Способ оценки содержания гумуса в почве петромагнитным методом

Изобретение относится к области почвоведения, а именно к агрохимии, и предназначено для оценки концентрации гумуса в образцах черноземных почв петромагнитным методом. Для этого отбирают образцы почвы в пахотном горизонте, в которых определяют величину магнитной восприимчивости kисх. Затем образцы нагревают до 550˚С и после их остывания повторно определяют величину магнитной восприимчивости kнаг. Коэффициент приращения величины магнитной восприимчивости kt вычисляют по формуле kt=kнаг/kисх, при этом содержание гумуса оценивают как прямо пропорциональное коэффициенту kt. Изобретение обеспечивает быстрый и точный метод количественной оценки гумуса в почве. 1 табл., 1 ил.

 

Изобретение относится к области почвоведения и агрохимии и предназначено для оценки концентрации гумуса (органического вещества) в образцах черноземных почв.

Известен способ определения содержания в почве гумуса (см. патент на изобретение RU 2253865, МПК G01N 33/24, опубл. 10.06.2005), который включает отбор почвенных проб и их анализ рентгенофлюоресцентным способом. О содержании гумуса в почве судят по соотношению содержания мышьяка к кобальту на предварительно построенном калибровочном графике.

Однако известный способ не позволяет в короткие сроки провести массовое количество аналитических исследований.

Наиболее близким к заявляемому техническому решению является способ оценки почв по их производительности (см. авторское свидетельство SU 1760447, МПК G01N 33/24, опубл. 07.09.1992), который предусматривает отбор образцов почвы в пахотном горизонте, определение в них содержания гумуса, суммы обменных оснований, физической глины, величины pH и вычисление бонитетного балла почвы. Дополнительно в образцах почвы измеряют величину магнитной восприимчивости (x), затем проводят корреляционный анализ связи магнитной восприимчивости и бонитетного балла почвы (y) по уравнению регрессии y=a+b⋅x и устанавливают значения коэффициентов уравнения регрессии a и b, после чего бонитетный балл почвы определяют по величине магнитной восприимчивости с помощью установленной зависимости.

Однако прототип характеризуется низкой точностью определения содержания гумуса в почвах при использовании анализа магнитной восприимчивости.

Задачей изобретения является обеспечение возможности оценки количественного содержания гумуса в черноземных почвах.

Технический результат заключается в устранении недостатков прототипа и упрощении способа.

Указанный технический результат достигается тем, что в СПОСОБЕ ОЦЕНКИ СОДЕРЖАНИЯ ГУМУСА В ПОЧВЕ ПЕТРОМАГНИТНЫМ МЕТОДОМ, включающем отбор образцов почвы в пахотном горизонте и определение в них величины магнитной восприимчивости kисх, согласно заявляемому решению осуществляют нагрев образцов почвы до 550°С и повторное определение в них величины магнитной восприимчивости kнаг после их остывания, вычисляют коэффициент приращения величины магнитной восприимчивости kt по формуле kt=kнаг/kисх, при этом содержание гумуса оценивают как прямо пропорциональное коэффициенту kt.

Изобретение поясняется фиг. 1, где представлена диаграмма соотношений между концентрацией гумуса (%) и kt. В таблице 1 приведены результаты определения гумуса и петромагнитных параметров в исследуемых образцах.

Возможность такого результата определяется установленными взаимосвязями между процессами образования гумуса и оксидогенеза железа, протекающими в верхнем (пахотном) горизонте почв (Водяницкий Ю.Н. Образование ферромагнетиков в дерново-подзолистой почве // Почвоведение 1981, №5. С114-123.; Водяницкий Ю.Н. Оксиды железа и их роль в плодородии почв. – М.: Наука, 1989, 159 с.; Бабанин В.Ф. и др. Магнетизм почв. Из-во ЯГТУ, 1995, 223с.). Наибольшее увеличение магнитной восприимчивости проб почв (почти в 200 раз) установлено после их нагрева до 550°С и обусловлено восстановлением продуктов температурной диссоциацией слабомагнитных оксидов и гидрооксидов железа (дегидратация гидрооксидов и восстановление гематита) с образованием сильномагнитного магнетита, которое зависит от концентрации гумуса, температуры, времени, способа прокаливания (Водяницкий Ю.Н. Оксиды железа и их роль в плодородии почв. – М.: Наука, 1989, 159с.). Таким образом, по результатам измерения магнитной восприимчивости до и после прокаливания до 550°С можно судить о содержании гумуса в почве.

Качественная картина вариаций количества гумуса в черноземных почвах определяется построением графика изменения магнитной восприимчивости до и после нагрева до 550°С в образцах при их площадном отборе.

Для получения информации необходимо выполнить следующие пошаговые исследования:

1. В полевых условиях предварительно измеряется величина магнитной восприимчивости отобранных почвенных проб на возможно большей площади исследований развития черноземов.

2. В лабораторных условиях из каждого образца берется навеска массой от 20 до 50 грамм, в которой на серийном измерителе определяется значение магнитной восприимчивости (kисх).

2. Данная навеска каждого образца в жаростойком керамическом стакане помещается в муфельную печь и нагревается до температуры 550°С, при которой происходят и завершаются температурные фазовые переходы парамагнитных гидрооксидов и оксидов железа в магнетит.

3. После остывания пробы производится повторный замер значений магнитной восприимчивости (kнаг).

4. Рассчитывается коэффициент приращения значения магнитной восприимчивости (kt) по формуле:

kt = kнаг/kисх

где kисх – исходное значение магнитной восприимчивости в образце, а kнаг – значение магнитной восприимчивости в образце после нагрева.

5. Значения kt выносятся на площадную карту территории исследований, на которой участки с высокими значениями параметра указывают на высокое содержание гумуса.

Заявляемый способ был апробирован на чернозёмных почвах степной зоны в пределах Оренбургской области. На исследуемой площади около 10 га было отобрано 30 образцов, в которых проводились измерения содержания гумуса и значений коэффициента приращения значений магнитной восприимчивости (kt), результаты которых представлены в таблице 1.

Достоверность зависимости между содержанием гумуса и коэффициентом приращения значений магнитной восприимчивости (kt) подтверждается значениями рассчитанного коэффициента корреляции (r=0,6) и уравнением линейной регрессии (y=2,699x-4,672) при n=35, p=0,01 (фиг. 1).

Преимуществом предлагаемого способа определения содержания гумуса путем использования коэффициента приращения значений магнитной восприимчивости после прогрева проб черноземных почв до 550°С перед другими известными способами является возможность экспрессного его применения в полевых условиях, для чего требуется только наличие электросети для подключения муфельной печи.

Способ оценки содержания гумуса в почве петромагнитным способом, включающий отбор образцов почвы в пахотном горизонте и определение в них величины магнитной восприимчивости kисх, отличающийся тем, что осуществляют нагрев образцов почвы до 550˚С и повторное определение в них величины магнитной восприимчивости kнаг после их остывания, вычисляют коэффициент приращения величины магнитной восприимчивости kt по формуле kt=kнаг/kисх, при этом содержание гумуса оценивают как прямо пропорциональное коэффициенту kt.



 

Похожие патенты:

Изобретение относится к экологии и предназначено для оценки состояния температуры параметров почвы в многолетнемерзлых, глинистых, скальных и каменистых грунтах. Для этого размещают почвенные датчики температуры почвы на разных глубинах с определенным шагом в целевых скважинах, пробуренных в многолетнемерзлых, глинистых, скальных и каменистых грунтах без промывки, с последующей их засыпкой, регистрируют информацию об измеренной каждым датчиком температуре почвы и передают информацию от датчиков в базу данных на удаленном сервере.

Лизиметр // 2613882
Изобретение относится к области сельского хозяйства и может быть использовано при балансовых исследованиях на мелиорируемых землях, в частности, для определения инфильтрации поливных, талых и дождевальных вод.

Изобретение относится к способу управления добычей углеводородов при осуществлении наблюдения за коллектором с использованием данных о скученных изотопах, данных об инертных газах или сочетания данных о скученных изотопах и инертных газах.
Изобретение относится к области экологии, а именно к определению суммарной фитотоксичности почвы методом биоиндикации. Для этого проводят биотестирование почвы по активности целлюлозоразлагающих микроорганизмов.

Изобретения относятся к области сельского хозяйства. В способе получают водные пробы, извлекаемые из множества всасывающих зондов, размещенных на различных глубинах в почвенном субстрате, включая зону функционирования корневой системы видов растений в данном почвенном субстрате.

Изобретение относится к области экологии, а именно к выявлению признаков природных катастроф, и может найти применение при оценке опасности поражения территорий лавинообразным потоком.

Изобретение относится к области экологии, а именно болотоведения. Для этого определяют линейный прирост образцов побегов мхов рода Sphagnum и исследуют их по индивидуальным маркерам, от которых измеряют линейный прирост побегов.

Изобретение относится к сельскохозяйственному машиностроению, в частности к способам определения показателей качества глубины дискового лущения стерни зерновых колосовых культур.

Изобретение относится к способам изготовления стандартных образцов состава для оперативного и статистического контроля погрешности результатов измерений, в частности измерений массовой доли нефтепродуктов в почвах, грунтах и донных отложениях.

Лизиметр включает емкость с монолитом почвы, гидравлически связанную с емкостью контроля уровня, узел сброса, подключенный к источнику водоподачи, блок управления с электрокоммутационной схемой и подключенные к нему электромагнитные датчики уровней воды в емкости контроля уровня.

Изобретение относится к области геоэкологии и может быть использовано для оценки экологической ситуации при хроническом и аварийном загрязнении почвы тяжелыми металлами по анализу активности фермента дегидрогеназы в почве. Для этого выделяют первый типичный участок без явного источника эмиссии тяжелых металлов (№1) и второй (№2) типичный участок с явным источником эмиссии приоритетных тяжелых металлов. Затем с этих участков отбирают усредненные пробы почвы №1 и №2, соответственно, и определяют в них активность фермента дегидрогеназы спектрофотометрическим методом. При этом о хроническом загрязнении почвы тяжелыми металлами судят по повышению активности фермента в пробе №2 относительно пробы №1. Об аварийном загрязнении почвы тяжелыми металлами судят по снижению активности фермента в пробе №2 относительно пробы №1. Способ позволяет диагностировать факт хронического или аварийного загрязнения почв тяжелыми металлами, а также сократить время, повысить точность и качество оценки экологической ситуации на территориях функционирования промышленных объектов. 1 ил., 2 табл., 1 пр.

Изобретение относится к области строительства и может быть использовано при выполнении работ по инъекционному закреплению образцов грунта в лабораторных условиях. Конструкция для инъекционного закрепления образцов грунта включает форму-цилиндр, основание и крышку. В качестве основания и крышки содержит две пластины с углублением и/или бортиком для фиксации в них формы-цилиндра, закрепляемой с помощью стягивающих устройств через отверстия по краям плоскости пластин. По центру на пластинах предусмотрены патрубки, при этом форма-цилиндр выполнена из полимерной или стеклянной трубы нужного диаметра и длины. Технический результат состоит в повышении достоверности результатов исследования грунтов, обеспечении инъекционного закрепления образцов грунта с искусственной или естественной (керны) структурой в лабораторных условиях. 4 ил.

Изобретение относится к сельскому хозяйству, в частности к устройствам для взятия проб почвенных растворов в естественных условиях, а также при отборе почвенных растворов на избыточно увлажнительных почвах, занятых рисовыми чеками. Лизиметрическое устройство содержит корпус 1 с перфорацией и вакуумную трубку 2 с перфорацией для сбора влаги, причем корпус выполнен в виде закрытого полого цилиндра, по всей боковой поверхности которого выполнена перфорация, и который покрыт водопроницаемым материалом геотекстиля 3. Концы материала геотекстиля 3 зафиксированы между собой швом, образуя замкнутую полость цилиндра, при этом перфорированные отверстия 5 цилиндра 1 по всей боковой поверхности просверлены конусными отверстиями, сужающимися во внутрь полого цилиндра 1. Вакуумная трубка 2 снаружи в пределах перфорации внутри корпуса 1 покрыта вторым слоем водопроницаемого материала геотекстиля 6. Изобретение предотвращает заиление полости корпуса прибора и повышает надежность качественного пропуска почвенного раствора, что обеспечивает получение более достоверного количественного и качественного состава почвенного раствора. 3 ил.

Изобретение относится к области экологии, а именно используется при биомониторинге состояния почв в естественных и экологически неблагоприятных экосистемах, вызванных разнообразными загрязнениями. Для этого проводят оценку биологической активности и токсичности почвы по состоянию кресс-салата Lepidium sativum L., выращенного на пробах почв и тест-контролем на вермикулите с питательным раствором Кнопа. Оценку проводят по показателям развития 10-12-дневных растений, при этом сравнивают высоту и массу растений, а также редокс-активность растительного экстракта, которая повышается при токсичности корневой среды. При этом снижение показателей кресс-салата или повышение редокс-активности растительного экстракта на 10-30% характеризует удовлетворительное состояние почвы, снижение на 30-50% - неудовлетворительное, при уровне ниже 50% - экологически опасное. Изобретение обеспечивает упрощение способа оценки, снижение времени тестирования и обеспечение точности результатов для статистической обработки данных для оценки качества почв и почвогрунтов урбанизированных и промышленных территорий разных техногенных почвогрунтов, выполняющих функции почв на урбанизированных и промышленных территориях. 16 ил., 1 пр.

Группа изобретений относится к прозрачному мерзлому грунту, способу его получения и применению. Прозрачный мерзлый грунт получают из фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости. Количество фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости рассчитывают согласно условиям испытаний и размерам проб. Фторсодержащий полимер, представленный частицами неправильной формы диаметром ≤0,074 мм из тефлона AF 1600 с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3, подвергают очистке от примесей и сушат в сушильном шкафу. Кубиковый лед получают путем раздавливания целого блока льда с диаметром частиц ≤0,074 мм. Бесцветная поровая жидкость представлена водой. Смешивают сначала фторсодержащий полимер и кубиковый лед, равномерно перемешивают в криогенной лаборатории при температуре от -6,0°С до -8,0°С, загружают в форму по 2-3 партии для приготовления пробы и утрамбовывают слой за слоем. Затем в форму добавляют воду, и она заполняет промежутки между частицами фторсодержащего полимера и кубиковым льдом. Устройство вакуумирования используют для удаления остаточных пузырьков в пробе, чтобы она достигла полностью насыщенного состояния. Пробу помещают в плотномер для затвердевания со значением степени переуплотнения 0,8-3 и загружают в криогенный бокс при температуре -20°С, где замораживают на 48 часов, чтобы получить прозрачный мерзлый грунт, имитируя насыщенную мерзлую глину, физические свойства которой следующие: плотность - 1,63-2,1 г/см3, удельная масса - 16-21 кН/м3 и значение степени переуплотнения - 0,8-3; а механические свойства следующие: угол внутреннего трения - 19-22°, связность - 1-3 кПа, модуль упругости - 5-9 МПа и коэффициент Пуассона - 0,2-0,3. Применяют прозрачный мерзлый грунт в модельном испытании направленного взрывания мерзлого грунта, в испытании оползания модели мерзлого грунта дорожной насыпи вследствие оттаивания. Прозрачный мерзлый грунт, полученный по настоящему изобретению, может имитировать свойства естественной прозрачной мерзлой глины, эффективно используется в модельных испытаниях в инженерной геологии, обладая точными результатами измерений, и может наглядно показать внутреннюю деформацию грунтового массива. Он низкозатратен и прост в эксплуатации. 4 н. и 5 з.п. ф-лы, 2 ил.

Группа изобретений относится к прозрачному мерзлому грунту, способу его получения и применению. Прозрачный мерзлый грунт получают из фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости. Количество фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости рассчитывают согласно условиям испытаний и размерам проб. Фторсодержащий полимер, представленный частицами неправильной формы диаметром 0,25-2,0 мм из тефлона AF 1600 с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3, подвергают очистке от примесей и сушат в сушильном шкафу. Кубиковый лед получают путем раздавливания целого блока льда с диаметром частиц 0,1-0,5 мм. Бесцветная поровая жидкость представлена водой. Сначала фторсодержащий полимер и кубиковый лед равномерно перемешивают в криогенной лаборатории при температуре от -6,0 до -8,0°С, загружают в форму по 2-3 партии для приготовления пробы и утрамбовывают слой за слоем. Затем в форму добавляют воду, и она заполняет промежутки между частицами фторсодержащего полимера и кубиковым льдом. Устройство вакуумирования используют для удаления остаточных пузырьков в пробе, чтобы она достигла полностью насыщенного состояния. Пробу загружают в криогенный бокс при температуре -20°С и замораживают на 48 часов, чтобы получить прозрачный мерзлый грунт, имитируя насыщенный мерзлый песчаный грунт, физические свойства которого следующие: плотность - 1,53-2,0 г/см3, удельная масса - 15-20 кН/м3 и относительная плотность - 20-80%; а механические свойства следующие: угол внутреннего трения - 30-31°, модуль упругости - 8-61 МПа и коэффициент Пуассона - 0,2-0,4. Применяют прозрачный мерзлый грунт в модельном испытании направленного взрывания мерзлого грунта и в испытании оползания модели мерзлого грунта дорожной насыпи вследствие оттаивания. Прозрачный мерзлый грунт, полученный по настоящему изобретению, может имитировать свойства естественной прозрачной мерзлой глины, эффективно используется в модельных испытаниях в инженерной геологии, обладая точными результатами измерений, и может наглядно показать внутреннюю деформацию грунтового массива. Он низкозатратен и прост в эксплуатации. 4 н. и 6 з.п. ф-лы, 2 ил.

Изобретение относится к исследованию деформационных и прочностных свойств грунтов при инженерно-геологических изысканиях в строительстве. Способ включает деформирование образца грунта природного или нарушенного сложения в условиях трехосного осесимметричного гидростатического и последующего девиаторного нагружения, дающих возможность ограниченного бокового расширения образца грунта, близкого к реальным условиям, затем после установления условной стабилизации при статическом режиме достижением скорости деформирования образца, соответствующей условной стабилизации деформации образца на данной ступени деформирования, переходят поочередно на следующие ступени испытания, а по окончании испытаний, по конечным результатам, полученным на каждой из ступеней испытания, строят график зависимости относительной осевой деформации от осевых напряжений и определяют искомые характеристики грунта, причем после стабилизации деформаций гидростатического нагружения выполняют контролируемое девиаторное нагружение, первая часть которого - дозированное кинематическое нагружение с управляемой скоростью деформации и ограничением по приращению осевых напряжений, а вторая часть - стабилизация напряженно-деформированного состояния образца в режиме ползучести - релаксации напряжений по условной стабилизации модуля общей деформации, многократно повторяя нагружения и стабилизацию до достижения предельного напряженного состояния, а далее продолжают (при необходимости) только кинематическое нагружение до величины предельной относительной осевой деформации. Достигается ускорение испытаний при определении различных характеристик любых разновидностей нескальных грунтов. 1 пр., 4 ил.

Изобретение относится к области исследования механических характеристик грунтов в лабораторных условиях. Новым в способе является то, что вначале в специальном решетчатом поддоне изготавливают включения кубической формы, уплотнение породы производят методом вибрации, после чего включения замораживают до заданной экспериментом температуры, затем поддон с ячейками разбирают, вынимают включения, выдерживают их при комнатной температуре некоторое время до появления конденсата на поверхности для лучшего сцепления со связующим, перемешивают включения со связующим - породами месторождения, помещают перемешанные включения со связущим в специально изготовленную разъемную цилиндрическую форму (гильзу), после чего гильзу с породой устанавливают в климатическую камеру и замораживают до температуры, соответствующей температуре породы в массиве, применительно к различным периодам года, и выдерживают в холодильной установке до тех пор, пока температура в центре образца с установленным в нем термодатчиком не уравняется с заданной. Достигается возможность изготовления образцов, структурно сопоставимых с взорванным массивом горных пород, позволяющих определить на них сопротивление срезу грунта методом одноплоскостного среза. 2 ил.

Группа изобретений относится к области сельского хозяйства, в частности к автоматизированным оптико-электронным системам определения содержания питательных веществ в почве. В способе содержание и концентрации основных питательных элементов в почве (азота, фосфора и калия) определяют пропорционально цветовым оттенкам спектра, фиксируемым цветной видеокамерой при сгорании в пламени образцов почвы, отобранных в процессе движения трактора с устройством по полю, с последующей обработкой сигнала видеокамеры на бортовом компьютере. Устройство содержит установленные в передней части трактора подвижную и неподвижную рамы, соединенные осью. На подвижной раме жестко закреплены почворез, отражающие экраны-уплотнители, и ось, на которой крепится устройство для забора почвы с рабочим и направляющим цилиндрами. Передвижение подвижной рамы относительно неподвижной рамы осуществляется гидроцилиндром. В верхней части рабочей камеры, где расположено устройство для забора почвы, между рабочим и направляющим цилиндрами устанавливают газовую горелку, напротив которой в боковой стене барабана устройства для забора почвы расположено отверстие, защищенное жаропрочным стеклом, за которым снаружи закреплена закрытая защитным кожухом цветная видеокамера. Изобретения обеспечивают автоматизацию процесса определения содержания питательных веществ в почве. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области инженерных изысканий. В способе определения границ пластичности грунтов, заключающемся в определении удельного сопротивления одного образца грунта, имеющего известные значения показателей wm и kw линейной зависимости влажности грунта на границе текучести от числа пластичности WL=wm+kw⋅Iр, при степени влажности 0,97-0,98, погружению конусного индентора с углом 30° при вершине и определении по формулам влажности грунта на границе текучести и на границе раскатывания, образец грунта помещают в цилиндрическую камеру диаметром не менее 60 мм и высотой не менее 45 мм и размещают соосно вершине конуса индентора, а погружение конусного индентора производят с постоянной скоростью, равной 120 мм/мин, на глубину до 35 мм и с регистрацией величины сопротивления грунта через каждые 0,01 мм погружения конусного индентора с дискретностью не более 2,0 Н, при этом в полученном массиве значений сопротивления образца грунта погружению конусного индентора выделяют диапазон инвариантных значений сопротивления грунта погружению конусного индентора из заданного соотношения, а определение влажности грунта на границе текучести и на границе раскатывания производят на основании заданных расчетных зависимостей. Достигается упрощение и ускорение определения границ пластичности грунтов, исключение влияния на результаты определений субъективных факторов, возможность оценки погрешности определения удельного сопротивления грунта пенетрации при испытании одного образца грунта. 1 ил.

Изобретение относится к области почвоведения, а именно к агрохимии, и предназначено для оценки концентрации гумуса в образцах черноземных почв петромагнитным методом. Для этого отбирают образцы почвы в пахотном горизонте, в которых определяют величину магнитной восприимчивости kисх. Затем образцы нагревают до 550˚С и после их остывания повторно определяют величину магнитной восприимчивости kнаг. Коэффициент приращения величины магнитной восприимчивости kt вычисляют по формуле ktkнагkисх, при этом содержание гумуса оценивают как прямо пропорциональное коэффициенту kt. Изобретение обеспечивает быстрый и точный метод количественной оценки гумуса в почве. 1 табл., 1 ил.

Наверх