Способ получения низкомолекулярной фракции гуминовых веществ черноольхового низинного торфа с молекулярной массой 98 кда

Изобретение относится к области очистки воды от катионов металлов. Предложены гуминовые вещества, выделенные из черноольхового низинного торфа, имеющие молекулярную массу 98 кДа, общую кислотность 3,2 ммоль/г, содержание карбоксильных групп 0,3 ммоль/г, содержание фенольных групп 2,9 ммоль/г. Гуминовые вещества получают щелочной экстракцией из черноольхового низинного торфа с добавлением в качестве высаливающего агента сульфата натрия. Отделяют осажденную фракцию от раствора гуминовых веществ путём центрифугирования в течение 30 минут при 10000 об/мин. Выделяют низкомолекулярную фракцию гуминовых веществ. Полученная фракция гуминовых веществ образует нерастворимые комплексные соединения с катионами Pb(II) и Zn(II) и используется для их эффективного извлечения из растворов. 2 н.п. ф-лы, 2 пр.

 

Изобретение относится к области производства продуктов химической переработки каустобиолитов, точнее к производству низкомолекулярных фракций на основе гуминовых веществ, выделенных из твердых горючих ископаемых, охраны окружающей среды и природоохранных технологий, используемым для очистки воды (питьевой, промышленной, грунтовой), донных отложений с высоким содержанием тяжелых металлов, путем сорбции загрязняющих веществ на низкомолекулярной фракции гуминовых веществ черноольхового низинного торфа.

Гуминовые вещества составляют основу почвенного гумуса, входят в состав твердых горючих ископаемых (торфов, углей), выполняя следующие функции в биосфере: участвуют в структурообразовании почвы, накоплении питательных элементов и микроэлементов в доступной для растений форме; регулировании геохимических потоков металлов в водных и почвенных экосистемах. В том числе они могут образовывать устойчивые водонерастворимые соединения с ионами тяжелых металлов и многими другими опасными загрязнителями окружающей среды. В исходном состоянии гуминовые вещества обладают малой активностью, причиной является их низкая гидратированность и дисперсность, а также блокировка активных центров минеральными компонентами.

Известны гуминовые производные (Перминова И.В., Пономаренко С.А., Карпюк Л.А., Хэтфилд Гуминовые производные, способы их получения и применение. Заявка РСТ №2008137508, МПК8 B01J 20/24 от 20.04.2010). Признаками этих производных, совпадающими с существенными признаками заявленного препарата, является элементный состав.

Гуминовые производные, состоящие из от около 2 до около 12 мас. % Si, от около 25 до около 68 мас. % С, мас. % Н, от около 0 до около 15 мас. % N и от около 0,1 до около 15 ммоль/г алкоксильных групп, при этом соединение гуминового производного способно реагировать с поверхностями, несущими гидроксильные группы, с образованием ковалентных Si-O-Si и Si-O-M связей, где М - поверхность минерала или оксида металла, несущая гидроксильные группы.

Недостатком известного гуминового производного является их полидисперсность и существование в виде коллоидов, которые коагулируют с образованием гелеобразных осадков. При этом блокируются их реакционные центры, резко снижается площадь поверхности раздела фаз и падает их физико-химическая и биологическая активность. Гетерогенность структуры гуминовых веществ, которая, с одной стороны, дает чрезвычайно широкий спектр их свойств, а с другой - неспецифичность действия. Чтобы уйти от этой неспецифичности, можно получать из гуминовых веществ, отвечающих за конкретные функции и обладающие направленным действием: например, для рекультивации сред, загрязненных гидрофобными органическими соединениями, нужны гуминовые препараты, обладающие повышенным сродством по отношению к загрязняющим веществам, то есть тоже гидрофобные. А вот при создании микроудобрений на гуминовой основе они, наоборот, должны быть гидрофильными и прекрасно растворяться в воде.

Наиболее близким способом получения фракции гуминовых веществ, принятый за прототип, является способ, описанный в работе (Заварзина А.Г., Ванифатова Н.Г., Степанов А.А. Фракционирование гуминовых кислот по относительной гидрофобности, размеру и заряду методом высаливания // Почвоведение. - 2008. - Т. 12. - С. 1466-1474).

Способ получения фракций гуминовых кислот заключается в том, что к раствору гуминовых кислот с концентрацией 5 мг/мл добавляют сульфат аммония с шагом 10%, через 2 часа образующийся осадок отделяют центрифугированием при 4000 об/мин в течение 20 мин. Осадок отмывали от соли дистиллированной водой и переводили в NH4+ - форму.

Признаками прототипа, совпадающими с существенными признаками заявляемого способа получения низкомолекулярной фракции гуминовых веществ, является использование сульфат-аниона в качестве высаливающего агента. Недостатками способа получения фракции гуминовых веществ, принятого за прототип, являются время фракционирования, не обеспечивающая полноту осаждения фракции из-за коллоидного состояния исходного раствора гуминовых веществ, и параметры центрифугирования.

Поэтому, чтобы обеспечить полноту выхода низкомолекулярной фракции гуминовых веществ черноольхового низинного торфа необходимо использование сульфата натрия в качестве высаливающего агента (вместо сульфата аммония), увеличить время осаждения фракции до 24 часов и изменить параметры центрифугирования, что позволит повысить эффективность применения гуминовых препаратов в конкретной области и расширить спектр их применения. Причем получающийся продукт должен быть стабильным, а его свойства воспроизводимыми.

Задачей изобретения является создание новых низкомолекулярных фракций гуминовых веществ, предназначенных для улучшения экологии, в измененных технологических режимах, достигнуть возможности детоксикации воды (питьевой, промышленной, грунтовой), донных отложений, содержащих тяжелые металлы.

Поставленная задача решается тем, что гуминовые вещества черноольхового низинного торфа имеют в своем составе низкомолекулярную фракцию. Гуминовые вещества, получают щелочной экстракцией из черноольхового низинного торфа, добавляют количество высаливающего агента сульфата натрия, так чтобы его концентрация в растворе составила 20 мас. %, отделяют осажденную фракцию от раствора гуминовых веществ, проводят центрифугированием в течение 30 минут при 10000 об/мин.

Фракция имеет 3,37 мас. % N, 58,76 мас. % С, 5,87 мас. % Н, 32,00 мас. % О, среднюю молекулярную массу 98 кДа и общую кислотность 3,2 ммоль/г, содержание карбоксильных групп 0,3 ммоль/г, содержание фенольных групп 2,9 ммоль/г, константы диссоциации карбоксильных (рК1) и фенольных групп (рК2) 6,5 и 8,4 соответственно.

Ряд металлов, к которым относится Zn(II), способен образовывать хелатные комплексы с карбонильными (C=O), алкоксильными (-OR) и аминогруппами (-NH2) (Семенов А. А. Влияние гуминовых кислот на устойчивость растений и микроорганизмов к воздействию тяжелых металлов // Москва. - 2009.) при этом наиболее устойчивые комплексы образуются в результате ионного обмена катионов Zn(II) и Pb(II) с карбоксильных (-СООН) и фенольного гидроксила (ArOH).

Связывание низкомолекулярной фракции ГВ с катионами Pb(II) и Zn(II) приводит к образованию нерастворимых комплексов «ГВ - металл», характеризующиеся константами устойчивости 1,4⋅105 и 8,4⋅103 соответственно. Для описания стехиометрии взаимодействия функциональных групп гуминовых веществ с ионами металлов в качестве эквивалентной концентрации ГВ использовали понятие молярная концентрация металл - связывающие центры [МСЦ].

При избытке Мет(II) все МСЦ в составе низкомолекулярной фракции заполнены, поэтому содержание металла в полученных нерастворимых гуматах будет эквивалентно содержанию МСЦ (PbСЦ и ZnСЦ) в соответствующих анализируемых образцах. Низкомолекулярная фракция гуминовых веществ черноольхового низинного торфа содержит 1,5 мг/г свинец-связывающих центров и 7,8 мг/г цинк-связывающих центров.

Благодаря изобретению создан уникальный по своим свойствам и областям применения продукт - фракция гуминовых веществ, которая в виде обратимых коллоидных систем в вязко-пластичном раздельно-зернистом (сыпучем) состоянии, при растворении в воде образует устойчивые гомогенные системы с высокой сорбционной и реакционной способностями и может быть использована для химического связывания катионов Pb(II) и Zn(II).

Целесообразно очистку воды (питьевой, промышленной, грунтовой) и донных отложений с высоким содержанием металлов осуществлять способом, включающим введение в воду, содержащую токсичные вещества, фракцию гуминовых веществ черноольхового низинного торфа, при этом согласно изобретению в качестве детоксиканта используют фракцию гуминовых веществ, состоящую из 3,37 мас. % N, 58,76 мас. % С, 5,87 мас. % Н, 32,00 мас. % О, имеющую общую кислотность 3,2 ммоль/г, содержание карбоксильных групп 0,3 ммоль/г, фенольных групп - 2,9 ммоль/г, константы диссоциации карбоксильных рК1=6,5 и фенольных групп рК2=8,4 и имеющая среднюю молекулярную массу 98 кДа.

При внесении в воду полученная фракция гуминовых веществ, благодаря своей высокой удельной поверхности, вступает в реакции взаимодействия с токсичными веществами, например с ионами тяжелых металлов, связывает их, переводя в водонерастворимую форму. Связанные химически с фракцией гуминовых веществ в виде водонерастворимых соединений ионы тяжелых металлов не поступают в растения и грунтовые воды. Этим обеспечивается детоксикация воды и донных отложений и дальнейшее их использование в хозяйственной деятельности.

Благодаря изобретению загрязненные токсичными веществами воды (питьевые, промышленные, грунтовые) и донные отложения становятся пригодны к хозяйственному использованию.

Благодаря заявленному способу стало возможно получить препараты на основе гуминовых веществ с высокодисперсной, гидратированной структурой, обладающие высокой физико-химической, биологической и физиологической активностью. Полученные соединения являются экологически чистыми и безопасными органическими веществами, они обладают стабильной способностью химически связывать катионы тяжелых металлов, например цинка, свинца, кадмия, ртути, меди, а также радионуклиды и другие токсичные и вредные вещества, с образованием водонерастворимых соединений, блокируя тем самым их поступления в растения и грунтовые воды.

При осуществлении способа использовали оборудование, включающее дробилку-мельницу, экстракционный аппарат, центрифугу.

Пример 1. Фракционирование гуминовых веществ черноольхового низинного торфа проводили при комнатной температуре, добавляли известное количество высаливающего агента. Концентрация высаливающего агента в растворе 20%, фракционирование проводили в течение 24 ч. В качестве высаливающих агентов были выбраны: сульфат натрия. Исходный раствор гуминовых веществ содержал 40 г/л растворенного вещества в 0,05н растворе NaOH с pH=6,5. Отделение осажденной фракции от раствора ГВ проводилось центрифугированием в течение 30 минут при 10000 об/мин, осадок отмывали от сульфата натрия дистиллированной водой и осаждали растворам HCl 10%, фракцию гуминовых веществ отмывали до нейтральной среды и сушили при температуре 60°C до постоянной массы.

Изобретение найдет применение в области охраны окружающей среды и природоохранных технологий, в частности очистки воды (питьевой, промышленной, грунтовой), донных отложений с высоким содержанием тяжелых металлов, путем сорбции загрязняющих веществ на низкомолекулярной фракции гуминовых веществ черноольхового низинного торфа.

1. Способ получения низкомолекулярной фракции гуминовых веществ черноольхового низинного торфа с молекулярной массой 98 кДа, заключающийся в том, что гуминовые вещества экстрагируют из торфа щелочным растворам с добавлением в качестве высаливающего агента сульфата натрия при его концентрации в растворе 20% масс., отделяют осажденную фракцию центрифугированием, которое проводят в течение 30 минут при 10000 об/мин, при этом общее время процесса получения низкомолекулярной фракции составляет 24 часа.

2. Низкомолекулярная фракция гуминовых веществ черноольхового низинного торфа с молекулярной массой 98 кДа, общей кислотностью 3,2 ммоль/г, содержанием карбоксильных групп 0,3 ммоль/г, содержанием фенольных групп 2,9 ммоль/г, полученная способом, охарактеризованным в п. 1, используемая для химического связывания катионов Pb(II) и Zn(II).



 

Похожие патенты:

Изобретение относится к способам получения химического поглотителя диоксида углерода, используемого в индивидуальных дыхательных аппаратах. Способ получения химического поглотителя диоксида углерода заключается в приготовлении суспензии гидроксидов щелочных и/или щелочноземельных металлов путем растворения в воде гидроксидов щелочных металлов с последующим добавлением гидроксидов щелочных и/или щелочноземельных металлов.
Изобретение относится к получению сорбентов для извлечения ионов металлов из водных сред. Предложен способ получения сорбента рутения, заключающийся в осуществлении процесса сорбции сульфид-ионов на гранулированном макропористом анионите с последующей конденсацией сорбированных сульфид-ионов с формальдегидом.

Изобретение относится к технологии получения полимерных сорбентов, используемых для локализации, ликвидации, сбора и очистки загрязненной среды от нефти и нефтепродуктов.

Изобретение относится к получению углеродных сорбентов. Способ получения углеродного сорбента включает измельчение угля до фракции 5-10 мм, обработку 20% раствором негашеной извести в уксусной кислоте, термообработку при температуре 380-420°C с выдержкой в течение 15-20 минут и охлаждение.
Изобретение относится к углеродным сорбентам. Предложен способ получения углеродного сорбента, заключающийся в термическом разложении аминофторидов графита общего состава C2Fx(NH2)y, где x=0,22-0,02, y=0,15-0,41.

Группа изобретений относится к макропористым композитам, наполненным дисперсными частицами сорбента, включенного в полимерную фазу стенок макропор. Композиция для получения заявленного материала содержит полиэлектролит, дисперсный наполнитель, представляющий собой частицы сверхсшитого полистирола сорбента и воду.

Изобретение относится к способу получения селективно связывающих переходный металл частиц на основе фосфина, применению макропористых частиц в качестве реакционноспособного агента, к связывающему металл частицам на основе фосфина, применению связывающих металл частиц для связывания атомов переходного металла и к способу захвата атомов переходного металла с использованием частиц на основе фосфина.

Изобретение относится к способам получения поглотителей диоксида углерода. Осуществляют приготовление водной суспензии гидроксидов щелочных и/или щелочноземельных металлов, наносят суспензию на подложку из пористого материала, проводят формование и сушку.
Изобретение относится к области получения композиционных пористых углеродсодержащих сорбентов. В качестве исходных компонентов используют увлажнённую монтмориллонитсодержащую глину и растительную углеродсодержащую основу в виде продуктов шелушения зерновых и технических сельскохозяйственных культур.

Изобретение относится к очистке воды от сульфидов и углеродсодержащему сорбенту на основе растительного сырья. Углеродсодержащий сорбент для очистки вод от сульфидов имеет микропористую структуру со средним диаметром пор около 2 нм, рентгеноаморфное состояние и выполнен в виде пучков волокон с диаметром 50-100 мкм при диаметре отдельного волокна около 1,5 мкм.
Изобретение относится к области получения композиционных пористых углеродсодержащих сорбентов. В качестве исходных компонентов используют увлажнённую монтмориллонитсодержащую глину и растительную углеродсодержащую основу в виде продуктов шелушения зерновых и технических сельскохозяйственных культур.

Изобретение относится к способам получения сорбентов из растительного сырья. Способ получения сорбента включает обработку предварительно высушенного и измельченного листового опада низкотемпературной плазмой высокочастотного разряда при давлении в разрядной камере 26,6 МПа, при силе тока на аноде 0,5 A и напряжении 7,5 кВ в течение 60 секунд.

Изобретение относится к области природоохранных технологий и технологий водообработки и может быть использовано для очистки поверхностных и грунтовых вод от железа.
Изобретение относится к области полимерных материалов, а именно к способу получения гранул сшитого хитозана, который включает сшивание хитозана глутаровым альдегидом с использованием раствора соляной кислоты, содержащего глутаровый альдегид, при мольном соотношении хитозан : соляная кислота : глутаровый альдегид, равном 1:(0,5-1,0):(0,1-1,0), а затем экструзивное формирование геля в виде нитей, которые механически нарезают на гранулы и сушат при температуре 40-70°C в течение 1-2 часов.

Изобретение относится к области фильтрования. Предложен способ изготовления вспомогательного фильтрующего материала, который включает стадии А, В и С.

Изобретение может быть использовано в горнодобывающей промышленности для очистки и утилизации слабокислых металлоносных карьерных вод в условиях болотно-горного рельефа.

Изобретение относится к области сорбционной очистки воды. Способ получения сорбента для очистки воды включает обработку гречневой лузги в растворе гидроксида натрия c концентрацией 500 мг/л в течение двух часов.

Изобретение относится к средствам борьбы с загрязнениями объектов окружающей среды нефтью и нефтепродуктами. В качестве торфяной основы использован верховой сфагновый слаборазложившийся торф мохового типа, со степенью разложения не более 20%, зольностью не более 10%.
Изобретение может быть использовано в водоподготовке для умягчения и обезжелезивания воды в системах водоснабжения. Способ включает обработку воды, содержащей бикарбонаты кальция и магния и гидроксид железа, сорбентом в виде фибриллированных целлюлозных волокон, содержащих, в мас.%, не менее 90% волокон с длиной не более 0,47 мм и не менее 50% волокон с длиной не более 0,12 мм, соляной кислотой с образованием дисперсии, которую затем обрабатывают карбонатом и гидроксидом натрия.

Изобретение относится к области очистки промышленных сточных вод от ионов тяжелых металлов. Предложен сорбент, состоящий из двух компонентов: термообработанной при 250-300°С шелухи подсолнечника и отхода керамического производства, содержащего оксид алюминия.

Изобретение относится к сорбентам для поглощения нефти. Предложен сорбент-активатор, представляющий собой наноструктурированный углерод-кремнеземный композит, полученный из смеси шунгита с рисовой шелухой при их массовом соотношении в смеси на 6 частей шунгита 1-24 части рисовой шелухи. Способ получения включает нагрев смеси шунгита и рисовой шелухи в реакторе до температуры 150°C±10°C, последующую дегидратацию и карбонизацию смеси. Дегидратацию проводят с начальной температуры 150°C±10°C, постепенно поднимая ее со скоростью 5°C±1°C в минуту до 200°C±10°C, и по достижении 200°C±10°C ее поддерживают до полного испарения воды из смеси. Карбонизацию смеси проводят в среде аргона или азота с постепенным подъемом температуры от 200°C±10°C до 400°C±20°C. Полученный продукт измельчают в шаровой мельнице, промывают водой и сушат. Изобретение позволяет повысить эффективность биодеструкции нефти и нефтепродуктов в почве и грунте и дает возможность использовать сорбент-активатор в регионах с низкими температурами. 2 н.п. ф-лы, 4 табл.

Изобретение относится к области очистки воды от катионов металлов. Предложены гуминовые вещества, выделенные из черноольхового низинного торфа, имеющие молекулярную массу 98 кДа, общую кислотность 3,2 ммольг, содержание карбоксильных групп 0,3 ммольг, содержание фенольных групп 2,9 ммольг. Гуминовые вещества получают щелочной экстракцией из черноольхового низинного торфа с добавлением в качестве высаливающего агента сульфата натрия. Отделяют осажденную фракцию от раствора гуминовых веществ путём центрифугирования в течение 30 минут при 10000 обмин. Выделяют низкомолекулярную фракцию гуминовых веществ. Полученная фракция гуминовых веществ образует нерастворимые комплексные соединения с катионами Pb и Zn и используется для их эффективного извлечения из растворов. 2 н.п. ф-лы, 2 пр.

Наверх