Способ получения растворов силиката лития


 


Владельцы патента RU 2618735:

Общество с ограниченной ответственностью Компания "Мария-Трэйд" (RU)

Изобретение относится к технологии получения литиевых жидких стекол, применяемых в химической, металлургической, текстильной, бумажной, лакокрасочной и строительной промышленности. Способ включает получение растворов силиката лития путем растворения аморфного кремнезема в растворах гидроксида лития, при температуре 60-120°C, в течение 60-120 мин и охлаждением реакционной массы до 10-40°C, с последующей фильтрацией или отстаиванием. Изобретение обеспечивает получение растворов силиката лития с силикатным модулем от 1 до 20, плотностью от 1050 до 1300 кг/м3 и вязкостью до 500 сП при 20°C. 1 з.п. ф-лы, 2 пр.

 

Изобретение относится к технологии получения литиевых жидких стекол, применяемых в химической, металлургической, текстильной, бумажной, лакокрасочной и строительной промышленности, а также для других целей.

Известны способы получения литиевого жидкого стекла путем реакции раствора гидроксида лития с мелкодисперсным порошком кремниевой кислоты или ее золем (SU 1498709 А1; JP 59-69417; RU 2448043, US 3392039 А, US 3180747).

Основным общим недостатком этих известных способов является использование сильно разбавленных растворов, которые затем необходимо концентрировать, что приводит к большой длительности и трудоемкости процессов, а также к значительному возрастанию стоимости конечного продукта.

Для получения литиевого жидкого стекла применим метод, включающий реакцию взаимодействия алкоксисиланов с соединениями лития. Эту реакцию в известных способах обычно проводят при высоких температурах, например при температуре кипения смеси алкоксисиланов с гидроксидом лития (US 4120938), причем в качестве тетраалкоксисиланов чаще всего используют тетраэтоксисилан, а в качестве литиевых соединений используют как гидроксид лития, так и его соли, например ацетат лития (KR 20090089642). Однако проведение процесса при высоких температурах приводит к повышенной энергоемкости процесса, а также к сложности его аппаратурного оформления.

Наиболее близким к заявляемому техническому решению является способ SU 1498709 получения литиевого жидкого стекла. Сущность способа заключается в растворении кремниевой кислоты, которая примешивается с определенной скоростью 5-20 кг/ч в растворе гидроксида лития при температуре 40-60°C в течение 1-4 часов.

Недостатком данного способа является необходимость применения специально подготовленной кремневой кислоты и наличие продолжительных процессов загрузки.

Технический результат предлагаемого способа заключается в возможности получения растворов силиката лития с силикатным модулем от 1 до 20, плотностью от 1050 до 1300 кг/м3 и вязкостью до 500 сП при 20°C. При этом, в качестве сырья используются аморфный кремнезем с содержанием SiO2 от 50-100% мас.

Технический результат достигается следующим образом:

Готовится раствор гидроксида лития заданной концентрации, который в последующем подогревается. В интервале температур 35-50°C в раствор в стехиометрическом соотношении добавляется аморфный кремнезем с содержанием SiO2 в виде мелкодисперсного порошка. Далее реакционная масса нагревается до 60-120°C и выдерживается в течение 60-120 мин. Полученная суспензия белого цвета, состоящая из воды и твердого силиката лития, охлаждается через стенку водой при перемешивании до 10-40°C, в результате чего происходит растворение твердых частиц Li2SiO3 с образованием литиевого жидкого стекла. Это позволяет минимизировать потери продукта в твердую фазу. В зависимости от требований к чистоте полученный раствор может быть отстоян или отфильтрован. Полученная при охлаждении теплая вода направляется на разбавление гидроксида лития, благодаря чему сокращаются энергозатраты на производство.

Отличительными особенностями предложенного метода являются:

1. Применение в качестве кремнеземсодержащего сырья - аморфного кремнезема.

2. Охлаждение реакционной массы после растворения с 60-120°C до 10-40°C, с целью уменьшения времени проведения процесса и увеличения выхода продукта.

3. Уменьшение энергетических затрат за счет рекуперации тепла при использовании вод после охлаждения для разбавления литиевой щелочи.

Ниже представлен пример осуществления данного способа.

Пример 1. 270 г моногидрата лития растворяют при температуре 20°C в 2000 г воды, после чего нагревают до 35-50°C и добавляют осажденный кремнезем с содержанием SiO2 - 90% в количестве 570 г. После этого пульпа нагревается до 60-120°C градусов и выдерживается при перемешивании 60-120 минут. Полученная суспензия охлаждается до 10-40°C, после чего фильтруется с получением жидкого стекла. В результате получается около 2700-2750 г чистого литиевого жидкого стекла с молярным модулем 3,25 и плотностью 1,22 г/см3.

Пример 2. 180 г моногидрата лития растворяют при температуре 20°C в 2300 г воды, после чего нагревают до 35°C и добавляют осажденный кремнезем с содержанием SiO2 - 90%, в количестве 690 г. После этого пульпа нагревается до 60-120°C градусов и выдерживается при перемешивании 60-120 минут. Полученная суспензия охлаждается до 10-40°C, после чего фильтруется с получением жидкого стекла. В результате получается около 2700-2750 г чистого литиевого жидкого стекла с молярным модулем 4,87 и плотностью 1,19 г/см.

1. Способ получения растворов силиката лития с силикатным модулем от 1 до 20, плотностью от 1050 до 1300 кг/м3 и вязкостью до 500 сП при 20°C путем растворения аморфного кремнезема в растворах гидроксида лития, при температуре 60-120°C, в течение 60-120 мин и охлаждением реакционной массы до 10-40°C с последующей фильтрацией или отстаиванием.

2. Способ по п. 1, отличающийся тем, что проводят рекуперацию тепла при использовании вод после охлаждения для разбавления гидроксида лития.



 

Похожие патенты:

Изобретение относится к электротехнической области и может быть использовано в аккумуляторных батареях транспортных и космических систем с улучшенными удельными характеристиками.

Изобретение относится к строительству и касается промышленности строительных материалов, а именно к изготовлению любых видов строительных изделий, дорожных покрытий, и может быть использовано при жилищном и промышленном строительстве, строительстве дорог, в литейном, химическом производстве и других областях.

Изобретение относится к способу преобразования углерода в оксид углерода. Данный способ включает приведение углерода в контакт с паром в присутствии материала со структурой типа карнегиита, имеющего формулу (Na2O)xNa2[Al2Si2O8], где 0<х≤1.
Изобретение может быть использовано в химической, металлургической, текстильной, бумажной и лакокрасочной промышленности. Сначала в измельченный до крупности менее 50 мкм кварц добавляют нерастворимый кварцевый песок крупностью -0,15+0,05 мм в количестве 5-20% от массы кварца и растворяют в растворах щелочей при температуре 120-170°C и давлении до 0,8 МПа.

Изобретение может быть использовано для получения носителей катализаторов, ионообменных материалов, сорбентов, используемых при очистке, сушке и разделении газов, при очистке воды от бактерий и пестицидов, для приготовления пигментов, для получения пищевых добавок.

Изобретение может быть использовано для производства жидкого стекла, применяемого в качестве вяжущего, добавки или реагента в строительной, химической, машиностроительной, текстильной и бумажной отраслях промышленности.
Изобретение относится к технологии получения высокомодульного жидкого стекла для производства строительных материалов. Способ получения высокомодульного жидкого стекла включает приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку при температуре 85-95°C и атмосферном давлении.
Изобретение относится к технологии изготовления жидкого стекла. Кремнеземсодержащее вещество смешивают с раствором гидроксида натрия.
Изобретение относится к технологии получения жидкого стекла для производства строительных материалов и может быть использовано при изготовлении теплоизоляционных и других изделий.

Изобретение относится к покрытиям для антикоррозионной защиты металлических конструкций и может быть использовано для всех металлических конструкций, подвергающихся воздействию агрессивных сред, в частности к системе для антикоррозионного покрытия морских судов и плавающих платформ в условиях высокоминерализованной морской воды и ультрафиолетового облучения солнечного спектра.
Наверх