры со скоростью не более 5°С/мин целесообразно использовать при термической обработке тонкостенных деталей (например, полотна дисков роторов и компрессоров ГТД), имеющих остаточные напряжения, полученные при эксплуатации, для снижения их коробления.

Осуществление термической обработки в вакууме предотвращает окисление поверхностей деталей и сохранение их точных первоначальных размеров. Охлаждение деталей после их нагрева и выдержки в вакууме осуществляют в газовой среде, например в среде Хе, Не, Ar. Использование аргона является наиболее предпочтительным с экономической точки зрения.

Сущность заявленного изобретения поясняется таблицей, в которой представлены механические свойства дисков турбины высокого давления из сплава ЭП741НП до и после их восстановительной обработки.

Способ осуществляют следующим образом.

Подлежащие восстановительной обработке детали, например диски ротора ГТД из жаропрочного никелевого сплава с лопатками из литейного жаропрочного сплава, выработавшие ресурс, снимают с двигателя, производят разборку и съем лопаток, зачистку поверхности полотна и замков лопаток дисков с последующим проведением визуального и ультразвукового контроля материала дисков на отсутствие поверхностных и внутренних дефектов (трещин, выбоин и др.).

В случае необходимости прошедшие контроль детали проходят ППД, например, на установке SONATS по технологии STRESSONIC со степенью упрочнения поверхностей деталей не менее 20%.

Подготовленные диски передают на восстановительную термическую обработку.

Для проведения термической обработки детали помещают в вакуумную печь, где осуществляют их нагрев до температуры на 30-300°С ниже температуры полного растворения γ'-фазы сплава. Наиболее предпочтительно нагрев деталей осуществлять скоростью не более 5°С/мин.

После разогрева деталей до заданной температуры осуществляют их выдержку при этой температуре в течение 0,25-1,0 часа с последующим охлаждением, которое ведут со скоростью не менее 15°С/мин. Термическую обработку деталей ведут в вакуумной печи с охлаждением дисков аргоном.

После проведения восстановительной обработки партии дисков один из них подвергают разгонным испытаниям, по результатам которых определяют продленный ресурс работы всей партии. Диски вновь «облопачивают» и устанавливают на ротор ГТД.

В качестве примера использования предлагаемого способа рассмотрим процесс восстановительной обработки дисков ГТД турбины высокого давления из сплава ЭП741НП.

Аналогично описанному выше демонтировали диски, сняли с них лопатки, провели визуальное и инструментальное обследование дисков. Провели измерение механических свойств трех дисков. Результаты измерений представлены в таблице (верхняя горизонтальная колонка).

Три диска обработали ППД на установке SONATS по технологии STRESSONIC. Упрочнение поверхности заготовок после ППД составило 20-40% при глубине упрочненного слоя 0,25 мм.

Провели измерение механических свойств прошедших ППД дисков. Результаты измерений представлены в таблице (вторая сверху горизонтальная колонка).

Далее осуществляли термическую обработку дисков, которую проводили отдельно для дисков, прошедших ППД, и для дисков, не прошедших ее.

Термическая обработка дисков, прошедших ППД, велась при следующих режимах в вакуумной термической печи.

Нагрев дисков с печью проводили со скоростью 5°С/мин. Температура нагрева составила 1050±10°С. По данным дифференциального термического анализа температура полного растворения γ'-фазы сплава ЭП741НП составляет 1130°С. То есть заданная температура термической обработки - 1050°С - на 80°С ниже указанной температуры полного растворения γ'-фазы.

После нагрева до заданной температуры провели выдержку дисков в печи в течение 30 мин. Охлаждение дисков осуществляли аргоном со скоростью 15°С/мин.

Результаты испытаний по определению механических свойств термообработанных и прошедших ППД дисков после их восстановительной обработки представлены в таблице (третья сверху горизонтальная колонка).

Далее проводили восстановительную обработку для дисков, не прошедших ППД. Ее проводили аналогично описанному выше, как и для дисков, прошедших ППД, на тех же режимах.

Усредненные результаты испытаний по определению механических свойств термообработанных и не прошедших ППД дисков после их восстановительной обработки представлены в таблице (четвертая сверху горизонтальная колонка).

Эффективность применения предлагаемой восстановительной обработки видна из данных таблицы. Если после ППД имеет место только повышение прочностных свойств сплава, то в случае реализации способа практически в два раза повышаются пластические характеристики, более чем на 20% - ударная вязкость при одновременном повышении предела прочности.

Таким образом, предлагаемое техническое решение способствует не только восстановлению первоначальных механических свойств жаропрочных никелевых сплавов, но и их повышению.

Способ восстановительной обработки деталей из жаропрочных никелевых сплавов, включающий поверхностную пластическую деформацию и термическую обработку путем нагрева, выдержки и последующего охлаждения, отличающийся тем, что поверхностную пластическую деформацию проводят со степенью упрочнения поверхностей деталей не менее 20%, термическую обработку осуществляют в вакууме путем нагрева деталей до температуры на 30-300°С ниже температуры полного растворения γ'-фазы со скоростью не более 5°С/мин, выдержки в течение 0,25-1,0 ч и охлаждения со скоростью не менее 15°С/мин.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к термомеханической обработке сплавов на основе никеля. Способ термомеханической обработки заготовки из сплава на основе никеля включает первый этап нагревания заготовки до температуры 1093-1163°С, первый этап ротационной ковки нагретой до 1093-1163°С заготовки с уменьшением площади поперечного сечения на 30-70%, второй этап нагревания заготовки до температуры 954-1052°С, причем между окончанием первого этапа ковки и началом второго этапа нагревания заготовку поддерживают при температуре ниже температуры растворения карбидов М23С6 и не позволяют ей охлаждаться до температуры окружающей среды, и второй этап ротационной ковки нагретой до 954-1052°С заготовки с уменьшением площади поперечного сечения на 20-70%.

Изобретение относится к области металлургии, а именно к хромоникелевому сплаву, и может быть использовано при строительстве печей, а также в химической и нефтехимической отраслях промышленности.

Изобретение может быть использовано при обработке и горячем формовании слитков из сплавов. На слиток наносят слой металлического материала в виде наплавленного покрытия толщиной от 0,64 до 1,27 см, металлургически связанного с по меньшей мере участком боковой поверхности цилиндрического слитка из сплава и с по меньшей мере одним торцом цилиндрического слитка из сплава.

Изобретение относится к области металлургии, а именно к хромоникелевоалюминиевому сплаву. Сплав содержит в мас.%: более 25 до 33 хрома, от 1,8 до менее 3,0 алюминия, от 0,10 до менее 2,5 железа, 0,001-0,50 кремния, 0,005-2,0 марганца, 0,00-0,60 титана, по 0,0002-0,05 каждого из магния и/или кальция, 0,005-0,12 углерода, 0,001-0,050 азота, 0,0001-0,020 кислорода, 0,001-0,030 фосфора, не более 0,010 серы, не более 2,0 молибдена, не более 2,0 вольфрама, остальное - никель и обычные, технологически обусловленные примеси.

Изобретение относится к обработке металлов давлением и может быть использовано в металлургической и машиностроительной отраслях промышленности при изготовлении заготовок и деталей из гранулированных жаропрочных сплавов, например дисков роторов газотурбинных двигателей со смешанной наномикрокристаллической структурой.

Изобретение относится к области металлургии, а именно к деформационно-термомеханической обработке монокристаллов ферромагнитных сплавов Ni-Fe-Ga-Co. Способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава Ni49Fe18Ga27Co6 включает отжиг монокристалла в атмосфере инертного газа с последующей закалкой в воду и старение под нагрузкой при 673 K в вакууме.

Изобретение относится к металлургии, в частности к литейным коррозионно-стойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах природного газа при температурах 600-900°C.

Изобретение относится к области металлургии, а именно к получению высокопрочных углеродсодержащих инварных сплавов. Способ обработки углеродсодержащего инварного сплава включает закалку и деформационно-термическую упрочняющую обработку.

Изобретение относится к области металлургии, а именно к термической обработке отливок из жаропрочных никелевых сплавов, предназначенных для производства деталей газотурбинных двигателей и газотурбинных установок, и может быть использовано в авиационной и энергетической промышленности.

Изобретение относится к области изготовления ротора турбины газотурбинного двигателя, состоящего из двух и более деталей, изготовленных преимущественно из никелевого жаропрочного сплава с применением электронно-лучевой сварки.

Изобретение относится к сварке плавлением сверхпрочных сплавов и может использоваться для изготовления и ремонта элементов газотурбинных двигателей. На основной материал из сверхпрочного сплава наносят композитный присадочный порошок, содержащий 5-50% по массе порошка твердого припоя, который включает депрессанты температуры плавления, и 50-95% по массе высокотемпературного сварочного порошка.

Изобретение относится к ремонту изношенных деталей, в частности к способам восстановления шлицевых втулок карданных валов, и может быть использовано в машиностроении.

Изобретение может быть использовано для упрочнения рабочих поверхностей почвообрабатывающих орудий сельскохозяйственных машин, эксплуатирующихся в условиях абразивного изнашивания.

Предлагаемое изобретение относится к области сварки и может быть применено в оперативном ремонте тонкостенных металлических деталей авиационной техники в процессе ее эксплуатации.

Изобретение может быть использовано для восстановления и упрочнения рабочих органов сельскохозяйственных машин. В местах, подверженных наибольшему абразивному износу, наносят слой износостойкого материала.

Устройство для калибрования посадочных отверстий с полимерным покрытием в корпусных деталях. Устройство включает базирующую деталь и калибр.

Изобретение может быть использовано для восстановления деталей электрошлаковой наплавкой. После закрепления детали и кокиля расплавляют расходуемый электрод в виде пакета, собранного и сваренного из нескольких металлических прутков, выровненных по торцу.

Предложенное изобретение относится к устройствам для ремонта сит, используемых в нефтяной, газовой и буровой промышленности для отделения твердых частиц жидкой фазы буровых растворов на углеводородной и жидкой основе.

Изобретение относится к области авиационных двигателей и может быть использовано при мониторинге состояния этих двигателей в течение времени. Способ контроля повреждений на внутренней стороне картера вентилятора включает следующие этапы: отмечают первое повреждение (I1) на внутренней стороне картера вентилятора, ограничивают поверхность осмотра, содержащую упомянутое первое повреждение (I1), отмечают различные повреждения (Ii), присутствующие на ограниченной поверхности осмотра, при этом упомянутые отмеченные различные повреждения представляют собой совокупность рассматриваемых повреждений, для каждого рассматриваемого повреждения (Ii) измеряют глубину и длину упомянутого повреждения (Ii), для каждого рассматриваемого повреждения (Ii) определяют значение степени серьезности при помощи, по меньшей мере, одной номограммы, устанавливающей соотношение глубины и длины каждого рассматриваемого повреждения со степенью серьезности, для каждой поверхности осмотра, содержащей первое повреждение (I1), определяют общее значение степени серьезности посредством суммирования значений степени серьезности, определенных для каждого рассматриваемого повреждения (Ii).

Изобретение может быть использовано при восстановлении наплавкой крупногабаритных деталей типа валов, в частности судовых гребных и промежуточных валов. После предварительного контроля восстанавливаемой поверхности на наличие дефектов в виде несплошностей металла исследуют неразрушающим методом контроля макроструктуру металла в поперечном сечении детали на предполагаемом участке перехода от металла наплавки к основному металлу, соответствующем опасному сечению детали.

Изобретение относится к восстановлению изношенных боковых поверхностей шлицев. Осуществляют нагрев и раздачу боковых поверхностей шлицев электрод-инструментом для электромеханической обработки, движущимся вдоль шлица по его поверхности. Деформацию металла в сторону износа боковых поверхностей шлицев ограничивают калиброванной пластиной, выполненной с возможностью изменения своих размеров по ширине шлицевого паза. В результате обеспечивается одновременное восстановление и упрочнение боковых поверхностей шлицев. 1 ил.
Наверх