Способ контроля роста усталостной трещины в магистральном трубопроводе



Способ контроля роста усталостной трещины в магистральном трубопроводе
Способ контроля роста усталостной трещины в магистральном трубопроводе

 


Владельцы патента RU 2616072:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" (МАИ) (RU)

Использование: для неразрушающего контроля эхо-импульсным методом магистрального трубопровода. Сущность изобретения заключается в том, что контроль роста усталостной трещины производят путем одновременной передачи не менее двух сигналов в виде импульсных ультразвуковых колебаний от источников, размещенных в одной плоскости на одной общей платформе, причем сигналы формируют разной частоты и они направлены под разными углами к исследуемому объекту, а прием сигналов производят посредствам устройств, смонтированных на второй платформе в той же плоскости, что и источники импульсных ультразвуковых колебаний, при этом платформы располагают в одной плоскости на внешней стороне магистрального трубопровода, измеряют время распространения ультразвуковых колебаний в исследуемом образце и рассчитывают геометрические характеристики усталостных трещин магистральных трубопроводов. Технический результат: обеспечение измерения геометрических характеристик усталостной трещины и глубины ее залегания от поверхности исследуемого образца магистрального трубопровода без остановки технологического процесса. 1 ил.

 

Способ относится к неразрушающему контролю эхо-импульсным методом и может быть использован для выявления дефектов магистрального трубопровода.

Известен способ контроля роста усталостных трещин магистрального трубопровода, включающий проведение контроля роста усталостных трещин акустическим блоком посредством периодического излучения импульсных ультразвуковых колебаний в объект с последующим приемом этих колебаний приемником для определения дефектов в строительных конструкциях и/или трубопроводах (см. патент РФ №2278377 С2, МПК9, G01N 29/04, опубл. 20.06.2006 г.).

Недостатками известного технического решения является сложность исполнения и осуществления способа контроля, низкая точность получаемых результатов, отсутствие возможности производить измерения без остановки технологического процесса, например транспортировки продукта в трубопроводе, поскольку существует необходимость расположения одного датчика на внешней стороне конструкции, а второго - на внутренней, что не может быть реализовано в исследовании магистральных трубопроводов, т.к. возникают трудности для дальнейшей перестановки его в процессе исследования.

В основу изобретения поставлена задача усовершенствования способа для обеспечения измерения геометрических характеристик усталостной трещины и глубины залегания от поверхности исследуемого образца магистрального трубопровода без остановки технологического процесса.

Поставленная задача решается тем, что в известном способе контроля роста усталостных трещин магистрального трубопровода, включающем периодические излучения импульсных ультразвуковых колебаний в исследуемый объект с последующим приемом этих колебаний приемником, согласно заявляемому изобретению контроль производят путем одновременной передачи не менее двух сигналов в виде импульсных ультразвуковых колебаний от источников, размещенных в одной плоскости на одной общей платформе, причем сигналы формируют разной частоты и направлены под разными углами к исследуемому объекту, а прием сигналов производят посредствам устройств, смонтированных на второй платформе в той же плоскости, что и источники импульсных ультразвуковых колебаний, при этом платформы располагают в одной плоскости на внешней стороне магистрального трубопровода, измеряют время распространения ультразвуковых колебаний в исследуемом образце и рассчитывают геометрические характеристики усталостных трещин магистральных трубопроводов.

Поскольку контроль производят путем одновременной передачи не менее двух сигналов в виде импульсных ультразвуковых колебаний от источников, размещенных в одной плоскости на одной общей платформе, причем сигналы формируются разной частоты и направлены под разными углами к исследуемому объекту, а прием сигналов производят посредствам устройств, смонтированных на второй платформе в той же плоскости, что и источники импульсных ультразвуковых колебаний, при этом платформы располагают в одной плоскости на фронтальной стороне магистрального трубопровода, обеспечивается измерение геометрических характеристик усталостной трещины и глубины залегания от поверхности исследуемого образца магистрального трубопровода без остановки технологического процесса.

На чертеже изображена установка для осуществления способа контроля роста усталостной трещины в магистральном трубопроводе.

Данный способ позволит контролировать рост усталостной трещины на всем протяжении испытаний, уменьшит время и точность получаемых результатов, исключит вероятность слепых зон.

Способ поясняется чертежом, где изображена установка для осуществления способа контроля роста усталостной трещины в магистральном трубопроводе.

Установка для контроля состоит из исследуемого фрагмента магистрального трубопровода 1, на который устанавливают платформу 2 с ультразвуковыми датчиками 3, 4 и платформу 5 с ультразвуковыми датчиками 7, 6. Ультразвуковые датчики 3, 4, расположенные на платформе 2, имеют разную частоту и угол излучения, соответственно, и датчики 7, 6, расположенные на платформе 5, имеют разные частоты и углы излучения. Платформы 2 и 5 обладают магнитными свойствами, которые обеспечивают фиксированное положение ультразвуковых датчиков на протяжении всего исследования и располагаются по обе стороны исследуемого дефекта 8.

Способ контроля роста усталостной трещины магистрального трубопровода осуществляют следующим образом.

Ультразвуковые датчики 3, 4 и 7, 6 соответственно работают попарно. Датчик 3 генерирует ультразвуковые лучи под углом α=65±2°, датчик 7 принимает их под тем же углом, соответственно датчик 4 генерирует ультразвуковые лучи под углом α=45±2°, ультразвуковой датчик 6 принимает их под тем же углом. Ультразвуковые датчики 3 и 7 имеют одинаковые характеристики частоты и угла излучения, располагаются на разных платформах и работают совместно, соответственно датчики 4 и 6 работают совместно и имеют одинаковые характеристики. Ультразвуковые датчики 3, 7 и 4, 6 работают одновременно.

Выбранные углы α=65±2° для датчиков 4, 6 и углы α=45±2° для датчиков 3, 7 являются рекомендованными для контроля образца ∅1020-1420 мм трубы магистрального трубопровода. Ультразвуковые датчики первой пары - 3 и 7 имеют рабочую частоту, равную 3 МГц, датчики второй пары - 4 и 6, - равную 1,25 МГц.

Геометрические характеристики h и L дефекта 8 вычисляют по известным значениям времени t распространения ультразвуковых колебаний в исследуемой металлической конструкции, а также угла ввода α:

h=0.5⋅ct⋅t⋅cosα=k1⋅t;

L=0.5⋅ct⋅t⋅sinα=k2⋅t.

где k1, k2 - коэффициенты, учитывающие скорость ct и угол ввода луча α поперечной волны.

Поверхностная трещина определяется по формуле:

где h - глубина дефекта от поверхности;

L - длина дефекта;

V - скорость продольной ультразвуковой волны;

a - расстояние между ультразвуковыми датчиками;

th - время распространения волны.

Для обеспечения плотного прилегания датчика к исследуемой поверхности и обеспечения стабильного ультразвукового сигнала необходимо использовать смазочный материал. Плотное прилегание датчика снижает угол преломления УЗ-волн и обеспечивает более точное измерение.

Преимуществом данного способа является:

все датчики расположены в одной плоскости на внешней стороне исследуемого образца магистрального трубопровода, что значительно облегчает процесс измерения и сокращает время подготовительных работ;

возможность снятия показаний с датчиков, зафиксировав координаты дефектов, непрерывно на протяжении всего испытания, не снимая устройства, не останавливая протекание технологического процесса по всей длине магистрального трубопровода;

универсальность контроля образцов основного металла труб толщиной 6-24 мм;

расстояние между платформами позволяет установить коррозионную ячейку 9 для проведения испытаний роста усталостной трещины в коррозионной среде под действием циклических нагружений;

выбор разных частот работы датчиков исключает возможность наложения волн друг на друга в процессе приема и тем самым обеспечивает более точное исследование дефекта по всей толщине фрагмента;

различные углы ввода волн обеспечивают более широкий захват ширины и глубины сканирования исследуемого фрагмента;

различные углы и частоты излучения волн обеспечивают послойное сканирование всей толщины исследуемого фрагмента;

ультразвуковые волны с меньшей частотой излучения обеспечивают большую глубину проникновения фрагмента.

Использование предлагаемого технического решения позволит по сравнению с прототипом усовершенствовать качество контроля роста усталостных трещин в магистральных трубопроводах, значительно облегчить процесс измерения, а также сократить время подготовительных работ.

Данный вариант способа, приведенный как пример в описании, предназначен для контроля трубы магистрального трубопровода ∅1020-1420 мм. Для магистральных трубопроводов других диаметров необходимо экспериментально-опытным путем подобрать характеристики ультразвуковых датчиков.

Способ контроля роста усталостных трещин магистрального трубопровода, включающий периодические излучения импульсных ультразвуковых колебаний в исследуемый объект с последующим приемом этих колебаний приемником, отличающийся тем, что контроль производят путем одновременной передачи не менее двух сигналов в виде импульсных ультразвуковых колебаний от источников, размещенных в одной плоскости на одной общей платформе, причем сигналы формируют разной частоты и направлены под разными углами к исследуемому объекту, а прием сигналов производят посредствам устройств, смонтированных на второй платформе в той же плоскости, что и источники импульсных ультразвуковых колебаний, при этом платформы располагают в одной плоскости на внешней стороне магистрального трубопровода, измеряют время распространения ультразвуковых колебаний в исследуемом образце и рассчитывают геометрические характеристики усталостных трещин магистральных трубопроводов.



 

Похожие патенты:

Использование: для оценки величин дефектов в тестируемом объекте при ультразвуковом тестировании. Сущность изобретения заключается в том, что выполняют оценку величин дефектов в тестируемом объекте, реализуя следующие этапы: определение (S1) набора данных измерений тестируемого объекта; выполнение (S2) обработки способом фокусировки синтезированной апертуры (SAFT-обработки) определенного набора данных измерений; вычисление (S3) ультразвуковых эхо-сигналов для множества величин дефектов в тестируемом объекте посредством моделирования эхо-сигналов для сценария тестирования; выполнение (S4) SAFT-обработки для вычисленных ультразвуковых эхо-сигналов каждой из множества величин дефектов; оценка (S5) величины дефекта в SAFT-обработке определенного набора данных измерений посредством сопоставления SAFT-обработок вычисленных ультразвуковых эхо-сигналов.

Использование: для неразрушающего контроля степени поврежденности металлов контейнеров с отработавшим ядерным топливом. Сущность изобретения заключается в том, что на поверхность контейнера устанавливают ультразвуковые излучатели и приемники сигналов в равном количестве, которые формируют прямоугольные импульсы с соответствующей шириной, длительностью частотой.

Использование: для обнаружения дефектов ультразвуковыми методами. Сущность изобретения заключается в том, что предварительно в процессе калибровки ультразвукового дефектоскопа на эталонном образце - металлической пластине, имеющей одинаковую с водоводом толщину, геометрию и химический состав и акустически нагруженную на воду, пьезопреобразователем излучают в эталонный образец зондирующий УЗ (ультразвуковой) импульс, пьезопреобразователем принимают отраженный опорный эталонный реверберационный УЗ эхо-сигнал, который регистрируют и фиксируют, далее пьезопреобразователь устанавливают в точку контроля на поверхности металлического водовода, в контролируемый водовод пьезопреобразователем излучают зондирующий УЗ импульс, пьезопреобразователем принимают рабочий УЗ эхо-сигнал, который регистрируют и фиксируют, далее из зарегистрированного рабочего эхо-сигнала вычитают зарегистрированный ранее опорный эталонный реверберационный УЗ эхо-сигнал, полученный в результате вычитания разностный измерительный эхо-сигнал запоминают, а о глубине водяного кармана судят по измеренному времени запаздывания первого импульса разностного измерительного эхо-сигнала относительно зондирующего УЗ импульса.

Использование: для ультразвукового обнаружения микротрещин на рабочей выкружке головки рельса. Сущность изобретения заключается в том, что на поверхности катания рельса устанавливают два электроакустических преобразователя, направленных зеркально относительно плоскости поперечного сечения так, чтобы ультразвуковой зондирующий сигнал каждого из них после отражения от нижней выкружки попадал на верхнюю выкружку головки рельса, зондируют головку рельса, для чего, перемещая электроакустические преобразователи вдоль рельса, излучают каждым из них зондирующие и принимают отраженные от верхней выкружки головки рельса ультразвуковые сигналы в соответствующем временном окне, дополнительно принимают ультразвуковые сигналы, отраженные от нижних выкружек головки рельса в соответствующих временных окнах приема, чувствительность приема каждого электроакустического преобразователя во всех временных окнах приема постоянно выбирают так, чтобы получать сигналы от металлургических неровностей на нижней выкружке головки рельса, заключение о наличии и ориентации микротрещин на верхней выкружке головки рельса производят на основе совместного анализа сигналов, полученных электроакустическими преобразователями.

Использование: для ультразвуковой дефектоскопии. Сущность изобретения заключается в том, что на первом этапе опорный эхо-сигнал электроакустической наводки регистрируется и запоминается в блоке накопителя, при этом для формирования опорного сигнала из материала, идентичного материалу контролируемого образца, изготавливается бездефектный эталонный стандартный образец (СО), бездефектность которого гарантируется применением других методов испытаний, размер контролируемой толщины этого бездефектного эталонного образца выбирается большим, чем максимальная толщина контролируемого объекта, что гарантирует отсутствие каких-либо донных сигналов в пределах контролируемого интервала глубин; далее на втором этапе пьезопреобразователь устанавливается на поверхность контролируемого изделия, регистрируется рабочий эхо-сигнал, который подается на первый вход блока вычитания, на второй вход которого подается сигнал из блока накопителя, а сигнал с выхода блока вычитания подается на индикатор.

Использование: для оценки качества конструкций замкнутого контура с внутренней полостью, изготовленных из полимерных композиционных материалов, например углепластика или стеклоуглепластика.

Изобретение относится к области исследования материалов с помощью ультразвуковых волн акустическими контрольно-измерительными приборами и может быть использовано при неразрушающем контроле материалов и изделий в различных областях промышленности.

Использование: для выявления поперечно ориентированных дефектов при ультразвуковом сканировании изделия с отражающим дном. Сущность изобретения заключается в том, что два многоэлементных ультразвуковых преобразователя размещают на поверхности контролируемого изделия в заранее рассчитанном положении, излучают и фиксируют ультразвуковые эхо-импульсы, восстанавливают множество парциальных изображений, получают изображение дефектов, используя несколько путей от излучающего до приемного преобразователя с отражением от дна и поверхности, суммируют восстановленные парциальные изображения для каждого положения преобразователей.

Использование: для определения точного объема вынесенного металла коррозионных дефектов. Сущность изобретения заключается в том, что способ определения точного объема вынесенного металла коррозионных дефектов состоит из следующих этапов: предварительная загрузка данных о потерях металла; разбиение на зоны в каждой области потери металла с вычислением объема каждой зоны; подсчет объемов во всех зонах областей потерь металла и вычисление общего объема для всего анализируемого участка трубопровода.

Использование: для контроля дефектов. Сущность изобретения заключается в том, что способ контроля дефектов включает в себя: первый процесс формирования ультразвуковых колебаний в поверхности стального листа; второй процесс обнаружения эхо-сигнала F и эхо-сигнала B в ультразвуковых колебаниях; третий процесс корректировки значения обнаружения эхо-сигнала B, обнаруженного на конце стального листа, на основе значения обнаружения эхо-сигнала B, обнаруженного в области общей оценки, причем область общей оценки является областью иной, чем конец стального листа; и четвертый процесс оценивания внутреннего дефекта стального листа на основе значения обнаружения эхо-сигнала F, полученного во втором процессе, и значения обнаружения эхо-сигнала B, скорректированного в третьем процессе на конце стального листа.

Изобретение относится к области исследования механических свойств проводящих и диэлектрических материалов при их обработке и может быть использовано при получении информации в процессе различных работ, связанных с токарной обработкой, сверлением, фрезерованием, шлифованием, прокаткой и другими технологическими операциями. Сущность: осуществляют деформацию материала под воздействием, превышающим уровень его разрушения, прием возникающего при этом электромагнитного излучения антенной в радиодиапазоне и регистрацию принятого сигнала. Скорость деформации определяют по форме нарастания сигналов, по их амплитуде судят о величине разрушения, а по спектру сигналов судят о наличии микронеровностей на обрабатываемой поверхности материала в каждый момент времени. Технический результат: возможность бесконтактно получать дополнительную информацию в электромагнитном диапазоне, корректировать процесс обработки материала без отключения режимов работы всей системы, что увеличивает эффективность технологических операций. 5 ил.
Наверх