Оптическая система электропитания электронных устройств



Оптическая система электропитания электронных устройств
Оптическая система электропитания электронных устройств
Оптическая система электропитания электронных устройств
Оптическая система электропитания электронных устройств

 


Владельцы патента RU 2615017:

Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук (RU)

Изобретение относится к системам питания электронных устройств с помощью оптического излучения и может найти применение в измерительных устройствах с гальванической развязкой области измерений и области отображения информации, например в высоковольтных или взрывоопасных устройствах. Оптическая система электропитания электронных устройств содержит регулируемый источник 1 тока лазера 2, оптический тракт, (например, волоконно-оптический) передачи излучения от лазера 2 до фотовольтаического элемента 3, выход которого подключен к входу повышающего преобразователя 4 напряжения, питаемое электронное устройство 5, измеритель 6 напряжения, вход которого подключен к выходу фотовольтаического элемента 3 или к выходу повышающего преобразователя 4 напряжения, а выход измерителя 6 напряжения подключен к входу волоконно-оптической системы 7 передачи информации (ВОСПИ), выход которой подключен к управляющему входу регулируемого источника тока 1. Волоконно-оптическая система 7 передачи информации содержит источник 8 излучения и фотоприемник 9. Вход источника 8 излучения соединен с выходом измерителя 6 напряжения, а выход фотоприемника 9 соединен с управляющим входом регулируемого источника 1 тока. Излучение источника 8 передается на фотоприемник 9 посредством оптического тракта, который может быть выполнен как открытым, так и волоконно-оптическим. Измеритель 6 напряжения может быть выполнен в виде аналого-цифрового преобразователя (АЦП) или преобразователя напряжение - частота. Технический результат, достигаемый при применении предложенной оптической системы электропитания электронных устройств, состоит в уменьшении оптической мощности, необходимой для нормального функционирования питаемого электронного устройства. При этом по сравнению с прототипом повышается КПД системы питания, уменьшается нагрузка на лазер питания и фотовольтаический элемент, что обеспечивает увеличение ресурса работы системы питания. 2 з.п. ф-лы, 3 ил., 1 табл.

 

Изобретение относится к системам питания электронных устройств с помощью оптического излучения и может найти применение в измерительных устройствах с гальванической развязкой области измерений и области отображения информации, например в высоковольтных или взрывоопасных устройствах.

Известна система питания электронных устройств оптическим излучением, состоящая из источника излучения, оптически связанного с фотовольтаическим преобразователем, который состоит из нескольких последовательно соединенных фотовольтаических элементов (https://www.lumentum.com/sites/default/files/technical-libary-items/poweroverfiberkit/ds-pv-ae.pdf, а также Weiss, Stephan; Werthen, Jan; Andersson, Anders, Optically Powered Sensor Technology, ISA '97 paper, May 4-8, 1997 in Orlando, FL, USA). Величина оптической мощности является фиксированной и выбирается так, чтобы обеспечивалось надежное функционирование электронного устройства, подключенного к системе питания при всех условиях эксплуатации.

Недостатками данной системы питания является низкий КПД, поскольку оптическая мощность, поступающая на фотовольтаический преобразователь, не зависит от электрических параметров питаемой электронной схемы, которые могут значительно изменяться в широком диапазоне условий эксплуатации (например, изменении температуры от -60 до +60°С). Вследствие этого мощность излучения, устанавливаемая для питания устройства в жестких условиях эксплуатации, может превышать в несколько раз мощность, требуемую для питания электронного устройства в нормальных условиях эксплуатации. Низкий КПД системы питания в нормальных условиях эксплуатации приводит к перегреву фотовольтаического преобразователя избыточной оптической мощностью и его ускоренной деградации. Недостатком данного устройства является также сложность изготовления многоэлементного фотовольтаического преобразователя и необходимость равномерной засветки всех последовательно соединенных фотовольтаических элементов, поскольку в противном случае ток в цепи будет ограничиваться элементом с наименьшей засветкой и, следовательно, с наибольшим последовательным сопротивлением.

Наиболее близким по технической сущности к заявленному устройству и выбранным в качестве прототипа является "Оптическая система электропитания для электронных схем с использованием одного фотогальванического элемента" патент РФ 2431915, 2011 г.

Оптическая система электропитания, описанная в данном патенте, содержит источник излучения, одиночный фотовольтаический элемент, оптический тракт, связывающий источник излучения с одиночным фотовольтаическим элементом и усилитель напряжения, выполненный в виде емкостного или индуктивного преобразователя напряжения, вход которого подключен к фотовольтаическому элементу, а выход - к питаемому электронному устройству.

В качестве фотовольтаического элемента, в соответствии с указанным патентом, может применяться светодиод, а оптический тракт, связывающий источник излучения с одиночным фотовольтаическим элементом, может быть выполнен на основе оптического волокна. Усилитель напряжения может также включать цифровое устройство вывода, которое показывает состояние света, падающего на фотовольтаический элемент. Недостатками данного устройства являются низкий КПД, поскольку уровень "питающей" оптической мощности не зависит от мощности потребляемой электронным устройством и является избыточным, поскольку выбирается исходя из требований надежного запуска индуктивного преобразователя при наихудших условиях работы системы. Это связано с тем, что индуктивные преобразователи напряжения в момент запуска потребляют от фотовольтаического элемента значительный ток (до 1 А), что требует повышенной оптической мощности при запуске системы питания. После запуска преобразователя в таком режиме и сохранении мощности излучения рабочий КПД системы питания не превышает 10-20%. Сохранение высокой мощности оптического излучения при работе электронного устройства в нормальных условиях приводит к перегреву фотовольтаического элемента и требует повышенного тока питания источника излучения, что приводит к ускоренной деградации оптических компонентов системы электропитания и снижает ее надежность.

Технической задачей, решаемой настоящим изобретением, является повышение КПД и надежности оптической системы электропитания электронных устройств с использованием одного фотовольтаического элемента.

Для решения поставленной задачи в оптической системе электропитания электронных устройств, которая содержит источник излучения, одиночный фотовольтаический элемент, оптический тракт, связывающий источник излучения с одиночным фотовольтаическим элементом, и усилитель напряжения, выполненный в виде емкостного или индуктивного преобразователя напряжения, вход которого подключен к фотовольтаическому элементу, а выход - к питаемому электронному устройству, дополнительно введены регулируемый источник тока, измеритель напряжения и оптическая система передачи информации, причем выход регулируемого источника тока подключен к источнику излучения, а его управляющий вход связан с выходом оптической системы передачи информации, вход которой связан с выходом измерителя напряжения.

Измеритель напряжения может быть выполнен в виде аналого-цифрового преобразователя или преобразователя напряжение - частота.

В заявленной оптической системе электропитания электронных устройств вход измерителя напряжения может быть связан с выходом фотовольтаического элемента или выходом повышающего преобразователя напряжения.

Изобретение поясняется следующими чертежами.

На Фиг. 1 представлена блок схема заявленной оптической системы электропитания электронных устройств.

На Фиг. 2 показана зависимость КПД фотовольтаического преобразователя от сопротивления нагрузки при различных значениях падающей оптической мощности.

На Фиг. 3 показана зависимость выходного напряжения от сопротивления нагрузки на примере индуктивного преобразователя TPS60312.

Предложенная оптическая система электропитания электронных устройств содержит (Фиг. 1) регулируемый источник 1 тока лазера 2, оптический тракт, (например, волоконно-оптический) передачи излучения от лазера 2 до фотовольтаического элемента 3, выход которого подключен к входу повышающего преобразователя 4 напряжения, питаемое электронное устройство 5, измеритель 6 напряжения, вход которого подключен к выходу фотовольтаического элемента 3 или к выходу повышающего преобразователя 4 напряжения, а выход измерителя 6 напряжения подключен к входу волоконно-оптической системы 7 передачи информации (ВОСПИ), выход которой подключен к управляющему входу регулируемого источника тока 1.

Волоконно-оптическая система 7 передачи информации содержит источник 8 излучения и фотоприемник 9. Вход источника 8 излучения соединен с выходом измерителя 6 напряжения, а выход фотоприемника 9 соединен с управляющим входом регулируемого источника 1 тока. Излучение источника 8 передается на фотоприемник 9 посредством оптического тракта, который может быть выполнен как открытым, так и волоконно-оптическим. Измеритель 6 напряжения может быть выполнен в виде аналого-цифрового преобразователя (АЦП) или преобразователя напряжение - частота.

Оптическая система электропитания электронных устройств работает следующим образом. При включении регулируемого источника тока 1 через лазер 2 протекает ток накачки, при котором мощность его излучения достаточна для генерации напряжения Uзап на фотовольтаическом элементе 3, при котором надежно запускается преобразователь 4 напряжения. После запуска этого преобразователя на его выходе появляется напряжение ,которым питается электронное устройство 5, измеритель напряжения 6 и источник 8 излучения ВОСПИ 7. Ток запуска обеспечивается тем, что при включении системы питания напряжение на управляющем входе блока регулирования (на выходе фотоприемника ВОСПИ) равно нулю. Величина тока регулируемого источника 1 ограничивается, например, мощностью источника питания или токоограничивающим резистором. После запуска системы питания на выходе фотовольтаического элемента и на выходе преобразователя напряжения 4 появляются напряжения Uзап и Uпит, одно из которых измеряется измерителем напряжения 6, который генерирует на выходе цифровой или частотный код, который передается на вход источника 8 излучения ВОСПИ 7. Принятый фотоприемником 9 сигнал, соответствующий измеренному напряжению Uзап, поступает на управляющий вход регулируемого источника 1 тока и запоминается. После этого начинается уменьшение тока питания лазера 2 до величины, при которой мощность излучения достаточна для поддержания напряжения на фотовольтаическом элементе 0,85-0,9 Uзап, где Uзап - напряжение фотовольтаического элемента, при котором запускается повышающий преобразователь (если к входу АЦП подключен выход фотовольтаического элемента) или до величины 0,97-0,99 Upaб, где Upaб - напряжение стабилизации вторичного преобразователя (если к входу АЦП подключен выход повышающего преобразователя). Напряжение Uзап зависит от типа применяемого повышающего преобразователя напряжения и может составлять при применении преобразователя LTC3105 0,3-1,2 В. Выходное напряжение повышающего преобразователя Upaб может составлять 1,5-5 В.

Из зависимостей, приведенных на Фиг. 2, видно, что в момент запуска системы питания, когда сопротивление нагрузки мало (преобразователь отбирает большой ток от фотовольтаического элемента), КПД преобразователя оказывается очень низким. Типичное напряжение запуска Uзап индуктивного повышающего преобразователя напряжения для фотовольтаических элементов на основе AlGaAs-GaAs составляет 1,2-1,15 В, которое затем может быть снижено (уменьшением оптической мощности) до величины 0,85-0,9 Uзап. При этом выходное стабилизированное напряжение повышающего преобразователя уменьшается не более чем на 1-3%.

Из зависимостей, приведенных на Фиг. 3, видно, что при фиксированной мощности излучения (мощность излучения 86 мВт) запуск преобразователя возможен только при малом потребляемом токе (большом сопротивлении нагрузки),однако, после его запуска ток нагрузки (и, следовательно, отдаваемая электрическая мощность при заданной мощности излучения) может быть увеличен почти в два раза при снижении выходного напряжения не более чем на 0,05 В от номинального напряжения стабилизации.

В Таблице 1 отражены пороговые значения оптической мощности, при которых включается и выключается выходное стабилизированное напряжение 3,3 В индуктивного преобразователя МАХ1724, а также значение КПД оптической системе питания при запуске системы и ее работе при заданной нагрузке.

Как видно из Таблицы 1, после запуска преобразователя при заданном сопротивлении нагрузки (определяется током, потребляемым питаемой электронной схемой) рабочая мощность излучения может быть значительно снижена, что соответствует увеличению КПД системы питания почти в два раза.

Введение дополнительных элементов регулирования в схему не ухудшает КПД системы, поскольку электрическая мощность, потребляемая современными АЦП (например, AD7942), не превышает единиц микроватт при частоте измерения 100 выборок в секунду, что достаточно для надежного функционирования блока регулирования мощности источника излучения, который поддерживает требуемое напряжение питания электронного устройства. Снижение в 1,5-2 раза оптической мощности, необходимой для питания по оптическому волокну удаленной измерительной микропроцессорной системы (ток лазера уменьшается с 700 мА при запуске до 400 мА в рабочем режиме), обеспечивает увеличение КПД системы оптического питания в 1,5-2 раза (до 20-30%) и увеличивает ресурс источника излучения в 2,5-4 раза.

Технический результат, достигаемый при применении предложенной оптической системы электропитания электронных устройств состоит в уменьшении оптической мощности, необходимой для нормального функционирования питаемого электронного устройства. При этом повышается КПД системы питания, уменьшается нагрузка на лазер питания и фотовольтаический элемент, что обеспечивает увеличение ресурса работы всей системы оптического питания.

1. Оптическая система электропитания электронных устройств, содержащая источник излучения, одиночный фотовольтаический элемент, оптический тракт, связывающий источник излучения с одиночным фотовольтаическим элементом, и усилитель напряжения, выполненный в виде емкостного или индуктивного преобразователя напряжения, вход которого подключен к фотовольтаическому элементу, а выход - к питаемому электронному устройству, отличающаяся тем, что она дополнительно содержит регулируемый источник тока, измеритель напряжения и оптическую систему передачи информации, причем выход регулируемого источника тока подключен к источнику излучения, а его управляющий вход связан с выходом оптической системы передачи информации, вход которой связан с выходом измерителя напряжения, а его вход соединен с выходом фотовольтаического элемента или выходом преобразователя напряжения.

2. Оптическая система электропитания электронных устройств по п. 1, отличающаяся тем, что измеритель напряжения выполнен в виде аналого-цифрового преобразователя.

3. Оптическая система электропитания электронных устройств по п. 1, отличающаяся тем, что измеритель напряжения выполнен в виде преобразователя напряжение - частота.



 

Похожие патенты:

Изобретение относится к устройству кровельных панелей для крыш зданий и сооружений со встроенными солнечными модулями. Гибридная кровельная солнечная панель, установленная на крыше здания, нормаль к поверхности крыши находится в меридиональной плоскости, содержит корпус и защитное покрытие на рабочей поверхности, выполненное в виде оптической отклоняющей системы из набора призм, на которую падает солнечное излучение с углом входа лучей β0, полупараболоцилиндрический зеркальный отражатель и приемник излучения в виде полосы, установленной между фокальной осью и вершиной полупараболоцилиндрического зеркального отражателя, при этом приемник излучения выполнен в виде гибридного когенерационного солнечного фотоэлектрического модуля со вторым защитным покрытием, установленным под углом ≤90° к защитному покрытию гибридной кровельной солнечной панели, второе защитное покрытие и корпус гибридной кровельной солнечной панели образуют герметичную полость, заполненную полисилоксановым гелем, в которой размещен приемник излучения из скоммутированных солнечных элементов, наружная стенка корпуса со стороны герметичной полости содержит каналы, в которых размещены встроенные трубы для прокачки теплоносителя, корпус гибридной кровельной солнечной панели и трубы за пределами корпуса снабжены теплоизоляцией, гибридная кровельная солнечная панель содержит электрические и гидравлические разъемы для соединения с соседними гибридными кровельными солнечными панелями.

Изобретение относится к области преобразования солнечной энергии в электрическую и тепловую, к конструкции солнечных электростанций с концентраторами. Солнечная электростанция содержит концентраторы, систему слежения и фотоприемники в фокальной области каждого концентратора, установленные в прозрачной для солнечного излучения оболочке и снабженные устройством для отвода теплоты, прозрачная оболочка содержит гомогенизатор концентрированного солнечного излучения из набора плоских тонких пластин из оптически прозрачного материала, размеры поперечного сечения гомогенизатора соизмеримы с размерами рабочей поверхности фотоприемника, ширина каждой пластины равна расстоянию между токоотводами, произведение толщины пластин на их количество определяет размер гомогенизатора вдоль плоскости р-n переходов диодных структур, длина гомогенизатора в 2-10 раз больше размеров рабочей поверхности фотоприемника, плоскости диодных структур параллельны двум из четырех граней гомогенизатора, а устройство отвода тепла выполнено в виде тонких пластин из теплопроводящего материала, присоединенных к токоподводам каждой секции твердотельной матрицы путем пайки или сварки параллельно плоскости р-n переходов диодных структур, размер секций между пластинами теплообменника составляет 4-20 мм, а суммарная их площадь при естественном охлаждении равна площади миделя концентратора.

Изобретение относится к ветровым и солнечным энергетическим установкам, объединенным в единую конструкцию. Энергоэффективная солнечно-ветровая энергетическая установка содержит: трехлопастную конусно-шнековую ветроэнергетическую установку с горизонтальным вращающимся валом, которая образована тремя половинками спиральных цилиндров, расположенных относительно друг друга под углом 120°, усеченных криволинейными поверхностями второго порядка; поворотную платформу с вертикальным валом; солнечную энергетическую установку, представляющую собой пленочную солнечную фотоэлектронную батарею, нанесенную на внешнюю поверхность трех лопастей конусно-шнековой ветроэнергетической установки; вертикальную пластину, расположенную под поворотной платформой; монтажные фигурные пластины для крепления к ним примыкающей части половинок спиральных цилиндров, неподвижно соединенные с горизонтальным вращающимся валом; основание, к которому крепятся примыкающие части трех лопастей конусно-шнековой ветроэнергетической установки; переднюю треугольную опорную стойку с подшипниковым узлом; две задние параллельные стойки с подшипниковым узлом, установленным между ними и служащим для крепления задней части горизонтального вращающегося вала; две поперечные планки, прикрепленные к двум задним параллельным стойкам; тихоходный магнитоэлектрический генератор, установленный на двух параллельных стойках и двух поперечных планках; конфузор-диффузор с цилиндрической частью между ними, выполненные из прозрачного поликарбоната, причем трехлопастная конусно-шнековая ветроэнергетическая установка с горизонтальным вращающимся валом, подшипниковыми узлами, передней треугольной стойкой и двумя задними параллельными стойками расположены в цилиндрической части конфузора-диффузора; передний и задний ложементы, служащие для крепления к ним цилиндрической части конфузора-диффузора, прикрепленные к поворотной платформе; двояковыпуклые продольные линзы, встроенные вдоль цилиндрической части конфузора-диффузора; литиевые аккумуляторные батареи; контроллер заряда-разряда литиевых аккумуляторных батарей; инвертор.

Система управления платформой концентраторных солнечных модулей содержит платформу (6) с концентраторными каскадными солнечными модулями, оптический солнечный датчик (24), выполненный в виде CMOS матрицы, подсистему (7) азимутального вращения, подсистему (8) зенитального вращения, включающую датчик положения платформы по зенитальному углу, центральный блок (23) управления, содержащий контроллер, блок (26) часов реального времени, датчик (13) числа оборотов первого электродвигателя (12), датчик (19) числа оборотов второго электродвигателя (18).

Изобретение относится к энергетике, может использоваться в солнечной электростанции с использованием концентрированного солнечного излучения и может найти применение в других отраслях науки и техники вплоть до разработки плазменно-ракетных двигателей для полетов в космосе и создания плазмы в термоядерном синтезе благодаря полученной высокотемпературной зоне с большой энергией в ограниченном пространстве.

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. В солнечном модуле с концентратором, имеющем рабочую поверхность, на которую падает солнечное излучение, концентратор и приемник излучения, на рабочей поверхности установлена отклоняющая оптическая система, выполненная в виде жалюзи из зеркальных фацет, имеющая поверхности входа и выхода лучей, зеркальные фацеты выполнены в виде цилиндрических зеркальных отражателей с радиусом кривизны R и плоскостью входа лучей шириной d и помещены в оптически прозрачную среду с коэффициентом преломления n, угол выхода лучей β1 для цилиндрических зеркальных отражателей, угол выхода лучей отклоняющей оптической системы β2, угол ϕ0 наклона плоскости входа лучей цилиндрических зеркальных отражателей и их радиус кривизны R при нормальном падении лучей на рабочую поверхность модуля связаны соотношениями, указанными в формуле изобретения, расстояние между цилиндрическими зеркальными отражателями на рабочей поверхности и ширина поверхности входа цилиндрических зеркальных отражателей удовлетворяет соотношению , при котором для любых углов ϕ0 нижняя грань цилиндрического зеркального отражателя и верхняя грань следующего цилиндрического зеркального отражателя находятся в одной вертикальной плоскости.

Изобретение раскрывает приемник солнечного излучения для преобразования солнечной энергии в тепловую и электрическую энергию. Приемник (2) солнечного излучения (1) для гелиотермальной параболической антенны имеет тепловой двигатель, расположенный в его фокусе, впускной и выпускной коллекторы (9), группу трубок (8), идущих от впускного коллектора к выпускному коллектору, по которым течет нагреваемая при приеме солнечного излучения (1) рабочая текучая среда.

Изобретение относится к системе генерации электроэнергии, использующей экологически чистую энергию - солнечную и внешнюю паровую гибридную систему генерации электроэнергии.

Изобретение относится к альтернативной (солнечной) энергетике и может быть использовано для преобразования энергии солнца в электрическую. Технический результат заключается в увеличении поверхностной плотности солнечной энергии, воздействующей на поверхность солнечных батарей или на спаи термоэлектрического генератора, которая происходит за счет суммарного отражения солнечных лучей от отражающих поверхностей, облучаемых лучевой энергией, проходящей через оптические линзы.

Комплементарная система подачи тепловой энергии с использованием солнечной энергии и биомассы принадлежит к области использования чистой энергии. Система содержит устройство, концентрирующее солнечные лучи, емкость (1) для хранения солнечного тепла, энергоустановку на биомассе, устройство охлаждения и замораживания для охлаждения и систему нагревания воды для центрального нагревания.

Изобретение относится к области электротехники. Техническим результатом является повышение ресурса работы электростартера и надежности системы электроснабжения.

Использование: в области электротехники. Технический результат - снижение риска повреждения высокотемпературной сверхпроводящей (ВТСП) кабельной линии, работающей в составе реверсивной передачи постоянного тока (ППТ), в случае выхода ВТСП кабеля из сверхпроводящего состояния.

Использование: в области электротехники. Технический результат - расширение функциональных возможностей.

Использование: в области электротехники. Технический результат - повышение эффективности использования конденсаторной батареи для усиления импульсной мощности электрической сети.

Использование: в ирригационных системах для электроснабжения водозаборных скважин. Технический результат заключается в повышении надежности работы системы и сокращении сети кабельной разводки.

Использование: в области электротехники для питания трехфазного двигателя (4) с постоянными магнитами, в частности, для железнодорожного транспортного средства. Технический результат - надежность и безопасность.

Изобретение относится к области электротехники и может быть использовано в сетях постоянного тока на борту летательного аппарата и в любых типах бортовых сетей (морское судно, автомобиль и т.д.

Изобретение относится к системе тягового электроснабжения электрифицированного транспорта, содержащей тяговые подстанции постоянного тока, и может быть использовано на железнодорожном транспорте.

Использование – в области электротехники. Технический результат – увеличение срока службы аккумуляторной батареи.
Наверх