Способ описания характеристик объекта, содержащего по меньшей мере локально плоскость симметрии

Использование: для определения характеристик небольших объектов, имеющих поверхность, которая искривлена в плоскости сечения. Сущность изобретения заключается в том, что выполняют по меньшей мере одно наблюдение ультразвука, проходящего через объект, причем каждое наблюдение выполняют на оси, перпендикулярной плоскости симметрии, причем каждое наблюдение получают в результате излучения ультразвука, формируемого вдоль соответствующей одной из упомянутых осей и падающего на объект вдоль упомянутой оси под углом падения, отличным от нормального, причем ультразвук падает на объект таким образом, чтобы следовать по пути, который является симметричным относительно плоскости симметрии, причем время пролета ультразвуковой волны и/или положение оси, на которой выполняются излучение и наблюдение, анализируют для описания характеристик объекта. Технический результат: обеспечение возможности определять характеристики маленького объекта. 8 з.п. ф-лы, 10 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к способам изучения и описания характеристик деталей в промышленности, в частности для определения их объемных механических свойств и их поверхностных характеристик. Изобретение применяется, в частности, к элементам небольшого размера, для которых невозможно проводить механическое тестирование в растяжении. Оно применяется, например, к шарикам для шарикоподшипников, которые имеют диаметр порядка сантиметра. Изобретение особенно подходит для использования с деталями, имеющими поверхность, которая искривлена в плоскости сечения.

В настоящее время неизвестно решение для определения внутренней изотропии таких маленьких элементов или для определения их механических характеристик, таких как их модуль Юнга (модуль упругости) или их коэффициент Пуассона (коэффициент поперечной деформации). Тем не менее важно хорошо знать об этих деталях, чтобы гарантировать, что подшипники надежны. Известны методы, которые используют измерения ультразвуковых волн, в частности использующие отраженные волны, но также использующие преломленные волны или поверхностные волны.

Таким образом, документы FR 2806162 и EP 1691193 описывают системы обнаружения дефектов с использованием преобразователя для измерения отраженных волн, в которых поверхность материала, облучаемого ультразвуком, является плоской.

Документ EP 1767898 раскрывает использование рэлеевских волн, которые производятся на поверхности детали, подвергающейся воздействию падающей ультразвуковой волны, для измерения толщины поверхностного слоя, такого как азотированный слой.

Документ FR 2930034 раскрывает использование продольной отраженной волны для измерения остаточных напряжений в материале, который подвергался обработке.

Для различных указанных целей используются ультразвуковые преобразователи для выполнения контактного обследования, или ультразвуковые преобразователи для выполнения обследования погружаемых деталей. Способы, использующие такие преобразователи, имеют преимущество, состоящее в том, что они являются неразрушающими.

Раскрытие изобретения

Настоящее изобретение относится к способу описания характеристик объекта, который включает в себя по меньшей мере локально плоскость симметрии, причем способ содержит по меньшей мере одно наблюдение ультразвука, проходящего через упомянутый объект, причем каждое наблюдение выполняют на оси, перпендикулярной плоскости симметрии, причем каждое наблюдение получают в результате излучения ультразвука, падающего на объект вдоль упомянутой оси под углом падения, отличным от нормального, причем ультразвук падает на объект таким образом, чтобы следовать по пути, который является симметричным относительно плоскости симметрии.

Анализ времени пролета ультразвуковой волны и/или положения оси, на которой выполняются излучение и наблюдение, обеспечивает возможность описания характеристик объекта независимо от того, большой он или маленький, таким образом, составляя главное преимущество по сравнению с методами уровня техники, которые не позволяют описывать характеристики маленького объекта.

Тот факт, что ультразвук падает на объект под углом падения, отличным от нормального, позволяет использовать поверхность объекта в качестве инструмента обменных волн (объемные волны или поверхностные волны), тем самым обеспечивая дополнительную информацию, сравнимую с наблюдением волны, которая пропускается или отражается.

Использование пути, симметричного относительно плоскости симметрии, позволяет использовать обращенные друг к другу излучающий и приемный ультразвуковые преобразователи, которые легко устанавливать на место и настраивать.

В конкретном варианте осуществления излучающий и приемный ультразвуковые преобразователи, расположенные на общей оси, сдвигаются при излучении ультразвука и наблюдении проходящего ультразвука, и наблюдения выполняются по меньшей мере на двух волнах, выбранных из продольных, поперечных и рэлеевских волн, создаваемых излучаемым ультразвуком. Свойства, определяемые таким способом описания характеристик, могут включать в себя модули Юнга или их коэффициент Пуассона объекта.

Может быть выгодным выполнять наблюдения на всех трех волнах из числа продольных, поперечных и рэлеевских волн и подтверждать способ с использованием формулы Викторова.

В другом варианте осуществления для объекта, имеющего вторую плоскость симметрии, перпендикулярную первой плоскости симметрии, излучающий и приемный ультразвуковой преобразователи, расположенные на общей оси, сдвигаются на любую сторону второй плоскости симметрии, при этом излучая ультразвук и наблюдая проходящий ультразвук, и две продольные волны или две поперечные волны наблюдаются на противоположных сторонах второй плоскости симметрии. Свойства объекта, определяемые с помощью такого способа описания характеристик, могут включать в себя изотропный или анизотропный характер по меньшей мере в одной плоскости.

В другом варианте осуществления наблюдения выполняются по меньшей мере на одной рэлеевской волне, создаваемой на поверхности упомянутого объекта ультразвуком, падающим на него. Измерение времени пролета позволяет обнаруживать наличие слоя или зоны, которая образуется из-за применения поверхностной обработки к объекту.

Изобретение, в частности, применимо, когда объект имеет поверхность, которая включает в себя по меньшей мере одну дугу эллипса, или одну дугу окружности. В частности, объект представляет собой шарик подшипника или ролик, но возможны другие применения.

Краткое описание чертежей

Далее изобретение поясняется описанием конкретных вариантов его осуществления со ссылкой на сопровождающие чертежи, на которых:

фиг. 1 изображает подготовительный этап в варианте осуществления способа настоящего изобретения,

фиг. 2 изображает последующий этап в варианте осуществления способа настоящего изобретения,

фиг. 3 изображает важные элементы в варианте осуществления настоящего изобретения,

фиг. 4-9 показывают экранные изображения важных элементов, показанных на фиг. 3, для двух применений способа настоящего изобретения,

фиг. 10 изображает важные элементы в другом варианте осуществления настоящего изобретения.

Осуществление изобретения

Фиг. 1 изображает этап настройки устройства описания характеристик для описания характеристик шарика подшипника. Устройство основано на использовании иммерсионных ультразвуковых преобразователей.

Устройство содержит первый ультразвуковой преобразователь 100 и второй ультразвуковой преобразователь 200 в некотором объеме воды 10. Они расположены на общей оси, обращенные друг к другу, на противоположных сторонах шарика подшипника, который составляет сферу 300. В данном примере они представляют собой 4-дюймовые сфокусированные преобразователи типа Harisonic 17-1012-R, имеющие частоту 10 мегагерц (МГц), диаметр 0,75 дюйма и фокальное пятно в фокусе, которое оценивается равным 0,808 миллиметров (мм). Также могут быть использованы другие преобразователи.

Во время этапа настройки преобразователи активизируются в режиме излучения и в режиме приема. Обычно они настраиваются на точке сферы. Таким образом, в режиме пропускания два преобразователя 100 и 200 располагаются точно соосно. Ультразвуковые лучи, формируемые в воде 10, проходят на той же оси.

Установка, составленная сферой и двумя преобразователями, имеет плоскость P1 симметрии. Сечение сферы, перпендикулярное плоскости P1 и находящееся в плоскости, содержащей оси преобразователей, представляет собой поверхность S, которая является кругом.

Время пролета измеряется в соответствии с прохождением туда и обратно поверхностной волны преобразователя, сфокусированного на точку сферы, ассоциированную с максимумом амплитуды принятой волны. Высота столбика воды L1 между преобразователем 100 и поверхностью сферы 300 получается из соотношения времени t1, считанного с экрана осциллографа, со скоростью волны в воде, то есть Vwater = 1486,5 метров в секунду (м/сек). Высота столбика воды L2 между преобразователем 200 и поверхностью сферы 300 получается таким же путем.

Фиг. 2 изображает элементарный этап способа настоящего изобретения. Оба преобразователя 100 и 200 перемещаются на одинаковую величину в направлении, перпендикулярном их общей оси, начиная с конфигурации, показанной на фиг. 1, или с какой-либо другой конфигурации.

После этого измеряются сигналы, принятые одним из преобразователей, действующим в режиме приема (в данном примере преобразователь 100), с другим преобразователем, действующим в режиме излучения (преобразователь 200).

Для данного перемещения преобразователей на расстояние d относительно исходного положения путь ультразвука через воду удлиняется на величину, которая выражается следующим образом:

Поправка = 2.R(l-cosθ1).

Измеренные сигналы сохраняются и можно видеть, сначала наблюдая два максимума, что имеются две проходящие волны, появляющиеся на двух расстояниях d от исходной оси преобразователей.

Путь волны показан на фиг. 2 ссылочной позицией 400. Выходя из излучающего преобразователя 200, две волны достигают поверхности сферы 300 под углом θ1 относительно нормали. Они отклоняются на границе раздела вода/сфера посредством феномена преломления и затем проходят через сферу под углом Cθ1 относительно нормали. Они достигают поверхности сферы, пройдя расстояние L, и отражаются этой поверхностью. После этого они следуют по второму пути через сферу и достигают поверхности снова, где они преломляются. Следовательно, волна распространяется через воду.

Специфическая особенность расстояний d, для которых наблюдаются максимумы, состоит в том, что отражение имеет место на равных расстояниях от обоих преобразователей, и что волна после того, как она дважды преломляется, распространяется к приемному преобразователю 100.

Более того, используя тот факт, что отражение происходит с углом 2 Cθ1, что обусловлено симметричной природой шара, применяется следующее выражение:

tan Cθ1 =

Затем закон Снеллиуса позволяет получить угол Cθ1, который дается следующим выражением:

Расстояние L, пройденное волной между одним из преломлений (вход или выход) и отражением, дается следующим выражением:

Время пролета волны внутри сферы может быть выведено с учетом поправки, ассоциированной с увеличением столбиков воды L1 и L2. Из этого может быть выведена скорость распространения волны в сфере.

Это вычисление выполняется для продольной волны, которая появляется сначала, когда преобразователи сдвигаются с их исходных положений, и затем для поперечной волны, которая появляется впоследствии с более высокой амплитудой.

Если продолжать сдвигать преобразователи, наблюдается третья волна, которая является поверхностной волной, известной как рэлеевская волна. Эта волна появляется только в случае определенного угла падения. Как только она создается, она расходится при распространении вдоль поверхности, с углом, который равен углу падения волны, которая ее создает, в данном примере угол θ1.

Обозначая диаметр сферы как ϕ, расстояние, пройденное рэлеевской волной, которая принимается приемным преобразователем, равно длине сектора окружности, которая дается следующим выражением:

Зная это расстояние и также поправку длины для столбиков воды, легко определить скорость распространения рэлеевской волны.

Фиг. 3 изображает три волны, детектированные последовательно во время сдвигания преобразователей: продольная волна A, поперечная волна B и рэлеевская волна C.

Используя скорости волн, можно вывести коэффициент Пуассона и модуль Юнга для материала сферы.

Этот способ применялся к шарику подшипника, сделанному из нержавеющей стили, имеющему радиус 9,523 мм. Получены следующие результаты.

Продольная волна

d = 1,729 мм

θ1 = 10,46°

Время пролета в воде = 132,64 микросекунд (мкс)

1 = 39,77°

L = 12,183 мм

Измеренное время пролета = 136,73 мкс

Скорость в сфере = 5957,4 м/сек

Поперечная волна

d = 3,539 мм

θ1 = 21,82°

Время пролета в воде = 133,351 мкс

1 = 34,09°

L = 21,351 мм

Измеренное время пролета = 139,94 мкс

Скорость в сфере = 3238,8 м/сек

Рэлеевская волна

d = 4,677 мм

θ1 = 29,415°

Время пролета в воде = 131,106 мкс

L = 20,139 мм

Измеренное время пролета = 137,80 мкс

Скорость на поверхности сферы = 3008,9 м/сек

Способ может быть подтвержден путем сравнения скорости, выведенной для рэлеевской волны посредством измерения настоящего изобретения, со скоростью, полученной по закону Викторова на основании скоростей продольной и поперечной волн, с использованием следующей формулы:

Скорость рэлеевской волны, полученной по закону Викторова, равна 3010,7 м/сек, что очень близко к значению, полученному настоящим измерением.

Затем значения по меньшей мере двух волн, выбранных из поперечной волны, продольной волны и рэлеевской волны, используются для выведения модуля Юнга и коэффициента Пуассона для материала сферы, который предполагается однородным.

Получены следующие значения:

Модуль Юнга E = 211,7 гига паскалей (ГПа)

Коэффициент Пуассона = 0,290.

Фиг. 4-6 показывают спектры, наблюдаемые приемным преобразователем 100. На фиг. 4 максимум амплитуды можно наблюдать при d=1,729мм для продольной волны. На фиг. 5 максимум амплитуды можно наблюдать при d=3,539 мм для поперечной волны, и на фиг. 6 максимум амплитуды можно наблюдать при d=4,677 мм для рэлеевской волны. Можно видеть, что с наибольшей амплитудой пропускается поперечная волна, тогда как рэлеевская волна пропускается наиболее слабо из трех волн. Способ также подходит для шарика из нитрида кремния (Si3N4), имеющего радиус 4,7615 мм.

Получены следующие результаты.

Продольная волна

V = 11827,3 м/сек

Поперечная волна

V = 6377,9 м/сек

Рэлеевская волна

V = 5916,6 м/сек

Закон Викторова дает 5933,4 м/сек, что опять подтверждает способ согласно настоящему изобретению.

Механические характеристики шарика, полученные на основании способа, следующие:

Модуль Юнга E = 333,6 ГПа

Коэффициент Пуассона = 0,295.

Фиг. 7-9 показывают спектры, наблюдаемые приемным преобразователем 100. Ось ординат показывает измеренное напряжение, и ось абсцисс показывает время. На фиг. 7 максимум амплитуды можно наблюдать при d = 0,359 мм для продольной волны. На фиг. 8 максимум амплитуды можно наблюдать при d = 0,753 мм для поперечной волны, и на фиг. 9 максимум амплитуды можно наблюдать при d = 1,007 мм для рэлеевской волны.

Фиг. 10 показывает второй вариант осуществления настоящего изобретения. Преобразователи перемещаются по-прежнему параллельно друг другу, но на этот раз вдоль двух ориентаций, в одном направлении, и затем в противоположном направлении, начиная с исходного расположения по одной линии. Таким образом, материал шарика сканировали в четырех направлениях. Использовали, в частности, тот факт, что сфера имеет вторую плоскость симметрии, обозначенную P2 (см. фиг. 1-3), вместе с третьей плоскостью P3 симметрии (не показана), а именно плоскость фигур. Эти две плоскости содержат ось исходного расположения по одной линии.

Если все четыре измерения дают одинаковые времена пролета для сдвигов преобразователей, при которых появляется любая заданная волна, поперечная или продольная, то можно сделать заключение, что материал шарика является изотропным.

Для вышеупомянутого шарика, который выполнен из нержавеющей стали, были получены следующие значения для поперечной волны:

Oz=-3,540 мм (t=139,94 мкс), Oz=+3,540 мм (t=139,96 мкс), Ox=-3,537 мм (t=139,96 мкс) и Ox=+3,541 мм (t=139,94 мкс).

Имея близость значений, можно заключать, что шарик действительно является изотропным.

Для шарика, сделанного из нитрида кремния, были получены следующие значения, по-прежнему для поперечной волны:

Oz=-1,010 мм (t=133,94 мкс), Oz=+1,125 мм (t=134,03 мкс), Ox=-1,001 мм (t=133,99 мкс) и Ox=+1,200 мм (t=133,99 мкс).

Снова, имея близость значений, можно заключить, что шарик действительно является изотропным.

Изотропная и анизотропная природа шарика может быть изучена путем сравнения значений, полученных для продольных волн. Это также можно делать с измерением двух значений вдоль одной оси, например, Oz в положительном направлении и Oz в отрицательном направлении, давая информацию об изотропии в одной плоскости.

В третьем варианте осуществления рэлеевская волна, обозначенная буквой C на фиг. 3, может наблюдаться с помощью установки, подобной таковой на фиг. 3. Измерение положения оси наблюдения и/или определение времени пролета волны на поверхности позволяет определять, подвергалась ли сфера 300 поверхностной обработке, например, такой поверхностной обработке, как азотирование, которая изменяет скорость распространения рэлеевской волны из-за наличия на поверхности слоя или зоны с химической природой или с физическими свойствами, отличными от исходного материала.

В одном варианте осуществления одна или более из трех волн, показанных на фиг. 3, наблюдаются для некоторого образца объекта 300, и значения расстояния d и/или времени пролета сравниваются со значениями, полученными для эталонного образца объекта 300, чтобы подтвердить, что изучаемый образец согласуется с эталонным образцом.

Настоящее изобретение также применимо к цилиндрическому ролику, имеющему, например, круглое сечение. Настоящее изобретение также применимо к шарикам или роликам подшипника, имеющим сечение, которое является эллиптическим, или вообще к объектам, которые предпочтительно являются выпуклыми и имеют плоскости симметрии, а также поверхность, которая, например, искривлена в плоскости, перпендикулярной к плоскости симметрии. Сборка, составленная двумя преобразователями, перемещается параллельно плоскости симметрии так, чтобы направлять ультразвук на поверхность под различными углами падения. Когда проходящая волна отражается в плоскости симметрии, она принимается приемным преобразователем, и время пролета и/или расстояние позволяют характеризовать объект. Плоскостью симметрии может быть локальная плоскость симметрии, и симметрия может соблюдаться только для некоторых частей только того объекта, для которого должно выполняться описание характеристик.

Настоящее изобретение не ограничивается вышеописанными вариантами осуществления, но распространяется на любые варианты в контексте объема формулы изобретения.

1. Способ описания характеристик объекта, который включает в себя по меньшей мере локально плоскость симметрии, причем способ содержит по меньшей мере одно наблюдение ультразвука, проходящего через упомянутый объект, причем каждое наблюдение выполняют на оси, перпендикулярной плоскости симметрии, причем каждое наблюдение получают в результате излучения ультразвука, формируемого вдоль соответствующей одной из упомянутых осей и падающего на объект вдоль упомянутой оси под углом падения, отличным от нормального, причем ультразвук падает на объект таким образом, чтобы следовать по пути, который является симметричным относительно плоскости симметрии, причем время пролета ультразвуковой волны и/или положение оси, на которой выполняются излучение и наблюдение, анализируют для описания характеристик объекта.

2. Способ по п. 1, в котором излучающий и приемный ультразвуковые преобразователи, расположенные на общей оси, смещают при излучении ультразвука и наблюдении проходящего ультразвука, и наблюдения выполняют по меньшей мере на двух волнах, выбранных из продольных, поперечных и рэлеевских волн, создаваемых излучаемым ультразвуком.

3. Способ по п. 2, в котором наблюдения выполняют на всех трех волнах из числа продольных, поперечных и рэлеевских волн, и в котором способ подтверждается с использованием формулы Викторова.

4. Способ по п. 1, в котором для объекта, имеющего вторую плоскость симметрии, перпендикулярную первой плоскости симметрии, излучающий и приемный ультразвуковой преобразователи, расположенные на общей оси, смещают на любой стороне второй плоскости симметрии, при этом излучая ультразвук и наблюдая проходящий ультразвук, и две продольные волны или две поперечные волны наблюдают на противоположных сторонах второй плоскости симметрии.

5. Способ по п. 1, в котором наблюдения выполняют по меньшей мере на одной рэлеевской волне, создаваемой на поверхности упомянутого объекта ультразвуком, падающим на него.

6. Способ по п. 1, в котором используются иммерсионные ультразвуковые преобразователи.

7. Способ по п. 1, в котором объект имеет поверхность, которая включает в себя по меньшей мере одну дугу эллипса.

8. Способ по п. 7, в котором поверхность включает в себя по меньшей мере одну дугу окружности.

9. Способ по п. 1, в котором объект представляет собой шарик подшипника или ролик.



 

Похожие патенты:

Использование: для локального ультразвукового неразрушающего контроля качества труб. Сущность изобретения заключается в том, что акустический блок содержит сканирующий узел с основанием с опорными роликами, которое связано штоками с корпусом, в котором размещены демпфер, ультразвуковой эхо-пьезопреобразователь, локальная ванна для иммерсионной жидкости (воды).

Использование: для автоматизированного неразрушающего контроля резервуаров для хранения нефти и нефтепродуктов. Сущность изобретения заключается в том, что предложено устройство для автоматизированного неразрушающего контроля металлической конструкции, содержащее ультразвуковой блок неразрушающего контроля, блок неразрушающего контроля на основе метода утечки магнитного поля, вихретоковый блок неразрушающего контроля, управляющий блок, соединенный с указанными ультразвуковым блоком неразрушающего контроля, блоком неразрушающего контроля на основе метода утечки магнитного поля и вихретоковым блоком неразрушающего контроля для отправки управляющих сигналов для осуществления контроля металлической конструкции, и блок навигации, соединенный с управляющим блоком управления и выполненный с возможностью определения положения указанного устройства для автоматизированного неразрушающего контроля относительно металлической конструкции и состояния поверхности контролируемой металлической конструкции и направления сигналов с информацией о положении указанного устройства для автоматизированного неразрушающего контроля и состоянии поверхности контролируемой металлической конструкции в управляющий блок, причем все указанные блоки установлены во взрывозащищенном корпусе, имеющем средства перемещения по поверхности контролируемой металлической конструкции, управляющий блок выполнен с возможностью направления управляющих сигналов одновременно на по меньшей мере один блок из числа указанных ультразвукового блока неразрушающего контроля, блока неразрушающего контроля на основе метода утечки магнитного поля и вихретокового блока неразрушающего контроля на основе сигналов, полученных от блока навигации, а блок неразрушающего контроля на основе метода утечки магнитного поля выполнен с возможностью изменения индукции магнитного поля, создаваемого этим блоком, от минимального значения, близкого к нулю, до заданного максимального значения.

Использование: для дефектоскопии листов, плит и других изделий двухсторонним доступом в металлургической, машиностроительной областях промышленности. Сущность изобретения заключается в том, что излучают с одной стороны контролируемого изделия импульсы ультразвуковых колебаний, принимают с противоположной стороны изделия первый сквозной и двукратно отраженный сквозной импульсы, а также эхо-импульсы ультразвуковых колебаний, отраженных от дефекта, сканируют изделие по всей площади, обеспечивая соосность излучающего и приемного электроакустических преобразователей, анализируют огибающие амплитуд ультразвуковых колебаний первого прошедшего (сквозного) импульса и эхо-сигналы от дефекта во временном интервале между первым и вторым сквозными импульсами, дополнительно считывают координаты уменьшения прошедших через изделие сквозных импульсов, повышают чувствительность приема сигналов во временном интервале между первым и вторым сквозными импульсами, измеряют временной интервал между первым сквозным импульсом и первым эхо-сигналом от дефекта, по измеренным значениям определяют местоположение и глубину залегания дефекта.

Использование: для контроля технического состояния магистральных нефтепроводов в процессе их эксплуатации. Сущность изобретения заключается в том, что для стопроцентного контроля всего сечения трубы на дефектоскопе устанавливают большое количество ультразвуковых преобразователей.

Изобретение относится к области испытания конструкции на воздействие подводной ударной волны и может быть использовано для регистрации сотрясений на элементах подводного аппарата при воздействии подводной ударной волны.

Использование: для неразрушающего ультразвукового контроля изделий. Сущность изобретения заключается в том, что осуществляют ввод излучающим преобразователем ультразвуковых колебаний в изделие, прозвучивание свода изделия импульсами ультразвуковых колебаний и прием прошедших свод изделия ультразвуковых колебаний в воздушной среде канала изделия устройством с приемным преобразователем, при этом проводят предварительный ультразвуковой контроль изделия известным способом для определения участков, на которых фиксируется прохождение ультразвуковых колебаний через свод изделия, после чего на один из таких участков устанавливают неподвижно излучающий ультразвуковой преобразователь, выбирают акустически непрозрачный участок изделия для определения на нем сплошности скрепления полимерного материала с прилегающей к нему поверхностью корпуса, а также участок изделия, симметричный ему относительно излучающего преобразователя и образующей поверхности изделия, проходящей через место контакта излучающего преобразователя с поверхностью изделия, ориентируют устройство с приемным преобразователем путем поворота и продольного перемещения относительно оси изделия на участок поверхности канала, радиально противоположный выбранному акустически непрозрачному участку, устанавливают уровень сигнала в пределах экрана без ограничения сверху, и при неподвижно установленном излучающем преобразователе сканируют ультразвуковым приемным преобразователем участки поверхности канала изделия, радиально-противоположные выбранному акустически непрозрачному участку и симметричному ему участку, и последовательно сравнивают сигналы на данных участках, выявляя участки, на которых имеет место относительное уменьшение уровня сигнала, после чего аналогичным образом проверяют другие акустически непрозрачные участки.

Изобретение относится к неразрушающим методам и средствам дефектоскопии технически сложных элементов конструкции. Сущность: элемент конструкции, к которому есть доступ, нагружают переменной механической нагрузкой и вызывают его перемещения.

Изобретение относится к области исследования механических свойств проводящих и диэлектрических материалов при их обработке и может быть использовано при получении информации в процессе различных работ, связанных с токарной обработкой, сверлением, фрезерованием, шлифованием, прокаткой и другими технологическими операциями.

Использование: для неразрушающего контроля эхо-импульсным методом магистрального трубопровода. Сущность изобретения заключается в том, что контроль роста усталостной трещины производят путем одновременной передачи не менее двух сигналов в виде импульсных ультразвуковых колебаний от источников, размещенных в одной плоскости на одной общей платформе, причем сигналы формируют разной частоты и они направлены под разными углами к исследуемому объекту, а прием сигналов производят посредствам устройств, смонтированных на второй платформе в той же плоскости, что и источники импульсных ультразвуковых колебаний, при этом платформы располагают в одной плоскости на внешней стороне магистрального трубопровода, измеряют время распространения ультразвуковых колебаний в исследуемом образце и рассчитывают геометрические характеристики усталостных трещин магистральных трубопроводов.

Использование: для оценки величин дефектов в тестируемом объекте при ультразвуковом тестировании. Сущность изобретения заключается в том, что выполняют оценку величин дефектов в тестируемом объекте, реализуя следующие этапы: определение (S1) набора данных измерений тестируемого объекта; выполнение (S2) обработки способом фокусировки синтезированной апертуры (SAFT-обработки) определенного набора данных измерений; вычисление (S3) ультразвуковых эхо-сигналов для множества величин дефектов в тестируемом объекте посредством моделирования эхо-сигналов для сценария тестирования; выполнение (S4) SAFT-обработки для вычисленных ультразвуковых эхо-сигналов каждой из множества величин дефектов; оценка (S5) величины дефекта в SAFT-обработке определенного набора данных измерений посредством сопоставления SAFT-обработок вычисленных ультразвуковых эхо-сигналов.

Использование: для ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения. Сущность изобретения заключается в том, что две антенные решетки размещают на поверхности контролируемого изделия на оптимальном расстоянии между собой с двух сторон от сварного соединения, регистрируют отраженные от донной поверхности ультразвуковые эхо-импульсы, восстанавливают множество парциальных изображений, получают изображение профиля донной поверхности, по которому находят таблицу значений толщины контролируемого изделия в каждой точке области восстановления. Технический результат: повышение точности определения профиля внутренней поверхности изделия. 3 ил.

Способ может быть использован в машиностроении, гидроэнергетике и других отраслях промышленности, требующих применения в производстве ультразвукового контроля. Для определения температурного коэффициента скорости ультразвука используются данные об изменении акустических характеристик материала. Сущность способа заключается в том, что в недеформированном и деформированном материале при разных температурах возбуждают упругие волны, определяют скорость их распространения и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука. Используя полученную аналитическую зависимость, можно определять температурный коэффициент для промежуточных значений температуры и величины пластической деформации, причем деформацию можно определять акустическим способом, измеряя параметр акустической анизотропии, не зависящий от температуры. Технический результат – повышение точности получаемых данных. 1 з.п. ф-лы, 1 ил.

Использование: для обнаружения изменений параметров заглубленного трубопровода и окружающей его среды. Сущность изобретения заключается в том, что в оболочке трубы возбуждают последовательность виброакустических импульсов через интервалы, превышающие интервал корреляции существующих в ней шумов, последовательность отсчетов регистрируемых реакций на каждое воздействие на другом конце контролируемого участка трубопровода суммируют с ранее полученными аналогичными отсчетами, модуль результирующего сигнала нормируют и принимают за плотность распределения временных интервалов отсчетов от начала до конца сформированного в сумматоре сигнала, по этому распределению вычисляют его оценки математического ожидания, среднеквадратичного отклонения, асимметрии и эксцесса, по совокупности каждого из этих моментов определяют линии регрессии их средних и отклонений от них, сравнивают эти линии с вычисленными на предыдущем шаге и при достижении результатами сравнения установленных значений прогнозируют их поведение с ростом количества суммирования для обеспечения допустимых доверительных границ вычисляемых моментов, по достижению которых судят как о наличии, так и виде изменений в трубопроводной системе в текущий момент времени. Технический результат: повышение надежности обнаружения изменений параметров в трубопроводной системе и распознавание их вида. 1 з.п. ф-лы, 8 ил.

Использование: для внутритрубного обследования трубопроводов. Сущность изобретения заключается в том, что внутритрубный ультразвуковой дефектоскоп оснащен устройством измерения скорости звука в перекачиваемой жидкости V и блоком автоматической регулировки длительности временного окна ΔT во время контроля по формуле: ΔT=ΔT°V°/V, где ΔТ° - длительность окна при контроле в жидкости с минимальной скоростью звука V°. Конструкция носителя п ультразвуковых пьезоэлектрических преобразователей обеспечивает длину пути ультразвукового импульса, от точки отражения от внутренней поверхности трубы до ближайшего элемента носителя, не менее ΔT°V°/2+ΔНп, где ΔНп - максимально допустимый износ полоза носителя ультразвуковых пьезоэлектрических преобразователей. Технический результат: расширение диапазона контролируемых толщин стенки трубы в сторону увеличения при перекачивании разнородных жидкостей и упрощение требований к конструкции носителя ультразвуковых пьезоэлектрических преобразователей. 1 з.п. ф-лы, 5 ил.

Использование: для ультразвукового (УЗ) неразрушающего контроля протяженных металлических изделий. Сущность изобретения заключается в том, что при перемещении вдоль трубопровода периодически возбуждают УЗ колебания в заданной области внешней или внутренней его поверхности, связанной с диагностическим устройством, принимают из этой же области реализации УЗ колебаний от акустических нормальных волн, отраженных от различных нарушений сплошности материала стенок, и в результате обработки принятых реализаций определяют распределение дефектов в стенках трубопровода, при этом возбуждают УЗ колебания касательными к поверхности трубопровода колебательными силами акустических контактов приемно-излучающих элементов диагностического устройства поочередно в каждой точке, а прием колебаний осуществляют одновременно во всех точках в пределах указанной области в выбранном интервале времени, и из реализаций УЗ колебаний, принятых во всех точках поверхности трубопровода при перемещении вдоль него, по предварительно рассчитанным временам задержки для всех типов акустических нормальных волн выбирают эхосигналы от каждой точки поверхности стенок, когерентно суммируют их для каждой точки поверхности отдельно для каждого типа волн, вычисляют амплитуды суммарных сигналов и строят нормированные распределения этих амплитуд в соответствии с координатами точек поверхности стенок трубопровода отдельно для каждого типа акустических волн, после чего составляют одно распределение величины, значения которой равны максимальным значениям амплитуд суммарных сигналов от разных типов акустических волн для совпадающих по координатам точек поверхности стенок трубопровода, и по этому распределению судят о наличии и величине дефектов в стенках трубопровода. Технический результат: обеспечение возможности обнаружения малоразмерных и слабо отражающих дефектов в стенках трубопровода. 2 н. и 8 з.п. ф-лы, 3 ил.

Использование: для оценки ресурса трубы из полиэтилена. Сущность изобретения заключается в том, что пьезоэлектрический преобразователь устанавливают последовательно, равномерно по периметру внешней поверхности полиэтиленовой трубы, и осуществляют последовательно ввод импульсов ультразвуковых колебаний в материал трубы через ее внешнюю поверхность по нормали к внешней ее поверхности продольных колебаний и последовательно прием отраженных ультразвуковых колебаний от внутренней поверхности стенки трубы и последовательно при этом измеряют время прохождения ультразвуковых колебаний в каждой установленной точке пьезоэлектрического преобразователя и запоминают измеренные значения, затем определяют стандартное отклонение измеренных значений, и по величине стандартного отклонения, которое сравнивают со стандартным отклонением трубы из полиэтилена с предельным состоянием материала, полученное аналогично описанному выше при определении стандартного отклонения контролируемой трубы из полиэтилена, определяют возможность дальнейшей эксплуатации трубы из полиэтилена. Технический результат: обеспечение возможности определения дальнейшей эксплуатации трубы из полиэтилена. 2 н.п. ф-лы, 3 ил.

Использование: для неразрушающего дистанционного контроля различных силовых конструкций и ответственных деталей. Сущность изобретения заключается в том, что неконтактное возбуждение ультразвуковой волны в объекте осуществляется мощным наносекундным объемным электрическим разрядом с заданным фронтом и длительностью и синхронно производится ее регистрация до и после прохождения объекта оптическим устройством, сигнал с которого передается на фотоприемник, подключенный к цифровому осциллографу. При этом эффективное неконтактное возбуждение ультразвуковой волны в объекте достигается мощным наносекундным объемным электрическим разрядом в газовом потоке водорода или гелия, который также заполняет газовый промежуток между генератором объемного электрического разряда и объектом. Технический результат: обеспечение возможности создания неконтактного способа ультразвуковой диагностики, увеличивающего глубину контроля. 1 табл., 1 ил.

Изобретение относится к области неразрушающего контроля технического состояния рельсовых путей. Согласно способу мониторинга рельсового пути в рельсы передают акустический сигнал, отраженный сигнал принимают акустическими датчиками, обрабатывают сигнал с помощью системы обработки сигналов. По результатам анализа полученных данных судят о состоянии рельсового пути. В качестве источника акустического сигнала используют деформационную волну, возникающую в рельсе при движении подвижного состава. Прием отраженных сигналов осуществляют непрерывно в движении состава. В качестве акустических датчиков используют электромагнитно-акустические преобразователи. В результате расширяются функциональные возможности и повышается надежность способа мониторинга рельсового пути. 3 ил.

Изобретение относится к области минералогического анализа тонковкрапленных зерен благородных металлов и может быть использовано в горнодобывающей отрасли. При осуществлении способа производится дробление кернового материала до крупности -1+0,0 мм, первичная классификация материала по классам крупности -1+0,5 мм, -0,5+0,2 мм, -0,2+0,0 мм, взвешивание каждого класса крупности, гравитационное обогащение каждого класса крупности с использованием лотка для промывки проб с получением первичного шлихового материала, первичный просмотр под бинокуляром с диагностикой всех минералов и выборка выделенных тонкодисперсных частиц благородных металлов, ультразвуковая обработка по классам крупности гидросмеси первичного шлихового материала с соотношением Т:Ж 1:3, посредством размещения гидросмеси в цилиндрообразном излучателе осуществляется при частоте 22 кГц, средней интенсивности звука 15 Вт/см2, вторичная классификация шлихового материала каждого класса крупности и гравитационное обогащение каждого класса крупности с использованием лотка для промывки проб с получением вторичного шлихового материала, взвешивание каждого класса крупности, вторичный просмотр под бинокуляром с диагностикой всех минералов по каждому классу крупности и выборка выделенных тонкодисперсных частиц свободных частиц благородных металлов, электронно-микроскопическое исследование состава благороднометалльных частиц в остатке вторичного шлихового материала. Достигается повышение эффективности определения тонковкрапленных зерен благородных металлов путем раскрытия тонкодисперсных включений в минеральных сростках. 2 ил.

Предложены способ и устройство испытания испытуемого объекта (204). Способ испытания прочности соединений композитного объекта (204) включает: генерирование волны (228) напряжения в текучей среде (306) в полости (302) в конструкции (300) генератора волн; направление волны (228) напряжения через текучую среду (306) в полости (302) в композитный объект (204) и задание определенного количества свойств (310) волны (228) напряжения в текучей среде (306) на основании конфигурации (308) полости (302) в конструкции (300) генератора волн. Устройство для испытания прочности соединений композитного объекта (204) содержит: источник (304) энергии и конструкцию (300) генератора волн, имеющую полость (302), выполненную с возможностью удержания текучей среды (306), причем источник энергии (304) выполнен с возможностью генерирования волны (228) напряжения, которая проходит через текучую среду (306) в полости (302) в композитный объект (204), причем конструкция (300) генератора волн выполнена с возможностью задания определенного количества свойств (310) волны (228) напряжения в текучей среде (306) на основании конфигурации (308) полости (302) в конструкции (300) генератора волн. Технический результат – уменьшение габаритов устройства, возможность испытания объектов больших размеров и сложных форм. 2 н. и 11 з.п. ф-лы, 15 ил.

Использование: для определения характеристик небольших объектов, имеющих поверхность, которая искривлена в плоскости сечения. Сущность изобретения заключается в том, что выполняют по меньшей мере одно наблюдение ультразвука, проходящего через объект, причем каждое наблюдение выполняют на оси, перпендикулярной плоскости симметрии, причем каждое наблюдение получают в результате излучения ультразвука, формируемого вдоль соответствующей одной из упомянутых осей и падающего на объект вдоль упомянутой оси под углом падения, отличным от нормального, причем ультразвук падает на объект таким образом, чтобы следовать по пути, который является симметричным относительно плоскости симметрии, причем время пролета ультразвуковой волны иили положение оси, на которой выполняются излучение и наблюдение, анализируют для описания характеристик объекта. Технический результат: обеспечение возможности определять характеристики маленького объекта. 8 з.п. ф-лы, 10 ил.

Наверх