Способ преобразования тепловой энергии солнца и механической энергии движения воздуха в электрическую энергию



Способ преобразования тепловой энергии солнца и механической энергии движения воздуха в электрическую энергию
Способ преобразования тепловой энергии солнца и механической энергии движения воздуха в электрическую энергию

 


Владельцы патента RU 2612676:

Макаров Владимир Николаевич (RU)
Баутин Сергей Петрович (RU)

Изобретение направлено на повышение эффективности преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию и может использоваться в воздушных электростанциях, способствуя повышению их мощности и экономичности. Способ преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию включает в себя нагрев воздуха в камере нагрева, образованной нижней плоской горизонтальной поверхностью и верхней светопроницаемой поверхностью, и перемещение по камере нагрева воздуха, поступающего с ее торца через входные спиралевидные лопатки в направлении к установленной в центре камеры нагрева на ее светопроницаемой поверхности вертикальной вытяжной трубе с впускными клапанами. Воздух, поступающий с торца камеры нагрева, перемещают по камере нагрева с постоянной конвективной скоростью за счет обеспечения постоянной площади камеры нагрева в направлении от ее торца к вертикальной вытяжной трубе, равной площади торца камеры нагрева, и обеспечивают равенство коэффициента расширения материала камеры нагрева коэффициенту объемного расширения воздуха. Технический результат - повышение эффективности преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию путем снижения диссипации (рассеивания) кинетической энергии циркуляции воздуха по спирали в тепловую энергию. 2 ил.

 

Изобретение относится к способам использования тепловой энергии Солнца и механической энергии движения воздуха для получения электрической энергии с целью повышения эффективности преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию и может использоваться в воздушных электростанциях, способствуя повышению их мощности и экономичности.

В воздушных электростанциях преобразование тепловой энергии Солнца и кинетической энергии движущегося воздуха в электрическую энергию происходит за счет взаимодействия перемещаемого по спирали потока воздуха с ротором на вертикальной оси, соединенным с генератором, производящим электрическую энергию. При этом кинетическая энергия воздуха увеличивается за счет тепловой энергии нагрева воздуха солнечным излучением в специальной камере нагрева, механической энергии движущегося воздуха, определяемой величиной и направлением скорости ветра и частью энергии вращения атмосферы Земли, передаваемой посредством мощности массовой силы Кориолиса, создающей циркуляцию ускорения воздуха, при соответствующем направлении скорости его движения по отношению к вращению Земли [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 51-53, 64-65, 158-159], [Баутин С.П., Обухов А.Г. Математическое моделирование разрушительных атмосферных вихрей. - Новосибирск: Наука, 2012. - с. 47-49].

Для существенного увеличения мощности воздушной электростанции, ее экономичности путем повышения эффективности процесса преобразования тепловой энергии Солнца и механической энергии движения воздуха в кинетическую энергию циркуляционного движения воздуха по спирали необходимо снизить диссипацию (рассеивание) кинетической энергии циркуляционного движения воздуха по спирали посредством действия на него массовой силы Кориолиса, создающей циркуляцию ускорения воздуха.

При этом необходимо исходить из принципа наименьшего действия Даламбера, в соответствии с которым минимальная диссипация (рассеивание) механической энергии имеет место в условиях однородного поля скоростей воздуха, т.е. при нулевой скорости сдвига, что соответствует условию постоянства расходной конвективной скорости воздуха, то есть отсутствию его конвективного ускорения [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 638].

Известен способ преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию, реализуемый в воздушной электростанции, содержащей камеру нагрева воздуха, образованную нижней плоской горизонтальной поверхностью и параллельной ей верхней светопроницаемой плоской горизонтальной поверхностью для нагревания находящегося в ней поступающего к торцу воздуха, и установленную в центре верхней горизонтальной поверхности камеры нагрева вертикальную вытяжную трубу, по оси которой расположен ротор, соединенный с генератором, предназначенным для производства электрической энергии, причем ротор связан механически с приводным двигателем, а приводной двигатель электрической цепью связан с источником питания (аккумулятором) солнечных батарей, расположенных по периметру верхней горизонтальной поверхности нагревательной камеры [Патент № DE 4104770А1 (ФРГ) Воздушная электростанция. Кл. F03D 9/00].

В начале дня источник питания (аккумулятор) солнечной батареи приводит во вращение приводной двигатель, когда еще ротор не может начать вращение в силу недостаточного нагрева воздуха от тепловой энергии солнечных лучей.

Таким образом, с помощью этого источника питания (аккумулятора) солнечной батареи приводной двигатель начинает вращать ротор и воздух, преодолевая сопротивление сил трения приходит в движение в камере нагрева и вертикальной вытяжной трубе. Полученная от источника питания солнечной батареи электрическая энергия эффективно используется для обеспечения начала устойчивого движения, преодоления сил трения перемещению воздуха и момента сопротивления вращению ротора и генератора, что способствует более быстрому нагреву воздуха в камере и соответственно более раннему производству электрической энергии, эффективному преобразованию тепловой энергии в электрическую.

Однако данный способ преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию, реализованный в вышеуказанной воздушной электростанции, не позволяет существенно повысить эффективность увеличения кинетической энергии циркуляционного движения по спирали в вытяжной трубе за счет энергии ветра, поступающего в тангенциальном направлении в вытяжную трубу, закручивая при этом дополнительно поток внутри вытяжной трубы по спирали.

Наиболее близким по исполнению к предлагаемому способу преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию путем снижения диссипации (рассеивания) кинетической энергии воздуха при его циркуляционном движении по спирали в камере нагрева и, соответственно, увеличения энергии, передаваемой генератору для производства электрической энергии, является способ, реализуемый в воздушной башенной электростанции «Торнадо», содержащей камеру нагрева воздуха, образованную нижней плоской горизонтальной поверхностью и параллельной ей верхней светопроницаемой плоской горизонтальной поверхностью для нагревания находящегося в ней, поступающего к торцу воздуха, и установленную в центре верхней горизонтальной поверхности камеры нагрева вертикальную вытяжную трубу, по высоте которой шарнирно установлены продольные впускные клапаны, выполненные из светопрозрачных теплоизолирующих листов с внутренним светопоглощающим слоем. По оси вытяжной трубы расположен ротор, соединенный с генератором, предназначенным для производства электрической энергии, причем ротор связан механически с приводным двигателем, а приводной двигатель электрической цепью связан с источником питания (аккумулятором) солнечных батарей, расположенных по периметру верхней горизонтальной поверхности нагревательной камеры [Патент KZ 27341 А4 (Республика Казахстан). Башенная электростанция «Торнадо», опубл. 16.09.2013 г.].

Данный способ, реализованный в вышеуказанном устройстве, с учетом более быстрого нагрева воздуха, создания устойчивого циркуляционного движения по спирали в камере нагрева и вытяжной трубе позволяет дополнительно использовать энергию ветра для закручивания потока внутри вытяжной трубы, который по спирали движется вверх, ускоряясь, тем самым способствуя более эффективному преобразованию тепловой энергии Солнца, механической энергии движения воздуха в электрическую энергию, повышая мощность и экономичность воздушных электростанций.

Однако данный способ преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию, реализованный в вышеуказанной воздушной электростанции, не позволяет существенно повысить эффективность увеличения кинетической энергии циркуляционного движения воздуха по спирали в камере нагрева, поскольку в силу деформации сдвига воздуха при движении его по камере нагрева в направлении к вытяжной трубе из-за изменения конвективной скорости, то есть наличия конвективного ускорения воздуха в направлении от торца камеры нагрева к вертикальной вытяжной трубе, происходит существенная диссипация (рассеивание) кинетической энергии циркуляционного движения воздуха. Это обусловлено тем, что в силу уменьшения площади поперечного сечения в камере нагрева и уменьшения плотности воздуха по мере его движения в направлении к вертикальной вытяжной трубе происходит увеличение конвективной скорости Vr, что обусловливает деформацию воздуха и возникновение конвективного ускорения в этом направлении, в результате чего существенно возрастает диссипация (рассеивание) механической энергии циркуляции воздуха. Указанное существенно уменьшает кинетическую энергию циркуляции воздуха, передаваемую им в вытяжной трубе генератору, для производства электрической энергии. Причем малые значения скорости циркуляции, т.е. небольшие значения чисел Рейнольдса, приводят к существенному влиянию сил вязкости на диссипацию (рассеивание) энергии [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 362-364].

Сущность предлагаемого изобретения заключается в достижении максимального увеличения кинетической энергии воздуха при его циркуляционном движении по спирали в камере нагрева за счет уменьшения ее диссипации (рассеивания).

Этот способ позволяет за счет формирования рациональных кинематических параметров движения воздуха, то есть величины и направления его конвективной скорости, с учетом уменьшения плотности в результате нагрева добиться устранения деформации, т.е. скорости сдвига воздуха в направлении от торца камеры нагрева к вертикальной вытяжной трубе, что способствует существенному снижению диссипации (рассеивания) кинетической энергии циркуляционного движения воздуха.

Обеспечение постоянной конвективной скорости движения нагретого воздуха в направлении от торца камеры нагрева к вертикальной вытяжной трубе за счет геометрических параметров и физических свойств материала камеры нагрева и вытяжной трубы, то есть обеспечение однородности поля скоростей воздуха в направлении к вытяжной трубе, существенно снижает диссипацию (рассеивание) механической энергии циркуляционного движения воздуха [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 427-430, 634-638]. «… Механическая энергия вязкого газа не будет диссипироваться в тепло и при изотропном радиальном расширении газа, когда скорости сдвига равны нулю …» [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 638].

При этом следует иметь в виду, что в случае однородного поля скоростей, при котором конвективное ускорение равно нулю, деформация скорости в направлении от торца камеры нагрева к вертикальной вытяжной трубе отсутствует, т.е. скорость деформации - скорость сдвига - равна нулю, что и обеспечивает вышеуказанное условие снижения диссипации механической энергии в тепло [Лойцянский Л.Д. Механика жидкости и газа. - М.: Наука, 1978. - с. 49-53].

Таким образом, постоянство конвективной скорости воздуха в направлении от торца камеры нагрева к вертикальной вытяжной трубе при его движении в камере нагрева способствует снижению диссипации (рассеивания) кинетической энергии циркуляции воздуха, движущегося по спирали, при прочих равных условиях, что обеспечивает более эффективное преобразование внутренней механической энергии воздуха в электрическую энергию.

Технический результат - повышение эффективности преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию путем снижения диссипации (рассеивания) кинетической энергии циркуляции воздуха в тепловую энергию.

Указанный результат достигается тем, что способ преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию включает в себя нагрев воздуха в камере нагрева, образованной нижней плоской горизонтальной поверхностью и верхней светопроницаемой поверхностью, и перемещение по камере нагрева воздуха, поступающего с ее торца через входные спиралевидные лопатки в направлении к установленной в центре камеры нагрева на ее светопроницаемой поверхности вертикальной вытяжной трубе с впускными клапанами с созданием устойчивого вращательного движения воздуха по спирали за счет перепада давления, обусловленного снижением плотности нагретого воздуха, и циркуляционного движения в камере нагрева вследствие действия кориолисовой силы, создающей циркуляцию ускорения, дополнительного подкручивания движущегося по спирали вверх в вытяжной трубе воздуха за счет энергии ветра, поступающего через впускные клапаны холодного воздуха, и тем самым обеспечение вращения ротора, соединенного одним валом с генератором, вырабатывающим электрический ток, и электрическим приводом, соединенным с источником питания солнечных батарей, расположенных по периметру верхней светопроницаемой поверхности, согласно изобретению воздух, поступающий с торца камеры нагрева через входные спиралевидные лопатки в направлении к установленной в центре на ее светопроницаемой поверхности вертикальной вытяжной трубе, перемещают по камере нагрева с постоянной конвективной скоростью за счет обеспечения постоянной площади камеры нагрева в направлении от ее торца к вертикальной вытяжной трубе, равной площади торца камеры нагрева, и обеспечивают равенство коэффициента расширения материала камеры нагрева коэффициенту объемного расширения воздуха.

Указанный результат достигается за счет обеспечения постоянной конвективной скорости движения нагретого воздуха в направлении торца камеры нагрева к вертикальной вытяжной трубе за счет геометрических параметров и физических свойств материала камеры нагрева и вытяжной трубы, то есть обеспечения однородности поля скоростей воздуха в направлении к вытяжной трубе [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 427-430, 634-638]. «… Механическая энергия вязкого газа не будет диссипироватъся в тепло и при изотропном радиальном расширении газа, когда скорости сдвига равны нулю …» [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 638].

При этом следует иметь в виду, что в случае однородного поля скоростей, при котором конвективное ускорение равно нулю, деформация скорости в направлении от торца камеры нагрева к вертикальной вытяжной трубе отсутствует, т.е. скорость деформации - скорость сдвига - равна нулю, что и обеспечивает вышеуказанное условие снижения диссипации механической энергии в тепло [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 49-53].

Таким образом, постоянство конвективной скорости воздуха в направлении от торца камеры нагрева к вертикальной вытяжной трубе при его движении в камере нагрева способствует снижению диссипации (рассеивания) кинетической энергии циркуляции движущегося по спирали воздуха при прочих равных условиях, что обеспечивает более эффективное преобразование внутренней механической энергии воздуха в электрическую энергию.

На фиг. 1 изображена воздушная электростанция - продольный разрез, на фиг. 2 изображена воздушная электростанция - поперечный разрез.

Воздушная электростанция содержит камеру нагрева воздуха 1, образованную нижней плоской горизонтальной поверхностью 2 и верхней светопроницаемой поверхностью 3, формирующими по периметру цилиндрическую поверхность - торец 4, между верхней и нижней поверхностями камеры нагрева установлены входные спиральные лопатки 5 с тангенциальным входом в направлении по ходу часовой стрелки в случае Северного полушария и в противоположном - в Южном, а в центре светопроницаемой поверхности камеры нагрева установлена вертикальная вытяжная труба 6, по высоте которой шарнирно установлены продольные впускные клапаны 7, выполненные из светопрозрачных теплоизолирующих листов с внутренним светопоглощающим слоем. По оси вытяжной трубы 6 расположен ротор 8, соединенный с генератором 9, предназначенным для производства электрической энергии, причем ротор связан механически с электрическим приводом 10, который электрической цепью связан с источником питания (аккумулятором) солнечных батарей 11, расположенных по периметру светопроницаемой конической поверхности 3 нагревательной камеры 1.

Постоянство конвективной скорости воздуха в направлении от торца камеры нагрева к вертикальной вытяжной трубе в камере нагрева в соответствии с законом сохранения массы и уравнения неразрывности для сжимаемого газа достигается за счет формирования соответствующих геометрических параметров и физических свойств материала камеры нагрева и вытяжной трубы [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 54-56]. Из уравнения неразрывности следует:

где:

hi - текущее значение высоты камеры нагрева,

hk - высота камеры нагрева в месте соприкосновения с вытяжной трубой,

ri - текущее значение радиус-вектора траектории движения воздуха в камере нагрева,

ρ - плотность воздуха,

Q - массовый расход воздуха в камере нагрева,

dT - диаметр вытяжной трубы.

Откуда следует, что постоянство скорости движения воздуха в направлении от торца камеры нагрева к вертикальной вытяжной трубе обеспечивается при условии:

где:

S, Si, Sk - площади камеры нагрева в ее торце, текущем сечении, определяемом радиусом ri, и в месте соприкосновения с вытяжной трубой соответственно,

r - радиус камеры нагрева в ее торце,

h - высота камеры нагрева в ее торце.

Таким образом, в соответствии с законом сохранения массы и уравнением неразрывности постоянство конвективной скорости воздуха в камере нагрева в направлении к вертикальной вытяжной трубе, то есть отсутствие конвективного ускорения в каждой точке траектории его движения в камере нагрева в каждый данный момент времени, обеспечивается за счет профилирования камеры нагрева и вытяжной трубы в соответствии с вышеуказанными формулами и их изготовления из материалов, имеющих коэффициент расширения, равный коэффициенту объемного расширения воздуха.

В процессе работы воздушной электростанции воздух в камере нагрева 1, образованной нижней плоской горизонтальной поверхностью 2 и верхней светопроницаемой поверхностью 3, нагревают за счет тепловой энергии солнечных лучей, проникающих через светопроницаемую поверхность 3. За счет перепада давления, обусловленного снижением плотности нагретого воздуха, создается устойчивое вращательное движение воздуха по спирали при перемещении его от торца 4 камеры нагрева 1 через входные спиральные лопатки 5 в направлении к установленной в центре камеры нагрева 1 на ее светопроницаемой поверхности 3 вертикальной вытяжной трубе 6.

Под действием кориолисовой силы воздух, движущийся в камере нагрева 1 от ее торца 4 к вертикальной вытяжной трубе 6, приобретает циркуляцию ускорения, что приводит к увеличению циркуляции скорости и, как результат, к увеличению энергии циркуляции воздуха при его движении по спирали за счет увеличения скорости Vt. За счет обеспечения геометрических параметров камеры нагрева 1 в соответствии с формулой (3) и обеспечения равенства коэффициента расширения материала камеры нагрева 1 коэффициенту объемного расширения воздуха движение воздуха в направлении от торца 4 камеры нагрева 1 к вертикальной вытяжной трубе 6 происходит с постоянной конвективной скоростью Vr.

Обеспечение постоянной конвективной скорости Vr движения нагретого воздуха от торца 4 камеры нагрева 1 в направлении к вертикальной вытяжной трубе 6 за счет постоянства площади камеры нагрева в направлении от ее торца 4 к вертикальной вытяжной трубе 6, то есть обеспечение однородности поля скоростей воздуха в направлении к вытяжной трубе 6, существенно снижает диссипацию (рассеивание) механической энергии циркуляционного движения воздуха по спирали [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 427-430, 634-638]. «… Механическая энергия вязкого газа не будет диссипироватъся в тепло и при изотропном радиальном расширении газа, когда скорости сдвига равны нулю …» [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 638].

При этом следует иметь в виду, что в случае однородного поля скоростей, при котором конвективное ускорение равно нулю, деформация скорости в направлении от торца камеры к вертикальной вытяжной трубе отсутствует, т.е. скорость деформации - скорость сдвига - равна нулю, что и обеспечивает вышеуказанное условие снижения диссипации механической энергии в тепло [Лойцянский Л.Г. Механика жидкости и газа. - М.: Наука, 1978. - с. 49-53].

Таким образом, постоянство конвективной скорости воздуха при его движении от торца 4 камеры нагрева 1 к вертикальной вытяжной трубе 6 способствует снижению диссипации (рассеивания) кинетической энергии циркуляции движущегося по спирали воздуха при прочих равных условиях, что обеспечивает более эффективное преобразование внутренней механической энергии воздуха в электрическую энергию.

Кроме того, это уменьшает трение покоя, то есть силы вязкого сопротивления началу движения воздуха по спирали, обусловленному циркуляцией ускорения воздуха при воздействии на него массовой силы Кориолиса в камере нагрева 1, а также обеспечивает постоянство сил вязкого трения при движении воздуха в направлении к вертикальной вытяжной трубе 6 за счет постоянного значения числа Рейнольдса, сохранения ламинарного течения в камере нагрева 1, также способствуя уменьшению диссипации механической энергии циркуляционного движения воздуха по спирали.

Под действием ветра продольные впускные клапаны 7 с наветренной стороны вертикальной вытяжной трубы 6 открываются и за счет кинетической энергии поступающего в тангенциальном направлении холодного воздуха происходит дополнительное закручивание движущегося по спирали вертикально вверх внутри трубы 6 воздуха, что увеличивает его кинетическую энергию циркуляционного движения.

Кинетическая энергия циркуляционного движения воздуха по спирали вверх по вертикальной вытяжной трубе 6 закручивает расположенный по оси вытяжной трубы 6 ротор 8, соединенный с генератором 9, который производит электрическую энергию. Электрический привод 10, связанный механически с ротором 8, обеспечивает электроэнергией источник питания солнечных батарей 11, что способствует нагреву воздуха, снижению его плотности, созданию перепада давления для обеспечения устойчивого циркуляционного движения воздуха по спирали в камере нагрева 1 в утренние и вечерние часы при отсутствии тепловой энергии Солнца.

Таким образом, способ, реализованный в воздушной электростанции указанной конструкции, позволяет за счет обеспечения постоянства конвективной скорости движения нагретого воздуха от торца 4 камеры нагрева 1 в направлении к вертикальной вытяжной трубе 6, требуемых в соответствии с формулами (1-3) геометрическими параметрами и физическими свойствами материала камеры нагрева 1 и вытяжной трубы 6, то есть обеспечения однородности поля скоростей воздуха в направлении к вытяжной трубе 6, существенно снизить диссипацию (рассеивание) механической энергии циркуляционного движения воздуха по спирали. Это позволяет существенно повысить эффективность преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию, увеличить мощность и экономичность воздушных электростанций.

Способ преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию, включающий в себя нагрев воздуха в камере нагрева, образованной нижней плоской горизонтальной поверхностью и верхней светопроницаемой поверхностью, и перемещение по камере нагрева воздуха, поступающего с ее торца через входные спиралевидные лопатки в направлении к установленной в центре камеры нагрева на ее светопроницаемой поверхности вертикальной вытяжной трубе с впускными клапанами с созданием устойчивого вращательного движения воздуха по спирали за счет перепада давления, обусловленного снижением плотности нагретого воздуха, и циркуляционного движения в камере нагрева вследствие действия кориолисовой силы, создающей циркуляцию ускорения, дополнительного подкручивания движущегося по спирали вверх в вытяжной трубе воздуха за счет энергии ветра, поступающего через впускные клапаны холодного воздуха, и тем самым обеспечение вращения ротора, соединенного одним валом с генератором, вырабатывающим электрический ток, и электрическим приводом, соединенным с источником питания солнечных батарей, расположенных по периметру верхней светопроницаемой поверхности, отличающийся тем, что воздух, поступающий с торца камеры нагрева через входные спиралевидные лопатки в направлении к установленной в центре на ее светопроницаемой поверхности вертикальной вытяжной трубе, перемещают по камере нагрева с постоянной конвективной скоростью за счет обеспечения постоянной площади камеры нагрева в направлении от ее торца к вертикальной вытяжной трубе, равной площади торца камеры нагрева, и обеспечивают равенство коэффициента расширения материала камеры нагрева коэффициенту объемного расширения воздуха.



 

Похожие патенты:

Изобретение относится к теплоэнергетике и предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах.

Изобретение раскрывает приемник солнечного излучения для преобразования солнечной энергии в тепловую и электрическую энергию. Приемник (2) солнечного излучения (1) для гелиотермальной параболической антенны имеет тепловой двигатель, расположенный в его фокусе, впускной и выпускной коллекторы (9), группу трубок (8), идущих от впускного коллектора к выпускному коллектору, по которым течет нагреваемая при приеме солнечного излучения (1) рабочая текучая среда.

Изобретение относится к энергетике, а именно к энергетике преобразования солнечного излучения в электричество с помощью тепловых машин, и может быть использовано, в частности, в солнечных электрических станциях башенного типа.

Солнечный коллектор с турбиной или турбокомпрессором для приема солнечного излучения содержит коллектор (1) в форме конусообразной спирали, содержащий трубки круглого или квадратного сечения, причем радиус предыдущего витка трубок больше последующего, так что тень предыдущего витка не падает на последующий, и витки плотно прилегают друг к другу без зазоров между ними вплоть до последнего витка, соединенного с трубкой, питающей ведущую турбину (4); и содержит вход (6) для поступления сжатого воздуха из компрессора (16), содержит защиту указанного коллектора (1), покрывающую его поверхность и поверхность трубок (18) и различные инжекторы (30) для производства тепла посредством инжекции газов, содержит ведущую турбину (4), на которую поступает воздух, разогретый в коллекторе (1) энергией солнечного излучения или другими видами топлива, указанная турбина содержит теплообменник, отделяющий ведущую турбину (4) от компрессора (16), содержит промежуточную секцию, разделяющую компрессор (16) и ведущую турбину (4), с центральным проходом для размещения оси (9) в полости воздухонепроницаемой трубки, по которой лопастями (22) компрессора (16) направляется поток воздуха из окружающей среды наружной температуры по направлению к лопаткам ведущей турбины (4), охлаждая их, а центральными лопастями (21) ведущей турбины воздух выбрасывается наружу, где он смешивается с потоком воздуха, продвигающимся на выход (8).

Изобретение относится к гелиотехнике и может быть использовано в системах горячего водоснабжения. Система солнечного теплоснабжения содержит бак-аккумулятор 1 с высокотемпературной 2 и низкотемпературной 3 секциями, размещенными соответственно в верхней и нижней частях бака-аккумулятора и разделенными перегородкой 33 с односторонней проводимостью теплоносителя.

Фотоэлектрический модуль солнечного концентрированного излучения относится к гелиотехнике и касается создания солнечных модулей с фотоэлектрическими и тепловыми приемниками и концентраторами солнечного излучения в виде параболоцилиндров.

Изобретение относится к области энергетики, а именно к области использования солнечной энергии, и может быть применено при генерировании электрического тока с использованием энергии солнечного излучения в качестве источника теплового излучения.

Изобретение относится к гелиотехнике, в частности к комбинированным концентраторным солнечным энергетическим установкам с охлаждаемыми двухсторонними фотоэлектрическими солнечными модулями (ФСМ) для преобразования солнечной энергии в электрическую и тепловую.

Изобретение относится к области возобновляемой энергетики, а именно к ветроэнергетике. Солнечно-конвективная электростанция содержит один или несколько воздуховодов, один или несколько электрогенераторов, коллектор, в котором установлена либо не установлена система нагрева воздуха, установлена либо не установлена система тепловых насосов, одну или несколько турбин, систему тросов, систему шлангов и газовый комплекс.

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. Солнечный модуль с концентратором имеет рабочую поверхность, на которую падает излучение, на рабочей поверхности установлены миниатюрные зеркальные отражатели, выполненные в виде жалюзи из плоских зеркальных отражателей, жалюзи содержат устройство для изменения расстояния между зеркальными отражателями, расстояние а между миниатюрными зеркальными отражателями на рабочей поверхности, угол входа лучей β0, выхода лучей β1 и угол φ наклона зеркальных отражателей связаны соотношениями, указанными в формуле изобретения.

Солнечный коллектор с турбиной или турбокомпрессором для приема солнечного излучения содержит коллектор (1) в форме конусообразной спирали, содержащий трубки круглого или квадратного сечения, причем радиус предыдущего витка трубок больше последующего, так что тень предыдущего витка не падает на последующий, и витки плотно прилегают друг к другу без зазоров между ними вплоть до последнего витка, соединенного с трубкой, питающей ведущую турбину (4); и содержит вход (6) для поступления сжатого воздуха из компрессора (16), содержит защиту указанного коллектора (1), покрывающую его поверхность и поверхность трубок (18) и различные инжекторы (30) для производства тепла посредством инжекции газов, содержит ведущую турбину (4), на которую поступает воздух, разогретый в коллекторе (1) энергией солнечного излучения или другими видами топлива, указанная турбина содержит теплообменник, отделяющий ведущую турбину (4) от компрессора (16), содержит промежуточную секцию, разделяющую компрессор (16) и ведущую турбину (4), с центральным проходом для размещения оси (9) в полости воздухонепроницаемой трубки, по которой лопастями (22) компрессора (16) направляется поток воздуха из окружающей среды наружной температуры по направлению к лопаткам ведущей турбины (4), охлаждая их, а центральными лопастями (21) ведущей турбины воздух выбрасывается наружу, где он смешивается с потоком воздуха, продвигающимся на выход (8).

Изобретение относится к энергетике и может быть использовано для привода различных машин и механизмов. Тепловетровой двигатель включает основание, на котором установлен вал с ротором.

Изобретение относится к ветроэнергетике. .

Изобретение относится к области энергетики. .

Изобретение относится к гелиоэнергетике. .

Изобретение относится к солнечным теплоэлектростанциям. .

Изобретение относится к области солнечных теплоэлектростанций. .

Изобретение относится к области гелиоэнергетики, а именно к тому ее разделу, где производятся совместно электрическая и тепловая энергия с использованием для этого в качестве источников исходной энергии солнечной энергии.

Изобретение относится к солнечной энергетике и может быть использовано при создании аэродинамических гелиостанций. .

Изобретение относится к устройствам преобразования солнечной энергии в тепловую, в частности к конструкциям солнечных водонагревательных установок, размещенных на строительных конструкциях зданий (козырьки (навесы) над крыльцом, балконом, террасой и т.д.). Солнечная водонагревательная установка состоит из солнечного коллектора и опорной конструкции, закрепленной на стене здания, на которой размещен солнечный коллектор, соединенный входным и выходным патрубками с баком-аккумулятором, опорная конструкция выполнена из нескольких дугообразных труб, по крайней мере, двух, верхние концы труб соединены между собой горизонтально стержнем и прикреплены к стене, нижние концы труб также соединены между собой горизонтально стержнем, на трубы установлены рельсы из с-профиля, на каждую рельсу установлено по два колеса, соединенных между собой вертикальными и горизонтальными стержнями, образующими раму для установки солнечного коллектора, к горизонтальным стержням прикреплена тяговая цепь, проходящая через блоки, установленные на стержнях опорной конструкции, регулирующая звездочка. Опорная конструкции для установки солнечного коллектора позволяет регулировать угол наклона солнечного коллектора относительно положения солнца над горизонтом в течение года. 2 з.п. ф-лы, 1 ил.
Наверх