Способ разработки нефтяной залежи

Изобретение относится к нефтедобывающей промышленности и, в частности, к способам разработки нефтяной залежи с нагнетанием газа путем перепуска его из других объектов данного пласта или соседних месторождений углеводородов. Технический результат - повышение отбора нефти из нефтяной залежи. По способу осуществляют выбор объектов для воздействия на пласт и увеличения коэффициента нефтеотдачи. Проводят лабораторные исследования нефти и газа выбранных объектов для определения условий, обеспечивающих эффективное вытеснение из породы пласта-коллектора нефти газом. Определяют предельно допустимые в процессе перепуска газа в нефтяную залежь значения пластового давления на водонефтяном контакте и величины газового фактора нефти, отбираемой из нефтяной залежи в зоне воздействия на пласт перепускаемым газом. Перепуск в нефтяной пласт из газонасыщенного пласта или газовой шапки газа осуществляют в циклическом режиме. Продолжительность цикла перепуска газа в нефтенасыщенную залежь устанавливают на основе регулярно измеряемых значений текущих величин пластового давления на границе водонефтяного контакта, которые должны быть не выше значений давления контактирующей с нефтяной залежью пластовой воды, а величина газового фактора - соответствующей условиям работы нефтяных добывающих скважин без прорыва в них перепускаемого в нефтяную залежь газа. Следят за изменением газового фактора по всем добывающим скважинам и при прорыве в них газа, перепускаемого в нефтяную залежь, дебит добывающих скважин регулируют или эти скважины временно останавливают. Следят за изменением пластового давления или за уровнями жидкости в зоне, близкой к текущему водонефтяному контакту, и при достижении значений, близких к давлению в водоносной зоне, изменяют режим перепуска газа или временно прекращают перепуск. 1 пр., 2 ил.

 

Изобретение относится к нефтедобывающей промышленности, в частности к способам разработки нефтяной залежи с нагнетанием газа путем перепуска его из других объектов данного пласта или соседних месторождений углеводородов.

Известны способы разработки нефтяных залежей с перепуском в них газа из высоконапорных газонасыщенных пластов. (Л.С. Закса. Повышение нефтеотдачи пласта нагнетанием газов. М., 1963 г.; патенты RU 2391495, RU 2490438). Водогазовую смесь готовят путем смешения воды и углеводородного или иного газа или смеси газа с жидкостью с применением эжекционных или эжекционно-диспергирующих устройств.

Недостатком указанных способов является либо недостаточно высокая величина коэффициента вытеснения нефти, закачиваемой в нефтенасыщенный пласт водогазовой смесью, - при использовании для приготовления смеси высоконапорного газа с низким содержанием углеводородов, либо большие капитальные, эксплуатационные и энергетические затраты - при использовании низконапорного попутного нефтяного газа, который перед подачей на эжекционно-диспергирующее устройство (ЭДУ) необходимо предварительно компримировать.

Наиболее близким к предлагаемому является способ разработки нефтяной залежи по патенту RU 2490438. Данный способ принят за прототип.

Недостатком известного способа является использование энергии высоконапорного газового потока перепускаемого газа до его поступления в нагнетательную скважину, вследствие чего снижается давление в нагнетательной скважине, ее приемистость, а также ухудшаются условия смесимости перепускаемого газа с нефтью.

Предлагаемый способ разработки нефтяной залежи с перепуском высоконапорного пластового газа отличается тем, что подача в нефтяную залежь осуществляется циклически.

При этом продолжительность цикла перепуска газа определяется из условий обеспечения заданного давления в газовом пласте в зоне отбора перепускаемого газа, обеспечивающим оптимальные условия отбора и подачи газа в нефтяную залежь, а также условиями на границе водонефтяного контакта нефтяной залежи, в которую перепускается газ, и предотвращения прорывов перепускаемого газа в нефтяные добывающие скважины.

Задачей изобретения является повышение отбора нефти из нефтяной залежи.

Поставленная задача решается тем, что в способе разработки нефтяной залежи, включающем выбор объектов для воздействия на пласт с целью увеличения коэффициента нефтеотдачи, проведение лабораторных исследований нефти и газа выбранных объектов с целью определения условий, обеспечивающих эффективное вытеснение из породы пласта-коллектора нефти газом, определение предельно допустимых в процессе перепуска газа в нефтяную залежь значений пластового давления на водонефтяном контакте и величины газового фактора нефти, отбираемой из нефтяной залежи в зоне воздействия на пласт перепускаемым газом, согласно изобретению перепуск в нефтяной пласт, из газонасыщенного пласта или газовой шапки, газа осуществляют в циклическом режиме, причем продолжительность цикла перепуска газа в нефтенасыщенную залежь устанавливают на основе регулярно измеряемых значений текущих величин пластового давления на границе водонефтяного контакта, которые должны быть не выше значений давления контактирующей с нефтяной залежью пластовой воды, а величина газового фактора должна быть соответствующей условиям работы нефтяных добывающих скважин без прорыва в них перепускаемого в нефтяную залежь газа.

Осуществление способа

На основе лабораторных исследований определяют условия смесимости различных объемов нефти с газом, отобранными из выбранных для осуществления перепуска залежей. Выполняют необходимые расчеты, на основании чего определяют оптимальные условия: рабочие параметры режимов перепуска газа и отбора нефти из добывающих скважин.

Выполняют расчеты изменения пластового давления в зоне отбора газа при различных значениях темпа перепуска газа, увеличения коэффициента нефтеотдачи и прироста добычи нефти. На основании технико-экономических расчетов выбирается наиболее эффективное сочетание выбранных объектов, технологического режима циклического перепуска газа. Режимов эксплуатации добывающих нефтяных скважин, в том числе продолжительность циклов перепуска газа и остановок перепуска газа.

Пример применения данного способа

Способ перепуска газа высокого давления проводят в нефтяную залежь мелекесского горизонта, 2-ю пачку (4-й пласт) Жирновского месторождения Волгоградская области. В качестве источника перепускаемого газа использовали газ из бобриковских отложений этого же месторождения.

Схема расположения опытного участка, добывающих нефтяных и высоконапорных газовых скважин представлена на фиг.1.

В пределах выбранного участка находятся 14 добывающих нефтяных скважин. Вскрытая эффективная нефтенасыщенная толщина по этим скважинам изменяется от 1,2 до 6,8 м.

Схема перепуска газа из скважины 190 в скважину 783 Жирновского месторождения представлена на фиг. 2.

Намечены 2 резервные скважины: скважина 59 резервная нагнетательная, скважина 192 резервная для источника газа высокого давления.

Перед переводом скважины 783 под нагнетание в ней необходимо произвести малообъемный гидравлический разрыв пласта. Низ ствола скважины 783 должен быть оборудован пакером. Необходимо определить приемистость этой скважины по газу и произвести весь необходимый комплекс исследований.

Перед началом проведения перепуска газа необходимо по всем добывающим скважинам участка произвести замеры дебитов, газового фактора, обводненности добываемой продукции, а также динамические уровни. С пуском скважины 190 определить дебит этой скважины и устьевое давление. Через каждые 3 дня после начала перепуска по всем добывающим скважинам участка необходимо производить замеры их дебитов, газовых факторов и уровней жидкости.

Через 3 месяца дебиты добывающих скважин увеличатся в среднем в 3 раза, а суточная суммарная добыча нефти выбранного участка составит не менее 15-20 куб. м/сут.

Необходимо следить за изменением газового фактора по всем добывающим скважинам, производить регулирование их дебитов, вплоть до остановки скважин, в которые произошел прорыв перепускаемого в нефтяную залежь газа. Необходимо также следить за изменением величины пластового давления или уровней жидкости в зоне, близкой к текущему водонефтяному контакту, и при достижении его значений, близких к давлению в водоносной зоне, - изменить режим перепуска газа или временно прекратить перепуск.

Таким образом, продолжительность цикла перепуска газа будет зависеть от времени начала интенсивного прорыва газа в добывающие скважины и от изменения во времени в течение цикла перепуска газа величины пластового давления вблизи текущего водонефтяного контакта.

В процессе перепуска газа предусматривается отбор проб нефти из добывающих скважин, определение ее физических свойств - вязкость при различном давлении, содержание растворенного в нефти газа, его состав. На основании данных, получаемых в процессе постоянного мониторинга нагнетательной и добывающих скважин, вносятся коррективы в используемую гидродинамическую модель перепуска газа, сравниваются расчетные параметры с фактическими.

Способ разработки нефтяной залежи, включающий выбор объектов для воздействия на пласт и увеличения коэффициента нефтеотдачи, проведение лабораторных исследований нефти и газа выбранных объектов для определения условий, обеспечивающих эффективное вытеснение из породы пласта-коллектора нефти газом, определение предельно допустимых в процессе перепуска газа в нефтяную залежь значений пластового давления на водонефтяном контакте и величины газового фактора нефти, отбираемой из нефтяной залежи в зоне воздействия на пласт перепускаемым газом, отличающийся тем, что перепуск в нефтяной пласт из газонасыщенного пласта или газовой шапки газа осуществляют в циклическом режиме, причем продолжительность цикла перепуска газа в нефтенасыщенную залежь устанавливают на основе регулярно измеряемых значений текущих величин пластового давления на границе водонефтяного контакта, которые должны быть не выше значений давления контактирующей с нефтяной залежью пластовой воды, а величина газового фактора - соответствующей условиям работы нефтяных добывающих скважин без прорыва в них перепускаемого в нефтяную залежь газа, при этом следят за изменением газового фактора по всем добывающим скважинам и при прорыве в них газа, перепускаемого в нефтяную залежь, дебит добывающих скважин регулируют или эти скважины временно останавливают, также следят за изменением пластового давления или за уровнями жидкости в зоне, близкой к текущему водонефтяному контакту, и при достижении значений, близких к давлению в водоносной зоне, изменяют режим перепуска газа или временно прекращают перепуск.



 

Похожие патенты:

Изобретение относится к нефтяной и газовой промышленности, а именно к технологии строительства глубоких скважин. Техническим результатом является повышение точности расчета максимальной длины горизонтального ствола для конкретного типа трещинного коллектора и углеводородной системы.

Группа изобретений относится к нефтедобывающей промышленности и предназначено для очистки от твердых отложений стенок обсадных труб и отверстий перфорации, декольматации призабойной зоны пласта и увеличения подвижности пластовых флюидов.

Группа изобретений относится к обработке окружающей скважину среды для интенсификации притока. Технический результат – повышение эффективности обработки.

Способ может быть использован на предприятиях газодобывающей, газоперерабатывающей и нефтеперерабатывающей промышленности, входящих в единый технико-экономический региональный кластер.

Изобретение относится к нефтедобывающей промышленности, в частности к разработке нефтяных месторождений посредством закачки в пласт вытесняющих агентов. Технический результат - интенсификация добычи нефти.
Изобретение относится к нефтедобывающей промышленности. Техническим результатом является повышение нефтеотдачи нефтематеринских отложений.
Изобретение относится к нефтедобывающей промышленности. Техническим результатом является повышение нефтеотдачи нефтематеринских карбонатных коллекторов.

Изобретение относится к добыче углеводородов, а именно к разработке нефтяных месторождений на поздней стадии эксплуатации. Технический результат – повышение эффективности способа эксплуатации за счет своевременности ввода необходимых методов увеличения нефтеотдачи.

Группа изобретений относится к нефтедобывающей промышленности и предназначено для очистки от твёрдых отложений стенок обсадных труб и отверстий перфорации, декольматации призабойной зоны пласта и увеличения подвижности пластовых флюидов.

Изобретение относится к нефтяной и газовой промышленности и может найти применение при разработке газонефтяных залежей, где добыча нефти сопряжена с высоким риском прорыва газа из газовой шапки.

Изобретение относится к нефтяной промышленности и предназначено для снижения асфальтеносмолопарафиновых отложений (АСПО) на внутрискважинном оборудовании и разрушения водонефтяной эмульсии в скважине при эксплуатации скважины, добывающей высоковязкую нефть. Способ освоения скважины с высоковязкой нефтью включает спуск в скважину колонны насосно-компрессорных труб - НКТ с насосом и капиллярной трубки, закрепленной на наружной поверхности колонны НКТ клямсами, одновременный отбор нефти и подачу химического реагента дозировочным насосом с устья скважины по капиллярной трубке. В качестве насоса используют винтовой насос с верхним приводом от колонны насосных штанг. В качестве химического реагента, дозируемого по капиллярной трубке, используют растворитель парафинов нефтяной. За 12 ч до запуска привода винтового насоса осуществляют импульсную высокочастотную термоакустическую - ИВЧТА обработку призабойной зоны пласта. Перед запуском винтового насоса подачей растворителя насосом-дозатором заполняют капиллярную трубку растворителем от интервала приема винтового насоса до устья, прекращают подачу растворителя в капиллярную трубку, выставляют максимальную нагрузку по току на привод винтового насоса в зависимости от номинальной нагрузки по току электродвигателя привода винтового насоса. Запускают привод винтового насоса с оборотами ротора 70 об/мин с последующим плавным увеличением до 110 об/мин. После запуска привода винтового насоса осуществляют подачу растворителя по капиллярной трубке на прием винтового насоса с расходом 10% от дебита скважины. При росте нагрузки по току на 15% от номинальной нагрузки снижают обороты ротора до 60 об/мин, производят ступенчатое увеличение подачи растворителя в капиллярную трубку до 20% от дебита скважины. В случае роста нагрузки выше максимального значения и отключения насоса производят обратную промывку горячей нефтью и продолжают освоение скважины с высоковязкой нефтью. Техническим результатом предлагаемого способа освоения скважины с высоковязкой нефтью является повышение надежности реализации способа за счет исключения отложения АСПО на внутрискважинном оборудовании с началом запуска насоса в работу при повышении эффективности скважинного насоса. 2 ил.

Группа изобретений относится к нефтедобывающей промышленности и, в частности, к процессам формирования водогазовой смеси для закачки ее в нагнетательную скважину и может быть использовано для повышения производительности нефтедобычи. Технический результат - обеспечение стабилизации закачки водогазовой смеси в нагнетательную скважину, предотвращение чрезмерного повышения устьевого давления вследствие заполнения скважины газовой фазой. По способу формируют водогазовую смесь для закачки в нагнетательную скважину. Это осуществляют посредством смесителя, который соединяют на входе с трубопроводом воды и трубопроводом газа. Смеситель выполняют с возможностью управляемого снижения входного давления и обеспечения возможности гашения возмущений в системе формирования водогазовой смеси с помощью клапана по газу. Осуществляют измерение давлений воды и газа соответственно в водяной и газовой линиях до и после регулирующих клапанов и контролируют перепады давлений на них для управления расходами воды или газа. Расход газа ограничивают в пределах рабочего диапазона. Для этого сравнивают полученные перепады давлений с заданной величиной минимального перепада давления. Если фактический перепад давления больше заданного минимального, то продолжают поддерживать целевые значения расходов воды и газа. Если фактический перепад давления станет равным или будет меньше заданного минимального перепада давления, то посредством ПИД-регулятора по газу подают управляющий сигнал на клапан по газу для понижения расхода закачиваемого газа. Поддерживают на регулирующем клапане по воде ее закачку в скважину, обеспечивая самонастройку режима работы скважины на закачку водогазовой смеси. Для реализации способа предусмотрена система управления процессом формирования водогазовой смеси для закачки в нагнетательную скважину. 2 н.п. ф-лы, 2 ил.

Изобретение относится к газонефтедобывающей отрасли, а именно к разработке залежей с трудноизвлекаемыми запасами углеводородов в низкопроницаемых пластах. Технический результат - повышение коэффициентов извлечения углеводородов: газоотдачи, конденсатоотдачи, нефтеотдачи, а также продуктивности добывающих скважин. По способу на скважинах реализуют повторяющиеся циклы снижения и повышения давления, Этим образуют сети микро- и макротрещин. Каждый цикл образуют из этапов добычи углеводородов, простоя скважины, закачки метансодержащего агента в ту же скважину, повторного простоя. В каждом цикле добычу пластовых углеводородов из скважины осуществляют до снижения продуктивности на 30-50% ниже начального значения на текущем цикле. После остановки скважины выдерживают в состоянии простоя не менее 5-7 дней для выравнивания давления, релаксации напряженно-деформированного состояния породы и стабилизации системы трещин в зоне, охваченной деформационными воздействиями при снижении забойного и пластового давления. В процессе простоя оценивают параметры конденсатного вала. В процессе закачки газа и последующего простоя оценивают эффективность процесса расформирования газоконденсатного вала за счет испарения конденсата в газовую фазу. 8 з.п. ф-лы, 1 ил.

Изобретение относится к нефтяной промышленности и предназначено для снижения асфальтеносмолопарафиновых отложений (АСПО) на внутрискважинном оборудовании и разрушения водонефтяной эмульсии в скважине при эксплуатации скважины, добывающей высоковязкую нефть. Способ включает спуск в скважину компоновки, состоящей снизу вверх из нижнего перфорированного патрубка, штангового насоса, колонны насосно-компрессорных труб - НКТ и колонны штанг. Приводят в работу штанговый насос под действием перемещений колонны штанг, подают высоковязкой нефть к устью скважины по колонне НКТ и проводят отбор высоковязкой нефти по колонне НКТ с возможностью прямой промывки. После приведения в работу штангового насоса и начала отбора высоковязкой нефти снимают начальную динамограмму и определяют первоначальные максимальную и минимальную нагрузки на колонну штанг. Продолжают отбор высоковязкой нефти из скважины по колонне НКТ штанговым насосом и периодически снимают динамограммы. Если по результатам снятия динамограмм отклонение максимальной или минимальной нагрузок составляет от 0 до 5% от начальных значений, то продолжают эксплуатировать скважину. Если отклонение составляет от 5 до 30% от начальных значений, то останавливают штанговый насос и производят обратную промывку скважины закачкой насосным агрегатом горячей нефти через межколонное пространство в нижний перфорированный патрубок по колонне НКТ в желобную емкость до падения давления закачки в межколонном пространстве в 1,5 раза. После чего производят повторное снятие динамограммы. Определяют максимальную или минимальную нагрузки на колонну штанг, из условия достижения от 0 до 5% от начальных значений. Если при периодических снятиях динамограмм отклонение максимальной или минимальной нагрузок составляет от 30 до 100% от начальных значений, то, не прерывая отбор высоковязкой нефти штанговым насосом, спускают геофизический кабель с наконечником на конце. Производят импульсную высокочастотную термоакустическую - ИВЧТА обработку ствола скважины и призабойной зоны пласта. В процессе проведения ИВЧТА обработки ствола скважины и призабойной зоны пласта производят периодическое снятие динамограммы через каждые 4 ч до восстановления значения максимальной и минимальной нагрузок на колонну штанг от 0 до 5% от начальных значений. После чего, не прерывая отбора высоковязкой нефти, обработку скважины прекращают и извлекают из межколонного пространства скважины геофизический кабель с наконечником. Техническим результатом является повышение эффективности эксплуатации добывающей высоковязкую нефть скважины за счет снижения интенсивности процесса отложений АСПО на внутренних стенках скважины, разрушения водонефтяной эмульсии и увеличения объёма отбора высоковязкой нефти из скважины. 3 ил.
Изобретение относится к нефтедобывающей промышленности и может быть применено при разработке нефтематеринских коллекторов с применением управляемого многостадийного гидравлического разрыва пласта (МГРП). Способ включает применение в скважинах для изоляции высокопроницаемых зон и трещин закачки смеси поверхностно-активных веществ (ПАВ), полиакриламида (ПАА), сшивателя – ацетата хрома, наполнителя и воды, остановку скважины на технологическую выдержку, отбор продукции из скважин. Согласно изобретению выбирают слабопроницаемый коллектор со средней абсолютной проницаемостью менее 2 мД, на котором бурят или используют уже пробуренные скважины с горизонтальным окончанием. В каждой из данных скважин проводят первый МГРП, во время которого методом низкочастотной сейсмики фиксируют зону распространения трещин. Горизонтальные стволы разделяют пакерами на секции, затем в скважины с проведенным МГРП через каждую секцию горизонтального ствола закачивают изоляционный состав со следующим соотношением компонентов, мас.%: ПАВ – 0,2-5,0, ПАА – 0,005-2,5, ацетат хрома – 0,01-1,0, наполнитель – 0,5-15,0, вода с минерализацией не более 1,5 г/л – остальное. После технологической выдержки в течение 1-10 сут и кольматации трещин первого МГРП закачанным изоляционным составом проводят в тех же скважинах второй МГРП, во время которого также методом низкочастотной сейсмики фиксируют зону распространения трещин. По полученным данным о распространении трещин после первого и второго МГРП принимают решение о проведении в данных скважинах последующих этапов закачки изоляционного состава и проведении МГРП. Причем количество последующих МГРП определяют исходя из полного охвата коллектора зонами трещин МГРП как в плане, так и в профиле вокруг каждого горизонтального ствола скважин. После всех МГРП проводят обработку коллектора закачкой отдельно в каждую ступень горизонтальных стволов растворителя изоляционного состава в объеме 0,8-2,0 от суммы объемов закачанных ранее изоляционных составов в данную ступень горизонтального ствола. Технический результат заключается в повышении коэффициента охвата и нефтеотдачи нефтематеринских коллекторов.

Группа изобретений относится к области нефтедобывающей промышленности, в частности к способу интенсификации добычи нефти и стимуляции повышения нефтеотдачи пласта. Способ интенсификации добычи нефти включает размещение в скважине на рабочей глубине скважинного аппарата, соединенного с наземным источником, и возбуждение упругих колебаний разных частот. При этом разрушают загрязняющие продукты из призабойной зоны нефтяного пласта и стимулируют к нефтеотдаче путем периодического воздействия на призабойную зону полем упругих колебаний ультразвукового диапазона в постоянном режиме и импульсным акустическим низкочастотным воздействием с одновременным удалением загрязняющих продуктов из призабойной зоны нефтяного пласта путем создания разреженного пространства в зоне перфорации скважины и выноса этих продуктов из скважины струйным насосом. Причем в постоянном режиме воздействие осуществляют высокочастотным колебанием ультразвукового диапазона 16-25 кГц, а в импульсном режиме воздействие осуществляют с частотой 1-50 Гц. При этом воздействие на зону перфорации начинают с нижнего участка с последующим перемещением выше. Конструктивно устройства интенсификации добычи нефти представляют собой три основных прибора: ультразвуковой генератор, скважинный акустический излучатель и струйный насос. Скважинный излучатель выполнен магнитострикционного типа или имеет модульную конструкцию, состоящую из резонаторов с пьезоэлектрическими пакетами. Техническим результатом является повышение эффективности операции по интенсификации добычи нефти и продолжительности действия эффекта от воздействия используемого оборудования. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к стабильным и неустойчивым сшитым способным разбухать в воде полимерным микрочастицам, которые можно далее превращать в гель, способам их изготовления и их разнообразным применениям. Композиция содержит способные расширяться полимерные микрочастицы, содержащие полимеры на основе акриламида, перекрестно сшитые с помощью неустойчивых сшивающих агентов и стабильных сшивающих агентов. Указанные полимеры обладают способностью вступать в реакцию переамидирования. Микрочастицы смешаны с жидкостью и не вступавшим в реакцию третичным сшивающим агентом, который содержит полиэтиленимин ПЭИ («PEI»). Третичный сшивающий агент обладает способностью далее ковалентно сшивать указанные микрочастицы посредством реакции переамидирования при температуре 150-190°F после разрушения нестойкого сшивающего агента с образованием стабильного геля. Изобретение позволяет получать стабильные гели, стабилизированные и менее восприимчивые к потере жидкости или устойчивые к вымыванию последующими закачками жидкости. 5 н. и 12 з.п. ф-лы, 6 ил., 1 табл., 8 пр.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для освоения скважин после проведения гидроразрыва пласта. Способ освоения скважины включает спуск колонны насосно-компрессорных труб (НКТ) в скважину, обвязку азотного компрессора нагнетательной линией с верхним концом колонны НКТ на устье скважины, закачку азота по колонне НКТ в скважину, циркуляцию аэрированной жидкости в желобную емкость. При этом на устье скважины колонну НКТ оснащают пакером и спускают ее в скважину. Производят посадку пакера в скважине выше кровли пласта. Производят гидроразрыв пласта с образованием трещины разрыва и крепление ее проппантом. Затем на устье скважины нижний конец колонны гибких труб (ГТ) снабжают промывочным пером и обратным клапаном. Спускают колонну ГТ в скважину на 100 м и запускают насосный агрегат с расходом жидкости 3,0⋅10-3 м3/с. Вызывают циркуляцию технологической жидкости по межтрубному пространству между колоннами НКТ и ГТ в желобную емкость. Далее доспускают колонну ГТ до нижнего конца колонны НКТ. Запускают компрессор с расходом азота 0,2⋅10-3 м3/с и вызывают циркуляцию аэрированной жидкости по межтрубному пространству между колоннами НКТ и ГТ в желобную емкость. Доспускают колонну ГТ до забоя. Промывают забой скважины в течение 2 ч аэрированной жидкостью до чистой воды, после чего отключают насосный агрегат и компрессор. Приподнимают колонну ГТ в колонну НКТ на 20 м выше нижнего конца НКТ. Запускают азотный компрессор. После выхода азота из межтрубного пространства между колоннами НКТ и ГТ в желобную емкость производят освоение скважины азотом с расходом 16 м3/мин в течение 2 ч. Причем в процессе освоения скважины периодически через каждые 20 мин производят приподъемы колонны ГТ вверх-вниз на 20 м со скоростью 5 м/мин. В процессе освоения каждые 30 мин производят отбор проб жидкости на процентное содержание нефть-вода, средний приток, плотность отобранной пробы. По истечении 2 ч останавливают компрессор и производят технологический отстой скважины в течение 2 ч. Затем доспускают колонну ГТ в скважину без циркуляции до забоя со скоростью 2 м/мин с разгрузкой колонны ГТ на забой с усилием 5000 Н. Техническим результатом является повышение эффективности и качества освоения скважины после проведения гидроразрыва пласта, упрощение технологического процесса освоения скважины. 2 ил.

Изобретение относится к способам для промывки нефтегазоконденсатных скважин с использованием жидкостей и газов. Техническим результатом является повышение продуктивности скважин и коэффициента извлечения углеводородов. Способ повышения углеводородоотдачи пластов и интенсификации добычи нефтегазоконденсатных скважин посредством гидромониторного радиального вскрытия пласта на депрессии включает установку в скважине высокопрочных НКТ, механического якоря, поворотного и герметизирующего устройств, отклонителя с проходящим в нем внутренним каналом, привязкой и возможной ориентацией его в пространстве в интервале нижнего уровня проводки боковых стволов. Ниже отклонителя последовательно устанавливают разъединитель, циркуляционный узел, пакер и воронку. Герметизируют устья скважины. Устанавливают гидромониторную насадку, узел управления траекторией ствола, навигационную систему, рабочий койл (гибкая НКТ), устройство перераспределения потока, обратный клапан, подающий койл. Осуществляют подачу аэрированной жидкости в межколонное пространство НКТ/койл или одновременно в межколонное пространство НКТ/койл и во внутреннее пространство койла или раздельную закачку жидкости и газа по данным двум пространствам. Аэрированная жидкость попадает в боковой ствол и вместе с продуктами разрушения горной породы по проведенному стволу возвращается в скважину и поднимается на устье по межколонному пространству НКТ/обсадная колонна. На поверхности промывочную жидкость дегазируют, очищают от углеводородов и продуктов разрушения горной породы. При необходимости проводят ее дополнительную химическую обработку и возвращают по круговой циркуляции в скважину. Осуществляют перемещение гидромониторной насадки через герметизирующее устройство через отклонитель в контакт с горной породой. Осуществляют проводку плановой протяженности радиального ствола на депрессии, когда в процессе проходки по пласту обеспечивается забойное давление ниже пластового или равное ему, что определяется плотностью промывочной жидкости, сниженной за счет аэрации и при необходимости пенообразованием до необходимых значений и контролируемой расчетным соотношением газа и промывочной жидкости, подаваемой с поверхности с возможностью менять такое соотношение в соответствии с измеряемым в боковом стволе фактическим забойным давлением. После проходки по пласту рабочий койл с насадкой извлекается из пласта и проводится промывка скважины на депрессии до полного выноса шлама. Посредством срабатывания механического поворотного устройства отклонитель переводится в другую плоскость. Цикл работ повторяют для следующего бокового ствола. Фрезерование окон для всех боковых стволов проводится заранее перед проведением основной операции по проходке боковых стволов посредством кольцевого фрезерования колонны или гидропескоструйной резки отдельных окон. При проводке бокового ствола определяют и изменяют траекторию ствола посредством снабжения рабочего койла узлом управления траекторией ствола и навигационным оборудованием. 4 з.п. ф-лы, 2 ил.

Изобретение относится к нефтегазовой отрасли, в частности к способам автоматического управления системой поддержания пластового давления при водогазовом воздействии на пласт, и может быть использовано для автоматического распределения суммарного потока газа между нагнетательными скважинами. Технический результат – повышение эффективности способа за счет обеспечения устойчивого режима работы скважин в условиях непостоянства поступающего газа. По способу определяют интегральный объем газа для закачки в нагнетательные скважины на основе замеров расхода газа на входе в систему поддержания пластового давления. Определяют суммарный объем газа, подлежащего распределению, по разности интегрального объема закачки и целевых значений расхода газа тех скважин, по которым флаг учета в распределении выставлен нулевым. После этого полученный суммарный объем газа распределяют между теми нагнетательными скважинами, по которым флаг учета в распределении равен единице, пропорционально их весовым коэффициентам, которые получают в результате математического моделирования и промышленных экспериментов, или на основании регламентной документации. При этом осуществляют автоматическую корректировку целевых значений расхода газа для каждой скважины. 1 ил.
Наверх