Способ разработки нефтематеринских отложений

Изобретение относится к нефтедобывающей промышленности. Техническим результатом является повышение нефтеотдачи нефтематеринских отложений. Способ разработки нефтематеринских отложений включает выбор месторождения, нефтематеринские отложения которого имеют среднюю абсолютную проницаемость менее 2 мД. Скважины используют уже пробуренные, либо бурят новые. Все скважины выполняют добывающими. Скважину переводят под закачку рабочего агента после выполнения условия на одной из скважин qж < 0,3·qж0 при Pз < 0,3·Рпл0, где qж – текущий дебит жидкости скважины, qж0 – начальный дебит жидкости после пуска скважины в добычу перед соответствующим циклом отбора - закачки, Pз – текущее забойное давление, Рпл0 – начальное пластовое давление. В качестве рабочего агента используют углекислый газ – СО2, закачку которого ведут с постепенным увеличением расхода от 0 до qзакmax, где qзакmax – максимальный расход СО2 при давлении закачки Pзак = (0,8-1,0)·Pгорн, где Pгорн – вертикальное горное давление. При достижении qзакmax закачку прекращают и скважину останавливают на перераспределение давления в коллекторе на 10-100 сут., после чего скважину пускают в добычу, циклы закачки и отбора повторяют. Аналогичные операции проводят на всех скважинах месторождения. 6 пр.

 

Способ разработки нефтематеринских отложений

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке нефтематеринских сланцевых отложений, для которых закачка воды не эффективна.

Известен способ разработки нефтяной залежи, включающий отбор нефти через добывающие скважины и закачку рабочего агента через нагнетательные скважины в циклическом режиме. При этом определяют среднеарифметическую приемистость нагнетательных скважин, скважины с приемистостью менее средней относят к низкоприемистым, скважины с приемистостью более средней относят к высокоприемистым. Группируют попарно расположенные территориально ближайшую высокоприемистую и низкоприемистую нагнетательные скважины. Все нагнетательные скважины сообщают между собой гидродинамически через наземную систему водоводов с возможностью перетока рабочего агента из низкоприемистой скважины в высокоприемистую скважину. При циклической закачке рабочего агента сгруппированные попарно высокоприемистую и низкоприемистую скважины останавливают и запускают одновременно, а цикл закачки назначают следующим: 10-20 сут - закачка, 10-20 сут - остановка (патент РФ №2303126, кл. Е21В 43/20, опубл. 20.07.2007).

Наиболее близким по технической сущности к предлагаемому способу является способ разработки нефтяной залежи, включающий отбор нефти через добывающие скважины, закачку рабочего агента через нагнетательные скважины, определение приемистости нагнетательных скважин и ее учет при назначении режимов работы нагнетательных скважин. Согласно изобретению, замеры приемистости и давления закачки проводят на нагнетательных скважинах после установления постоянного режима работы скважин, т.е. после недлительного простоя до 10 ч определение приемистости проводят не ранее чем через 3 ч, после длительного простоя порядка 10-15 суток определение приемистости проводят не ранее, чем через 2 суток, при повышении приемистости нагнетательных скважин с приемистостью более 40 м3/сут, работающих в постоянном режиме, выполняют их перевод на кратковременный до 1-4 мес циклический режим до возвращения к прежней приемистости, а малоприемистые нагнетательные скважины, работающие в постоянном режиме с приемистостью порядка 15-20 м3/сут, переводят на кратковременный циклический режим работы до повышения их приемистости, после чего скважины вновь переводят на постоянный режим закачки (патент РФ №2361072 кл. Е21В 43/20, опубл. 10.07.2009 - прототип).

Общим недостатком известных способов является низкая эффективность при разработке нефтематеринских, слабопроницаемых, сланцевых и преимущественно гидрофобных коллекторов. Попытка закачать воду в такие породы, даже в циклическом режиме, приводит к их гидроразрыву, а не к нефтевытеснению. В результате нефтеотдача остается низкой.

В предложенном изобретении решается задача повышения нефтеотдачи нефтематеринских отложений.

Задача решается тем, что в способе разработки нефтематеринских отложений, включающем бурение, освоение и отбор продукции из скважин, определение приемистости скважин, закачку рабочего агента в скважины в циклическом режиме, согласно изобретению, выбирают месторождение, нефтематеринские отложения которого имеют среднюю абсолютную проницаемость менее 2 мД, скважины используют уже пробуренные, либо бурят новые, все скважины выполняют добывающими, после периода эксплуатации и достижения условия на одной из скважин qж < 0,3·qж0 при Pз < 0,3·Рпл0, где qж – текущий дебит жидкости скважины, qж0 – начальный дебит жидкости после пуска скважины в добычу перед соответствующим циклом отбора - закачки, Pз – текущее забойное давление, Рпл0 – начальное пластовое давление, данную скважину переводят под закачку рабочего агента, в качестве которого используют углекислый газ – СО2, закачку СО2 ведут с постепенным увеличением расхода от 0 до qзакmax, где qзакmax – максимальный расход СО2 при давлении закачки Pзак = (0,8-1,0)·Pгорн, где Pгорн – вертикальное горное давление, при достижении qзакmax закачку прекращают и скважину останавливают на перераспределение давления в коллекторе на 10-100 сут, после чего скважину пускают в добычу, циклы закачки и отбора повторяют, аналогичные операции проводят на всех скважинах месторождения.

Сущность изобретения

Под нефтематеринскими отложениями здесь понимаются неоднородные слабопроницаемые коллекторы с проницаемостью, варьирующейся в пределах от нескольких единиц до нескольких сотен мкД (10-6 мкм2). Небольшие прослои коллектора также могут составлять несколько единиц мД (10-3 мкм2). Примером таких коллекторов могут служить доманиковые отложения на территории Республики Татарстан.

На нефтеотдачу нефтематеринских отложений существенное влияние оказывает эффективность создаваемой системы разработки. Основной проблемой является поддержание пластового давления. Ввиду достаточно низкой проницаемости коллектора и его преимущественной гидрофобности, закачка воды значительно затруднена. При этом увеличение давления закачки приводит лишь к гидроразрыву. Разработка на естественном режиме характеризуется резким падением дебита жидкости и низкой конечной нефтеотдачей. Таким образом, существующие технические решения не в полной мере позволяют эффективно разрабатывать нефтематеринские отложения. В предложенном изобретении решается задача повышения нефтеотдачи нефтематеринских отложений. Задача решается следующим образом.

Способ реализуют следующим образом.

Участок нефтематеринских отложений со средней абсолютной проницаемостью коллектора менее 2 мД разбуривают вертикальными и/или горизонтальными добывающими скважинами. При возможности используют скважины, уже пробуренные на данный или другие объекты, совпадающие в структурном плане. Причем пробуренные скважины могут быть уже с проведенным гидроразрвом пласта. Скважины обустраивают, осваивают и пускают в добычу. После периода эксплуатации и достижения условия на одной из скважин:

qж < 0,3·qж0 при Pз < 0,3·Рпл0,(1)

где qж – текущий дебит жидкости скважины, м3/сут,

qж0 – начальный дебит жидкости после пуска скважины в добычу перед соответствующим циклом отбора - закачки, м3/сут,

Pз – текущее забойное давление, МПа,

Рпл0 – начальное пластовое давление, МПа,

данную скважину переводят под закачку рабочего агента, в качестве которого используют углекислый газ – СО2.

Закачку СО2 ведут с постепенным увеличением расхода от 0 до qзакmax, где qзакmax – максимальный расход СО2 при давлении закачки Pзак = (0,8-1,0)·Pгорн, где Pгорн – вертикальное горное давление. При достижении qзакmax закачку прекращают и скважину останавливают на перераспределение давления в коллекторе на 10-100 сут. Под давлением закачки понимается давление на забое скважины при закачке рабочего агента. Под вертикальным горным давлением понимается давление вышележащих пород от дневной поверхности, а для морских месторождений к данному давлению еще следует прибавить давление толщи воды.

Далее скважину пускают в добычу. Циклы закачки и отбора повторяют при выполнении условия (1) на той же скважине. Аналогичные операции проводят на всех скважинах участка нефтематеринских отложений.

Согласно постановлению Правительства РФ № 700-Р, при значениях проницаемости 2 мД и менее, коллектора относятся к категории трудноизвлекаемых запасов и для них действуют пониженные ставки налога на добычу полезных ископаемых (НДПИ), что позволяет вывести закачку СО2 в разряд эффективных, с точки зрения экономики, технологий.

Остановка скважины при дебите жидкости более чем 30% от начального с последующим переводом под закачку рабочего агента, согласно расчетам, нецелесообразна, т.к. для большинства нефтематеринских отложений при qж > 0,3·qж0 обеспечивается основная часть отбора нефти. При этом на дебит жидкости непосредственно влияет создаваемое забойное давление. Поэтому условие остановки скважины с дебитом жидкости при Pз < 0,3·Рпл0 определено, согласно исследованиям, как наиболее оптимальное, т.к. при Pз > 0,3·Рпл0 не используется весь потенциал энергетического состояния коллектора.

Использование углекислого газа для поддержания пластового давления в нефтематеринских отложениях наиболее оправдано, т.к. данный газ легче всего проникает по гидрофобным трещинам в глубь пласта (в отличие от воды), а также легко растворяется в нефти. Следует отметить, что для углекислого газа общеизвестна критическая точка - 31 °С и 7,1 МПа, т.е. такое значение температуры и давления соответственно, при котором углекислый газ переходит в жидкую фазу. Предлагаемый способ как раз направлен на то, чтобы на начальном этапе закачки СО2 был в газообразном состоянии, проникая глубже в пласт. Далее, с постепенным увеличением пластового давления, закачиваемый СО2 будет переходить в жидкую фазу, повышая давление закачки. Однако следует учитывать негативное влияние СО2 на металлическое оборудование. Во избежание коррозии следует закачивать СО2 через насосно-компрессорные трубы, устойчивые к коррозии.

Постепенное увеличение расхода СО2 от 0 до максимальной при давлении закачки Pзак = (0,8-1,0)·Pгорн, согласно исследованиям, позволяет избежать газоразрыва пласта на начальном этапе закачки и при необходимости его инициировать на заключительном этапе данного цикла закачки. Необходимость в газоразрыве, а при жидком состоянии СО2 – и в гидроразрыве, определяется для каждого участка коллектора индивидуально, т.к. нефтематеринские отложения значительно неоднородны и нет возможности обобщить данную необходимость для всех коллекторов. Следует отметить, что для горизонтальных скважин применяют многостадийный газо- или гидроразрыв пласта, т.е. с разделением ствола на секции. Значение максимального давления закачки Pзак = (0,8-1,0)·Pгорн определено, согласно моделированию, как наиболее оптимальное. Закачка рабочего агента до этого значения давления позволяет практически полностью восстановить пластовое давление, как минимум в зоне отбора.

Остановка скважины на перераспределение давления в коллекторе менее чем на 10 сут, согласно расчетам, не эффективна, т.к. давление для большинства нефтематеринских коллекторов не успевает перераспределиться, а более 100 сут – уже не приводит к изменению давления.

Разработку ведут до полной экономически рентабельной выработки участка нефтематеринских отложений.

Результатом внедрения данного способа является повышение нефтеотдачи нефтематеринских отложений.

Примеры конкретного выполнения способа.

Пример 1. Доманиковые отложения речинского горизонта сланцевой нефти (признанные как нефтематеринские отложения) Бавлинского месторождения, средняя абсолютная проницаемость которого варьируется в пределах 0,001-5 мД и составляет в среднем 2 мД, размеры залежи 1500х2500 м, средняя толщина 30 м, разбуривают 30 вертикальными и наклонно-направленными добывающими скважинами. Начальное пластовое давление составляет Рпл0 = 15 МПа. Скважины обустраивают, в качестве насосно-компрессорных труб используют стеклопластиковые трубы (фирмы ООО НПП «Завод стеклопластиковых труб»). После освоения скважины пускают в добычу.

Через 1,5 года эксплуатации в одной из скважин с начальным дебитом жидкости qж0 = 25 т/сут, дебит жидкости снизился до qж = 0,3·qж0 = 0,3·25 = 7,5 т/сут при Pз = 0,3·Рпл0 = 0,3·15 = 4,5 МПа. Данную скважину переводят под закачку углекислого газа. Закачку СО2 ведут с постепенным увеличением расхода от 0 до qзакmax = 650 м3/сут, где максимальный расход СО2 был зафиксирован при давлении закачки Pзак = 1,0·Pгорн = 35 МПа. Закачку прекращают и скважину останавливают на перераспределение давления в коллекторе на 10 сут. Затем скважину пускают в добычу.

Циклы закачки и отбора повторяют при выполнении условия (1). Аналогичные операции проводят на всех скважинах доманиковых отложений Бавлинского месторождения.

Пример 2. Выполняют, как пример 1. Бурят горизонтальные скважины, горизонтальные стволы разделяют пакерами. Значение максимального давления закачки Pзак = 0,8·Pгорн = 0,8·35 = 28 МПа. Скважину останавливают на перераспределение давления в коллекторе на 100 сут.

Пример 3. Выполняют, как пример 1. Бурят многозабойные горизонтальные скважины, каждый ствол отделяют пакерами.

Пример 4. Выполняют, как пример 1. Для разработки доманиковых отложений используют существующие вертикальные скважины, отобравшие запасы из нижележащего кыновско-пашийского горизонта.

Пример 5. Выполняют, как пример 1. Из существующих вертикальных скважин, отобравших запасы из нижележащего кыновско-пашийского горизонта, забуривают боковые горизонтальные стволы.

Пример 6. Выполняют, как пример 1. Используют уже пробуренные горизонтальные скважины с многостадийным гидроразрывом пласта.

В результате разработки участка нефтематеринских отложений, которое ограничили снижением дебитов нефти по каждой скважине менее экономически рентабельного значения 0,5 т/сут при невозможности его дальнейшего увеличения закачкой СО2, было добыто 1849,7 тыс.т нефти, коэффициент нефтеизвлечения (КИН) составил 0,289 д.ед. По прототипу при прочих равных условиях было добыто 966,4 тыс.т нефти, КИН составил 0,151 д.ед. Прирост КИН по предлагаемому способу – 0,138 д.ед.

Предлагаемый способ позволяет повысить охват и коэффициент нефтеизвлечения нефтематеринских сланцевых отложений за счет поддержания пластового давления.

Применение предложенного способа позволит решить задачу повышения нефтеотдачи нефтематеринских отложений.

Способ разработки нефтематеринских отложений, включающий бурение, освоение и отбор продукции из скважин, определение приемистости скважин, закачку рабочего агента в скважины в циклическом режиме, отличающийся тем, что выбирают месторождение, нефтематеринские отложения которого имеют среднюю абсолютную проницаемость менее 2 мД, скважины используют уже пробуренные, либо бурят новые, все скважины выполняют добывающими, после периода эксплуатации и достижения условия на одной из скважин qж < 0,3·qж0 при Pз < 0,3·Рпл0, где qж – текущий дебит жидкости скважины, qж0 – начальный дебит жидкости после пуска скважины в добычу перед соответствующим циклом отбора - закачки, Pз – текущее забойное давление, Рпл0 – начальное пластовое давление, данную скважину переводят под закачку рабочего агента, в качестве которого используют углекислый газ – СО2, закачку СО2 ведут с постепенным увеличением расхода от 0 до qзакmax, где qзакmax – максимальный расход СО2 при давлении закачки Pзак = (0,8-1,0)·Pгорн, где Pгорн – вертикальное горное давление, при достижении qзакmax закачку прекращают и скважину останавливают на перераспределение давления в коллекторе на 10-100 сут, после чего скважину пускают в добычу, циклы закачки и отбора повторяют, аналогичные операции проводят на всех скважинах месторождения.



 

Похожие патенты:
Изобретение относится к нефтедобывающей промышленности. Техническим результатом является повышение нефтеотдачи нефтематеринских карбонатных коллекторов.

Изобретение относится к добыче углеводородов, а именно к разработке нефтяных месторождений на поздней стадии эксплуатации. Технический результат – повышение эффективности способа эксплуатации за счет своевременности ввода необходимых методов увеличения нефтеотдачи.

Группа изобретений относится к нефтедобывающей промышленности и предназначено для очистки от твёрдых отложений стенок обсадных труб и отверстий перфорации, декольматации призабойной зоны пласта и увеличения подвижности пластовых флюидов.

Изобретение относится к нефтяной и газовой промышленности и может найти применение при разработке газонефтяных залежей, где добыча нефти сопряжена с высоким риском прорыва газа из газовой шапки.
Изобретение относится к нефтедобывающей промышленности. Техническим результатом является повышение коэффициента охвата и нефтеотдачи нефтематеринских коллекторов.

Изобретение относится к области добычи углеводородов, более конкретно к соединительным элементам, предназначенным для стыковки изолированных кабелей и/или вводных кабелей, используемых для нагрева пластов.

Изобретение относится к области нефтегазодобывающей промышленности, а именно к волновой технологии совмещенного воздействия на продуктивные пласты с применением горизонтальных скважин.

Изобретение относится к области нефтегазодобывающей промышленности, а именно к проблеме повышения эффективности разработки нефтяных оторочек и подгазовых зон газонефтяных, нефтегазовых и нефтегазоконденсатных залежей, с предшествовавшим периодом добычи газа из газовой или газоконденсатной шапки или без такового.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке горизонтальными скважинами неоднородных терригенных или карбонатных нефтяных залежей.

Группа изобретений относится к нефтедобывающей промышленности и может быть использована для одновременно-раздельной разработки нескольких эксплуатационных объектов скважины с электропогружным насосом с применением акустического воздействия на пластовый флюид в нефтяной скважине.

Изобретение относится к нефтедобывающей промышленности, в частности к разработке нефтяных месторождений посредством закачки в пласт вытесняющих агентов. Технический результат - интенсификация добычи нефти. По способу предварительно на гидродинамической модели пласта определяют целевые объемы чередующихся оторочек воды и газа для закачки в пласт, соответствующие максимальному значению коэффициента извлечения нефти. После этого осуществляют закачку целевого объема оторочки газа в нагнетательную скважину. Затем нагнетательную скважину останавливают до момента снижения давления в прискважинной зоне пласта до значения среднего пластового давления на момент прекращения закачки газа в области пласта, охваченной воздействием нагнетательной скважины. Далее в нагнетательную скважину закачивают первую часть целевой оторочки воды с минимальной технологически возможной приемистостью до снижения газонасыщенности прискважинной зоны пласта до значения остаточной газонасыщенности. Достижение этого показателя устанавливают по стабилизации динамики приемистости на пласт. После этого в нагнетательную скважину продолжают закачку оставшейся части целевого объема оторочки воды с максимальной технологически возможной приемистостью до восстановления пластового давления на уровне начального значения или выше него. Вышеописанный цикл закачек повторяют в процессе разработки нефтяной залежи. 3 ил., 3 табл.,1 пр.

Способ может быть использован на предприятиях газодобывающей, газоперерабатывающей и нефтеперерабатывающей промышленности, входящих в единый технико-экономический региональный кластер. Способ извлечения нефти, конденсата и высокомолекулярных соединений осуществляется на комплексе, включающем, по крайней мере, два газоконденсатных месторождения с нефтяными оторочками. Первое месторождение является истощаемым, а второе – высокопродуктивным. Месторождения различаются содержанием примесей сероводорода и диоксида углерода в добываемом углеводородном газе. Способ осуществляется закачкой в пласты газоконденсатных месторождений с нефтяными оторочками диоксида углерода и извлечения газожидкостной смеси. При этом диоксид углерода для закачки в пласты первого месторождения на начальной стадии работы вырабатывают из добываемого углеводородного газа второго, имеющего большее количество диоксида углерода. Соотношение примесей сероводорода и диоксида углерода в извлекаемом углеводородном газе для первого и второго месторождений (2-4):1 и 1:1 соответственно. На начальном этапе очистка газа из первого месторождения осуществляется в одну ступень с глубоким удалением одновременно сероводорода и диоксида углерода. По мере приближения соотношения примесей к 1:1 переходят на две ступени очистки – селективную и глубокую. Очистку добываемого газа второго месторождения постоянно осуществляют в две ступени. Извлеченный диоксид углерода направляют на компримирование до давления 7,0-8,0 МПа для последующего транспорта в жидком виде до первого месторождения. Закачку осуществляют в нагнетательные скважины, размещенные на участках добычи углеводородов. Извлеченный из продуктивных скважин газ, конденсат, в том числе ретроградный, и высокомолекулярные соединения разделяют на газовую и жидкую фазы. Газовую фазу транспортируют на газоперерабатывающие предприятия, а жидкие на нефтеперерабатывающие предприятия единого кластера. Технический результатом данного изобретения является повышение эффективности извлечения углеводородов истощенных залежей за счет формирования связей между промысловым и перерабатывающими элементами кластера с обеспечением его функционирования в динамических условиях изменения состава добываемого углеводородного газа и продуктивности месторождений. 5 з.п. ф-лы, 1 ил.

Группа изобретений относится к обработке окружающей скважину среды для интенсификации притока. Технический результат – повышение эффективности обработки. По способу осуществляют цементирование обсадной колонны в стволе скважины. Обсадная колонна ствола скважины содержит клапан, расположенный ниже устройства дросселирования текучей среды. Устройство дросселирования текучей среды содержит трубный элемент с седлом, расположенным в канале трубного элемента, и пробку для установки на седло. Осуществляют открытие клапана для установления гидравлического сообщения обсадной колонны ствола скважины с окружающей скважину средой. Устанавливают пробку на седло для дросселирования гидравлического сообщения между обсадной колонной ствола скважины и окружающей скважину средой. Выполняют опрессовку обсадной колонны ствола скважины. Без дополнительного геотехнического мероприятия в стволе скважины удаляют часть пробки, чем обеспечивают увеличение гидравлического сообщения между обсадной колонной ствола скважины и окружающей скважину средой. Выполняют обработку для интенсификации притока в окружающей скважину среде. 3 н. и 12 з.п. ф-лы, 6 ил.

Группа изобретений относится к нефтедобывающей промышленности и предназначено для очистки от твердых отложений стенок обсадных труб и отверстий перфорации, декольматации призабойной зоны пласта и увеличения подвижности пластовых флюидов. Устройство для генерирования волн давления в стволе нагнетающей скважины выполнено в виде струйного генератора Гельмгольца (СГГ), включающего: цилиндрическую камеру объемного резонатора с двумя параллельными крышками - передней и задней; входное сопло, расположенное в передней крышке; кольцо, установленное на радиальных стойках на оси цилиндрической камеры объемного резонатора в интервале между крышками; и выходное отверстие. При этом входное сопло соединено с НКТ, а выходное отверстие направлено вниз по скважине. Причем выходное отверстие выполнено сбоку от входного сопла, в передней крышке или корпусе цилиндрической камеры объемного резонатора. Техническим результатом является повышение эффективности генерирования низкочастотных колебаний без увеличения объема камеры резонатора или длины отверстий. 2 н.п. ф-лы, 5 ил.

Изобретение относится к нефтяной и газовой промышленности, а именно к технологии строительства глубоких скважин. Техническим результатом является повышение точности расчета максимальной длины горизонтального ствола для конкретного типа трещинного коллектора и углеводородной системы. Способ включает определение коэффициентов аномальности, гидроразрыва, поглощения, глубины по стволу, глубины вертикальной, плотности бурового раствора, эквивалентной циркуляционной плотности с учетом распределения по стволу. При этом проводят определение и анализ градаций проницаемости каверново-трещинного пласта на основе ранее пробуренных скважин, далее строят график диапазонов допустимых депрессий/репрессий; дополнительно оценивают диапазон колебания эквивалентной циркуляционной плотности в конкретной точке горизонтального ствола скважины на основе фактических замеров колебаний забойного давления в скважине, рассчитывают эквивалентную циркуляционную плотность с учетом колебаний забойного давления, характеризующуюся на графиках толщиной линии; затем строят график совмещенных давлений для интервала горизонтального ствола и, исходя из графика, на пересечении диапазонов допустимых репрессий/депрессий и диапазона эквивалентной циркуляционной плотности определяют максимально возможную длину горизонтального ствола. 4 ил.

Изобретение относится к нефтедобывающей промышленности и, в частности, к способам разработки нефтяной залежи с нагнетанием газа путем перепуска его из других объектов данного пласта или соседних месторождений углеводородов. Технический результат - повышение отбора нефти из нефтяной залежи. По способу осуществляют выбор объектов для воздействия на пласт и увеличения коэффициента нефтеотдачи. Проводят лабораторные исследования нефти и газа выбранных объектов для определения условий, обеспечивающих эффективное вытеснение из породы пласта-коллектора нефти газом. Определяют предельно допустимые в процессе перепуска газа в нефтяную залежь значения пластового давления на водонефтяном контакте и величины газового фактора нефти, отбираемой из нефтяной залежи в зоне воздействия на пласт перепускаемым газом. Перепуск в нефтяной пласт из газонасыщенного пласта или газовой шапки газа осуществляют в циклическом режиме. Продолжительность цикла перепуска газа в нефтенасыщенную залежь устанавливают на основе регулярно измеряемых значений текущих величин пластового давления на границе водонефтяного контакта, которые должны быть не выше значений давления контактирующей с нефтяной залежью пластовой воды, а величина газового фактора - соответствующей условиям работы нефтяных добывающих скважин без прорыва в них перепускаемого в нефтяную залежь газа. Следят за изменением газового фактора по всем добывающим скважинам и при прорыве в них газа, перепускаемого в нефтяную залежь, дебит добывающих скважин регулируют или эти скважины временно останавливают. Следят за изменением пластового давления или за уровнями жидкости в зоне, близкой к текущему водонефтяному контакту, и при достижении значений, близких к давлению в водоносной зоне, изменяют режим перепуска газа или временно прекращают перепуск. 1 пр., 2 ил.

Изобретение относится к нефтяной промышленности и предназначено для снижения асфальтеносмолопарафиновых отложений (АСПО) на внутрискважинном оборудовании и разрушения водонефтяной эмульсии в скважине при эксплуатации скважины, добывающей высоковязкую нефть. Способ освоения скважины с высоковязкой нефтью включает спуск в скважину колонны насосно-компрессорных труб - НКТ с насосом и капиллярной трубки, закрепленной на наружной поверхности колонны НКТ клямсами, одновременный отбор нефти и подачу химического реагента дозировочным насосом с устья скважины по капиллярной трубке. В качестве насоса используют винтовой насос с верхним приводом от колонны насосных штанг. В качестве химического реагента, дозируемого по капиллярной трубке, используют растворитель парафинов нефтяной. За 12 ч до запуска привода винтового насоса осуществляют импульсную высокочастотную термоакустическую - ИВЧТА обработку призабойной зоны пласта. Перед запуском винтового насоса подачей растворителя насосом-дозатором заполняют капиллярную трубку растворителем от интервала приема винтового насоса до устья, прекращают подачу растворителя в капиллярную трубку, выставляют максимальную нагрузку по току на привод винтового насоса в зависимости от номинальной нагрузки по току электродвигателя привода винтового насоса. Запускают привод винтового насоса с оборотами ротора 70 об/мин с последующим плавным увеличением до 110 об/мин. После запуска привода винтового насоса осуществляют подачу растворителя по капиллярной трубке на прием винтового насоса с расходом 10% от дебита скважины. При росте нагрузки по току на 15% от номинальной нагрузки снижают обороты ротора до 60 об/мин, производят ступенчатое увеличение подачи растворителя в капиллярную трубку до 20% от дебита скважины. В случае роста нагрузки выше максимального значения и отключения насоса производят обратную промывку горячей нефтью и продолжают освоение скважины с высоковязкой нефтью. Техническим результатом предлагаемого способа освоения скважины с высоковязкой нефтью является повышение надежности реализации способа за счет исключения отложения АСПО на внутрискважинном оборудовании с началом запуска насоса в работу при повышении эффективности скважинного насоса. 2 ил.

Группа изобретений относится к нефтедобывающей промышленности и, в частности, к процессам формирования водогазовой смеси для закачки ее в нагнетательную скважину и может быть использовано для повышения производительности нефтедобычи. Технический результат - обеспечение стабилизации закачки водогазовой смеси в нагнетательную скважину, предотвращение чрезмерного повышения устьевого давления вследствие заполнения скважины газовой фазой. По способу формируют водогазовую смесь для закачки в нагнетательную скважину. Это осуществляют посредством смесителя, который соединяют на входе с трубопроводом воды и трубопроводом газа. Смеситель выполняют с возможностью управляемого снижения входного давления и обеспечения возможности гашения возмущений в системе формирования водогазовой смеси с помощью клапана по газу. Осуществляют измерение давлений воды и газа соответственно в водяной и газовой линиях до и после регулирующих клапанов и контролируют перепады давлений на них для управления расходами воды или газа. Расход газа ограничивают в пределах рабочего диапазона. Для этого сравнивают полученные перепады давлений с заданной величиной минимального перепада давления. Если фактический перепад давления больше заданного минимального, то продолжают поддерживать целевые значения расходов воды и газа. Если фактический перепад давления станет равным или будет меньше заданного минимального перепада давления, то посредством ПИД-регулятора по газу подают управляющий сигнал на клапан по газу для понижения расхода закачиваемого газа. Поддерживают на регулирующем клапане по воде ее закачку в скважину, обеспечивая самонастройку режима работы скважины на закачку водогазовой смеси. Для реализации способа предусмотрена система управления процессом формирования водогазовой смеси для закачки в нагнетательную скважину. 2 н.п. ф-лы, 2 ил.

Изобретение относится к газонефтедобывающей отрасли, а именно к разработке залежей с трудноизвлекаемыми запасами углеводородов в низкопроницаемых пластах. Технический результат - повышение коэффициентов извлечения углеводородов: газоотдачи, конденсатоотдачи, нефтеотдачи, а также продуктивности добывающих скважин. По способу на скважинах реализуют повторяющиеся циклы снижения и повышения давления, Этим образуют сети микро- и макротрещин. Каждый цикл образуют из этапов добычи углеводородов, простоя скважины, закачки метансодержащего агента в ту же скважину, повторного простоя. В каждом цикле добычу пластовых углеводородов из скважины осуществляют до снижения продуктивности на 30-50% ниже начального значения на текущем цикле. После остановки скважины выдерживают в состоянии простоя не менее 5-7 дней для выравнивания давления, релаксации напряженно-деформированного состояния породы и стабилизации системы трещин в зоне, охваченной деформационными воздействиями при снижении забойного и пластового давления. В процессе простоя оценивают параметры конденсатного вала. В процессе закачки газа и последующего простоя оценивают эффективность процесса расформирования газоконденсатного вала за счет испарения конденсата в газовую фазу. 8 з.п. ф-лы, 1 ил.

Изобретение относится к нефтяной промышленности и предназначено для снижения асфальтеносмолопарафиновых отложений (АСПО) на внутрискважинном оборудовании и разрушения водонефтяной эмульсии в скважине при эксплуатации скважины, добывающей высоковязкую нефть. Способ включает спуск в скважину компоновки, состоящей снизу вверх из нижнего перфорированного патрубка, штангового насоса, колонны насосно-компрессорных труб - НКТ и колонны штанг. Приводят в работу штанговый насос под действием перемещений колонны штанг, подают высоковязкой нефть к устью скважины по колонне НКТ и проводят отбор высоковязкой нефти по колонне НКТ с возможностью прямой промывки. После приведения в работу штангового насоса и начала отбора высоковязкой нефти снимают начальную динамограмму и определяют первоначальные максимальную и минимальную нагрузки на колонну штанг. Продолжают отбор высоковязкой нефти из скважины по колонне НКТ штанговым насосом и периодически снимают динамограммы. Если по результатам снятия динамограмм отклонение максимальной или минимальной нагрузок составляет от 0 до 5% от начальных значений, то продолжают эксплуатировать скважину. Если отклонение составляет от 5 до 30% от начальных значений, то останавливают штанговый насос и производят обратную промывку скважины закачкой насосным агрегатом горячей нефти через межколонное пространство в нижний перфорированный патрубок по колонне НКТ в желобную емкость до падения давления закачки в межколонном пространстве в 1,5 раза. После чего производят повторное снятие динамограммы. Определяют максимальную или минимальную нагрузки на колонну штанг, из условия достижения от 0 до 5% от начальных значений. Если при периодических снятиях динамограмм отклонение максимальной или минимальной нагрузок составляет от 30 до 100% от начальных значений, то, не прерывая отбор высоковязкой нефти штанговым насосом, спускают геофизический кабель с наконечником на конце. Производят импульсную высокочастотную термоакустическую - ИВЧТА обработку ствола скважины и призабойной зоны пласта. В процессе проведения ИВЧТА обработки ствола скважины и призабойной зоны пласта производят периодическое снятие динамограммы через каждые 4 ч до восстановления значения максимальной и минимальной нагрузок на колонну штанг от 0 до 5% от начальных значений. После чего, не прерывая отбора высоковязкой нефти, обработку скважины прекращают и извлекают из межколонного пространства скважины геофизический кабель с наконечником. Техническим результатом является повышение эффективности эксплуатации добывающей высоковязкую нефть скважины за счет снижения интенсивности процесса отложений АСПО на внутренних стенках скважины, разрушения водонефтяной эмульсии и увеличения объёма отбора высоковязкой нефти из скважины. 3 ил.

Изобретение относится к нефтедобывающей промышленности. Техническим результатом является повышение нефтеотдачи нефтематеринских отложений. Способ разработки нефтематеринских отложений включает выбор месторождения, нефтематеринские отложения которого имеют среднюю абсолютную проницаемость менее 2 мД. Скважины используют уже пробуренные, либо бурят новые. Все скважины выполняют добывающими. Скважину переводят под закачку рабочего агента после выполнения условия на одной из скважин qж < 0,3·qж0 при Pз < 0,3·Рпл0, где qж – текущий дебит жидкости скважины, qж0 – начальный дебит жидкости после пуска скважины в добычу перед соответствующим циклом отбора - закачки, Pз – текущее забойное давление, Рпл0 – начальное пластовое давление. В качестве рабочего агента используют углекислый газ – СО2, закачку которого ведут с постепенным увеличением расхода от 0 до qзакmax, где qзакmax – максимальный расход СО2 при давлении закачки Pзак ·Pгорн, где Pгорн – вертикальное горное давление. При достижении qзакmax закачку прекращают и скважину останавливают на перераспределение давления в коллекторе на 10-100 сут., после чего скважину пускают в добычу, циклы закачки и отбора повторяют. Аналогичные операции проводят на всех скважинах месторождения. 6 пр.

Наверх