Состав для кислотной обработки призабойной зоны пласта

Изобретение относится к области нефтедобывающей промышленности. Технический результат - низкая коррозионная активность состава для кислотной обработки, замедленная скорость реагирования состава для кислотной обработки с карбонатной породой, отсутствие образования асфальтосмолопарофиновых отложений за счет низкого межфазного поверхностного натяжения на границе с нефтью, предотвращение выпадения вторичных осадков, высокая способность связывания железа. Состав для кислотной обработки призабойной зоны пласта содержит, мас.%: соляную кислоту 12-15; уксусную кислоту 1,0-5,0; гидрофобизатор ИВВ-1 0,5-1,2; аскорбиновую кислоту 0,5-0,7; оксилидендифосфоновую кислоту 1,0-1,2; метабисульфит натрия 0,03-0,05; воду – остальное. 2 ил.

 

Изобретение относится к области нефтедобывающей промышленности, в частности к технологии добычи нефти с применением химических средств на основе соляной кислоты, путем комплексного солянокислотного воздействия на призабойную зону нефтяного пласта (ПЗНП) для интенсификации притока нефти при увеличении нефтеотдачи слабопроницаемых карбонатных пластов.

Интенсификация добычи нефти является актуальной задачей нефтяной отрасли. Одним из наиболее распространенных видов воздействия на ПЗНП с целью восстановления и улучшения фильтрационных характеристик коллектора являются кислотные обработки скважин.

Наибольшие осложнения возникают в случае содержания в пласте, скважине или в самой соляной кислоте соединений трехвалентного железа. Присутствие даже незначительного количества ионов трехвалентного железа приводит к образованию нерастворимой гидроокиси железа после истощения кислоты и, как следствие, к кольматации и снижению проницаемости ПЗНП.

Оксиды железа Fe(III) выпадают при pH>~2. Осадки в виде желатиновых сгустков блокируют перфорации или поры в призабойной зоне и могут вызвать выпадение асфальтенов и образование эмульсий.

Оксиды железа Fe(II) выпадают при pH>~7. Отработанные кислотные составы редко поднимаются выше pH=6.0, поэтому выпадение этого оксида железа обычно не представляет проблем.

Известны технические решения, предусматривающие увеличение эффективности воздействия соляной кислотой на обрабатываемую среду за счет увеличения длительности этого воздействия путем введения органической кислоты. Например, известен состав, содержащий ингибированную соляную кислоту, уксусную кислоту и воду (Логинов Б.Г. и др. Руководство по кислотным обработкам скважин. - М.: Недра, 1966 г., с. 25; Логинов Б.Г. и др. Руководство по кислотным обработкам скважин. - М.: ВНИИОЭНГ, 1972 г., с. 51).

Недостатком данных рецептур является то, что растворы соляной кислоты характеризуются повышенным содержанием ионов трехвалентного железа, что приводит к коррозии оборудования. После истощения кислоты происходит гидролиз железа с образованием гидроокиси, стабилизирующей эмульсии и кольматирующих образований в пласте, что препятствует глубокому проникновению состава в пласт и ведет к снижению эффективности кислотной обработки.

Известен состав для кислотной обработки призабойной зоны пласта с использованием соляной кислоты, где в качестве комплексообразователя ионов трехвалентного железа используют добавку лигносульфонатов технических (Патент РФ № 2013530, опубл. 30.05.1994 г.).

Недостатком состава является то, что лигносульфонаты технические при снижении концентрации кислоты, после реакции с породой коллектора, образуют нерастворимые осадки с солями кальция и магния.

Известен также поверхностно-активный кислотный состав для обработки карбонатных коллекторов, включающий соляную кислоту, спиртосодержащее соединение, средство моющее техническое ТМС «ЖениЛен», катионное ПАВ, стабилизатор железа (ОЭДФ К или Трилон-Б), (Патент РФ № 2494136, опубл. 27.09.2013 г.).

Недостатком данной композиции является присутствие силиката натрия в составе технического моющего средства «ЖениЛен». При закачке композиции в карбонатный пласт образуются ионы Ca2+ и Mg2+, кроме того, в пластовых водах эти ионы присутствуют в виде солей CaCl2 и MgCl2. Наличие данных ионов приводит к образованию нерастворимых осадков силикатов кальция и магния.

Наиболее близким к предлагаемому изобретению по технической сущности является состав для кислотной обработки призабойной зоны пласта, содержащий поверхностно-активное вещество, уксусную кислоту, соляную кислоту и воду (Патент РФ № 2138634, опубл. 27.09.1999 г.). В качестве поверхностно-активного вещества (ПАВ) известный состав содержит продукт взаимодействия третичных аминов с пероксидом водорода (ПВТА) при следующем соотношении ингредиентов, мас. %.

Продукт взаимодействия третичных аминов с пероксидом водорода - 0,03-0,3; уксусная кислота 2,5-3,0; соляная кислота 10,0-24,0; вода - остальное. Указанный известный состав характеризуется низким межфазным поверхностным натяжением на границе с нефтью, высокой проникающей и деэмульгирующей способностью, хорошо диспергирует асфальтосмолопарафиновые отложения (АСПО) за счет использования высокоэффективного ПАВ.

К недостатку известного состава следует отнести высокую коррозионную активность, что приводит к быстрому накоплению в кислотном составе трехвалентного железа в количествах, превышающих комплексообразующую емкость уксусной кислоты, входящей в состав, и, как следствие, к снижению эффективности кислотной стимуляции нефтяных скважин из-за образования нерастворимой гидроокиси трехвалентного железа, стабилизирующей нефтяные эмульсии и кольматирующей пласт.

Целью предлагаемого изобретения является улучшение технологических свойств известного состава в процессе эксплуатации за счет снижения коррозионной активности, придание составу стабилизирующей способности в отношении ионов железа с сохранением других положительных характеристик состава.

Поставленная цель достигается тем, что известный состав для кислотной обработки призабойной зоны пласта, содержащий поверхностно-активное вещество, соляную кислоту, уксусную кислоту и воду, дополнительно содержит аскорбиновую, оксиэтилидендифосфоновую (ОЭДФ К) кислоты и метабисульфит натрия, а в качестве поверхностно-активного вещества (ПАВ) гидрофобизатор ИВВ-1, при следующем соотношении ингредиентов, мас. %:

- соляная кислота - 12-15

- уксусная кислота - 1,0-5,0

- гидрофобизатор ИВВ-1 - 0,5-1,2

- аскорбиновая кислота - 0,5-0,7

- ОЭДФК - 1,0-1,2

- метабисульфит натрия - 0,03-0,05

- вода - остальное.

Одновременное присутствие в предлагаемом кислотном составе ОЭДФ К, аскорбиновой кислоты и метабисульфита натрия в оптимальных соотношениях, подобранных эмпирически, обеспечивают составу высокую «железоемкость» до 2000 ррм (0,2%) и выше.

ОЭДФ К является комплексоном хелатного типа.

Высокая устойчивость и широкий интервал pH существования растворимых комплексонатов Fe(III) с ОЭДФ К являются положительным фактором при использовании ОЭДФ К для удаления железооксидных отложений. Введение комплексообразующего реагента препятствует также отложению солей, обеспечивает удаление солей со скважинного оборудования даже при низкой кислотности состава, при этом нефтепромысловое оборудование не подвергается значительной коррозии и позволяет использовать кислотные составы при минерализации пластовых вод 15-250 г/л.

Аскорбиновая кислота, являясь активным восстановителем, используется в кислотном составе для восстановления железа(III) в железо(II), предотвращая т.о. образование нерастворимых сгустков гидроокиси железа(III).

Метабисульфит натрия, являясь сильным антиоксидантом, играет в кислотном составе роль стабилизатора аскорбиновой кислоты. Механизм стабилизации заключается в том, что метабисульфит натрия окисляется легче, чем аскорбиновая кислота, и кислород, растворенный в кислотном составе, расходуется на окисление стабилизатора, тем самым защищая аскорбиновую кислоту от преждевременного окисления.

Кроме того, аскорбиновая кислота и метабисульфит натрия, являясь сильными антиоксидантами, снижают коррозионную активность состава.

Использование гидрофобизатора ИВВ-1, в качестве ингибитора коррозии, в совокупности с описанными выше реагентами, способствует снижению коррозионной активности состава до нормативного уровня. Неоспоримым преимуществом гидрофобизатора ИВВ-1 является его многофункциональность. Являясь ингибитором коррозии, он одновременно снижает межфазное натяжение на границе с нефтью, служит для удаления связанной воды из пласта и гидрофобизации поровой поверхности, обладает бактерицидными свойствами.

Уксусная кислота значительно медленнее реагирует с карбонатами, чем соляная кислота, поэтому введение ее в состав позволяет замедлить скорость нейтрализации основной массы соляной кислоты.

Соляная кислота в составе является базовым реагентом, требуемые свойства которому обеспечиваются вышеуказанными добавками.

Анализ известных решений, отобранных в процессе поиска, показал, что в науке и технике нет объекта, обладающего заявленной совокупностью признаков и наличием вышеуказанных свойств и преимуществ, что дает основания сделать вывод о том, что предлагаемый состав обладает критериями "новизна" и "изобретательский уровень".

Для приготовления предлагаемого состава используются следующие реагенты, выпускаемые отечественными производителями:

- соляная кислота (HCl) выпускается по ГОСТ 857-95 или по ТУ 6-01-04689381-85-92;

- уксусная кислота техн. (CH3COOH) выпускается по ГОСТ 19814-74;

- гидрофобизатор ИВВ-1 выпускается по ТУ 2482-013-13164401-94, представляет собой водорастворимое четвертичное аммониевое основание в растворе изопропилового спирта;

- ОЭДФ К выпускается по ТУ 2439-263-05763441-2002, изм. 1, 2;

- аскорбиновая кислота выпускается по ГОСТ 4815-76;

- метабисульфит натрия (пиросульфит натрия - Na2S2O5) выпускается по ГОСТ 11683-76, изм. 2, 3.

Технический результат, достигаемый предлагаемым изобретением, заключается в создании кислотного состава, обладающего низкой коррозионной активностью, замедленной скоростью реагирования с карбонатной породой, отсутствием образования АСПО за счет низкого межфазного поверхностного натяжения на границе с нефтью, предотвращением выпадения вторичных осадков и высокой способностью связывания железа.

Предлагаемый состав для кислотной обработки представляет собой жидкость от бесцветного до коричневого цвета, стабилен при перевозке и хранении. Изготавливается в условиях промышленного производства.

Пример приготовления предлагаемого кислотного состава в лабораторных условиях.

Брали 50 г соляной кислоты 24% концентрации, добавляли к ней 3 г уксусной кислоты, 0,5 г гидрофобизатора ИВВ-1, 1 г ОЭДФ К, 0,5 г аскорбиновой кислоты, 0,03 г метабисульфита натрия; в результате получали кислотный состав со следующим содержанием ингредиентов, мас. %: соляная кислота - 12 (в пересчете на HCl); уксусная кислота - 3; гидрофобизатор ИВВ-1 - 0,5; ОЭДФ К - 1; аскорбиновая кислота - 0,5; метабисульфит натрия - 0,03; вода - 82,97.

Порядок смешения компонентов не влияет на характеристики состава. Кислотные составы с другим соотношением компонентов готовили аналогичным образом.

В ходе лабораторных испытаний определяли следующие свойства предлагаемого кислотного состава:

1. Межфазное натяжение на границе раздела фаз между предлагаемым составом и углеводородной фазой.

Межфазное натяжение оценивали по методу объема капель с помощью сталагмометра марки СТ-1 (Сталагмометр СТ-1. Руководство по эксплуатации СТ-1 РЭ. ТУ-4318-010-04698277-2006).

2. Способность предотвращать образование эмульсий и выпадение осадков при смешении с углеводородной фазой.

Изучение совместимости кислотного состава с нефтями проводили в соответствии с «Едиными техническими требованиями по основным классам химических реагентов», ОАО «Роснефть», № П1-01.05М-0044, М., 2016 г., на совместимость и эмульсеобразование.

Для этого готовили раствор хлорного железа в воде с концентрацией по иону Fe(III) 100000 ppm. Для приготовления 100 г раствора хлорного железа указанной концентрации берется 48,3 г FeCl3⋅6H2O и 51,7 г воды.

В стеклянную отградуированную пробирку с завинчивающейся пробкой наливали 50 мл исследуемого кислотного состава и вводили полученный раствор хлорного железа в количестве 0,5; 1,0; 1,5 мл, что соответствует концентрации по иону Fe(III) 1000, 2000, 3000 ppm (0,1-0,3%), соответственно. Затем в пробирку наливали 50 мл исследуемой нефти, завинчивали пробку и перемешивали интенсивным встряхиванием в течение 30 секунд.

После выдержки в течение 30 минут визуально проверяли содержимое пробирки на образование эмульсии. Затем содержимое пробирки фильтровали через металлическое сито из меди с ячейкой 0,200 мм на предмет образования сгустков. Состав считается выдержавшим испытание, если содержимое пробирок фильтруется за достаточно короткий промежуток времени через сито и на сите не остается смолянистого осадка или твердой фазы.

3. Скорость взаимодействия кислотного состава с карбонатной породой.

Определение скорости взаимодействия кислотного состава с карбонатной породой проводили следующим образом. Отшлифованный мраморный кубик с предварительно определенной площадью поверхности помещали в стеклянный стакан и взвешивали.

После этого в стакан с кубиком добавляли 25 см3 кислотного состава. Для наблюдения динамики взаимодействия выбирали 3 интервала времени взаимодействия с породой - 5; 60 и 180 мин. По истечении времени взаимодействия сливали кислотный состав и быстро производили нейтрализацию карбонатной поверхности аммиачно-буферным раствором (pH 10-12).

После нейтрализации мраморный кубик в стакане промывали водой. Затем стакан с кубиком помещали в сушильный шкаф (100°C). Первое взвешивание производили через 1 час, последующие через каждые 20 мин до достижения постоянного веса.

Скорость взаимодействия с карбонатной породой вычисляли по формуле:

Vвкп=(m1-m2)/S⋅t, г/м2⋅час, где:

m1 - масса стакана и кубика до реакции, г;

m2 - масса стакана и кубика после реакции, г;

VВКП - скорость взаимодействия с карбонатной породой, г/м2⋅час;

S - площадь поверхности кубика, м2;

t - время реакции, час.

4. Коррозионную активность состава определяли в соответствии с «Едиными техническими требованиями по основным классам химических реагентов», ОАО «Роснефть», № П1-01.05М-0044, М., 2016 г., по стандартной методике гравиметрическим методом по изменению массы образцов.

Исследования проводили при двух температурах (20°C и 90°C) на двух типах стали (Ст. 3 и Ст. 35) в статическом режиме. Коррозию малоуглеродистой нелегированной стали Ст. 3 проводили при температуре 20°C, а стали, из которой изготовлены насосно-компрессорные трубы (НКТ) (Ст. 35), при температуре 90°C.

При исследовании Ст. 3 использовали образцы пластин размером 50×25×1,0 мм по ГОСТ 9.905-2007. Перед проведением испытаний поверхность образцов шлифовали по ГОСТ 2789-73, протирали ватой, обезжиривали ацетоном, с последующей выдержкой в течение 1 часа в эксикаторе.

При исследовании стали из Ст. 35 купоны (образцы из трубы НКТ) так же протирали ватой, обезжиривали ацетоном, с последующей выдержкой в течение 1 часа в эксикаторе.

Взвешивание пластин проводи на аналитических весах с точностью до 0,0001 г.

Испытания проводили в ячейках, погруженных в водяную баню при температуре 20°C (Ст. 3) в течение 24 часов, при температуре 90°C (Ст. 35) в течение 2 часов.

После проведения испытаний образцы очищали и вновь взвешивали на аналитических весах.

Скорость равномерной коррозии К в (г/(м2*час)) вычисляли по формуле: К=(m0-m1)/(S*t),

где: m0, m1 - масса образца до и после испытания соответственно, г;

S - площадь поверхности образца, м2;

t - время выдержки при заданной температуре.

Скорость коррозионного проникновения Кг в мм/год вычисляли по формуле:

Кг=1,12*К.

Данные о рецептуре исследованных кислотных составов приведены в таблице (Рис. 1).

Данные о свойствах этих составов приведены в таблице (Рис. 2).

Как видно из данных таблиц (Рис. 1 и Рис. 2), известный кислотный состав (прототип) обладает высокой коррозионной активностью и недостаточно стабилизирует отработанный кислотный состав в отношении трехвалентного железа (примеры № 7, № 8). Предлагаемый состав по сравнению с известным составом по прототипу обладает в 2-3 раза более низкой коррозионной активностью, а также в 2-3 раза эффективнее стабилизирует отработанный кислотный состав в отношении трехвалентного железа.

Выход за нижний предел содержания компонентов в кислотном составе приводит к снижению его технологических характеристик (пример № 5).

Выход за верхний предел содержания компонентов в кислотном составе незначительно улучшает его технологические характеристики, но ведет к удорожанию состава, что экономически не выгодно (пример № 6).

Таким образом, использование предлагаемого кислотного состава при обработке призабойной зоны продуктивного пласта, сложенного карбонатными породами, позволит в процессе кислотной обработки:

- исключить риски образования смолистых продуктов и стойких кислотно-нефтяных эмульсий за счет стабилизации ионов трехвалентного железа;

- снизить скорость кислотной коррозии;

- удалять неорганические осадки и предотвращать отложения солей за счет комплексообразующих добавок;

- повысить приемистость скважин и интенсифицировать приток нефти.

Технология проведения операции по обработки пласта обычная для солянокислотных обработок.

Состав для кислотной обработки призабойной зоны пласта, содержащий поверхностно-активное вещество, соляную кислоту, уксусную кислоту и воду, отличающийся тем, что дополнительно содержит аскорбиновую, оксиэтилидендифосфоновую ОЭДФ К кислоты и метабисульфит натрия, а в качестве поверхностно-активного вещества ПАВ - гидрофобизатор ИВВ-1 при следующем соотношении ингредиентов, мас.%:

соляная кислота 12-15
уксусная кислота 1,0-5,0
гидрофобизатор ИВВ-1 0,5-1,2
аскорбиновая кислота 0,5-0,7
ОЭДФ К 1,0-1,2
метабисульфит натрия 0,03-0,05
вода остальное



 

Похожие патенты:

Изобретение относится к нефтедобывающей промышленности и может быть использовано для проведения ремонтно-изоляционных работ (РИР) в скважинах. Способ ремонтно-изоляционных работ в скважинах включает приготовление и закачивание в скважину водоизоляционной композиции, содержащей, мас.

Варианты реализации изобретения относятся к операциям цементирования и, более конкретно, некоторые варианты реализации относятся к затвердевающим композициям, которые содержат печную пыль и волластонит, а также к способам их применения в подземных пластах .

Изобретение относится к выполнению многостадийной обработки скважин, пронизывающих подземные формации. Способ разрыва с отведением с помощью способного разлагаться материала, содержащий этапы, на которых осуществляют: нагнетание скважинной обрабатывающей текучей среды в скважину, пронизывающую многослойную формацию, для распространения гидравлического разрыва в слое формации, нагнетание водной суспензии, содержащей волокна нерастворимого, способного разлагаться материала в твердой фазе для формирования пробки из уплотненных волокон и изолирования гидравлического разрыва от скважины, где способный разлагаться материал присутствует в суспензии в концентрации, по меньшей мере, 4,8 г/л (40 фунтов массы/1000 галлонов), и жидкая фаза суспензии содержит полимерный загуститель, вязкоупругое поверхностно-активное вещество, вспомогательное поверхностно-активное вещество, модификатор реологических свойств, полимерное вещество для снижения сопротивления, поверхностно-активное вещество для снижения сопротивления, полимерный усилитель снижения сопротивления, мономерный усилитель снижения сопротивления, водный рассол, или их комбинацию или смесь, с помощью пробки, отводящей от предшествующего гидроразрыва, нагнетание скважинной обрабатывающей текучей среды в скважину для распространения следующего гидравлического разрыва в другом слое формации и разложение способного разлагаться материала для удаления пробки.

Изобретение относится к производству проппанта и его суспензии в жидкости для гидроразрыва. Способ формирования газонаполненных пузырьков на поверхности частицы проппанта, содержащий этапы помещения частиц проппанта в воду при рабочем давлении 8000-12000 фунтов на квадратный дюйм, создание избыточного давления газа в воде, равного или большего, чем рабочее давление 8000-12000 фунтов на квадратный дюйм, для создания насыщения вокруг или в непосредственной близости от частицы проппанта, в результате чего образуются пузырьки на поверхности частиц проппанта, и сброса избыточного давления из воды до уровня рабочего давления.
Изобретение относится к составам для бурения скважин. Технический результат – расширение арсенала средств, получение бурового раствора со следующими свойствами: плотность 1,16-1,17 г/см3, вязкость 43 сР, условная вязкость 43 с/л.

Расклинивающий агент для применения для разрыва геологических формаций получают из бокситовых руд и кальцийсодержащего соединения. Расклинивающий агент содержит, мас.%: 25-75 Al2O3, 0-70 SiO2, по меньшей мере 3 СаО и менее 0,1 кристобалита, а также по меньшей мере 5 (предпочтительно более 10) мас.% кальцийсодержащей кристаллической фазы, представляющей собой анортит.

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для регулирования разработки нефтяных и газовых месторождений, включающего регулирование профиля приемистости нагнетательных скважин и изоляцию водопритоков добывающих скважин.

Изобретение относится к частице сшитого препятствующего образованию отложений вещества для операций добычи нефти, для источника воды охлаждающей колонны, способу изготовления частицы и ее использованию.

Группа изобретений относится к цементным композициям с отсроченным сроком схватывания. Способ вытеснения флюида в стволе скважины включает введение продавочной жидкости, содержащей цементную композицию с отсроченным схватыванием, в ствол скважины, так, что продавочная жидкость вытесняет один или более ранее внесенных флюидов из ствола скважины.
Изобретение относится к нефтедобывающей промышленности. Технический результат - расширение области применения технологии за счет реагентов, устойчивых к высоким температурам, с одновременным снижением стоимости обработки за счет снижения количества используемой техники.

Изобретение относится к защите от коррозии оборудования для добычи нефти, а также трубопроводов и резервуаров для нее. Ингибитор коррозии для защиты оборудования для добычи сырой нефти, нефтепроводов и резервуаров для сырой нефти, содержащий: компонент а), полученный в результате выполнения следующих процессов: А) - частичной нейтрализации смеси модифицированных производных имидазолина общих приведенных структурных формул путем обработки алифатической и/или ароматической монокарбоновой кислотой, содержащей от 1 до 7 атомов углерода в молекуле, и В) - дальнейшей частичной нейтрализации полученного промежуточного продукта жирными кислотами, содержащими от 12 до 22 атомов углерода в молекуле, и/или полимерами жирных кислот, содержащими от 18 до 54 атомов углерода в молекуле, компонент b), представляющий собой этоксилированные жирные амины, содержащие от 14 до 22 атомов углерода в молекуле, и от 2 до 22, предпочтительно от 5 до 15, этокси-групп в молекуле, компонент d), представляющий собой алифатические спирты, содержащие от 1 до 6 атомов углерода на молекулу, возможно, с добавлением воды. Способ получения указанного выше ингибитора коррозии включает указанные выше операции. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение эффективности ингибирования. 2 н. и 7 з.п. ф-лы, 1 табл., 13 пр.

Изобретение относится к горному делу и может быть использовано при изоляции горных выработок от притоков воды и газа и инъекционном химическом укреплении горных пород и грунтов. Полимерный состав содержит раздельно нагнетаемые в породный массив в объемном соотношении 1:1 преполимер с короткими полимерными цепями, образующийся при смешивании растворителя 2,2,4-триметил-1,3-пентандиолдиизобутират, гидроксилсодержащего компонента полипропиленгликоль и полиизоцианата марки «Wannate PM-200», взятого в двойном избытке. При этом нагнетание осуществляют при следующем соотношении компонент в преполимере, мас.%: полиизоцианат – 73-75, полипропиленгликоль – 11-12, растворитель – 14-15 и гидроксилсодержащий пластификатор, образующийся при смешивании растворителя 2,2,4-триметил-1,3-пентандиолдиизобутират и полипропиленгликоля с добавкой регулятора полимеризации «АМИН А33» при следующем соотношении компонент в пластификаторе, мас.%: растворитель – 84-87, полипропиленгликоль – 11-13, регулятор полимеризации – 0.1-4.5. Техническим результатом является повышение глубины проникновения и эффективности нагнетания полимерного состава в породный массив за счет снижения вязкости рабочих жидкостей при сохранении низкой сжимаемости состава под действием давления и малом содержании в нем остаточного изоцианата. 1 ил.

Способ повышения эффективности добычи углеводородов из подземной формации, которая включает в себя нефтегазоносные сланцы, содержащие кальцит с трещинами в нем, причем этот способ включает: введение флюида, содержащего положительно заряженные ионы, по меньшей мере, в некоторые трещины; обеспечение упомянутым ионам возможности преобразовывать сланцы вдоль трещин в кристаллы арагонита таким образом, что некоторые кристаллы арагонита становятся взвешенными во флюиде; удаление некоторого количества флюида со взвешенными кристаллами арагонита из этой формации. Причем упомянутое удаление кристаллов арагонита открывает или расширяет трещины и повышает проницаемость этой формации, тем самым увеличивая количество и скорость добычи углеводородов из этой формации. Причем оставшийся в толще флюид продолжает преобразовывать следующие кристаллы кальцита вдоль трещин в кристаллы арагонита, так что во флюиде становится больше взвешенного арагонита, после чего некоторое количество упомянутого флюида со взвешенным арагонитом удаляют из этой формации, посредством чего дополнительно повышают или поддерживают проницаемость этой формации. Технический результат заключается в повышении эффективности добычи углеводородов. 10 з.п. ф-лы, 39 ил.

Изобретение относится к области добычи газа, а именно к химическим реагентам для удаления жидкости из скважин газовых месторождений, в продукции которых содержится конденсационная жидкость с примесью пластовой. Технический результат - обеспечение эффективного удаления конденсационной жидкости с примесью пластовой из газовых скважин технологией использования поверхностно-активного вещества (ПАВ). Реагент для удаления конденсационной жидкости с примесью пластовой из газовых скважин, содержащий неионогенное поверхностно-активное вещество - препарат ПЭГ-4000, дополнительно содержит анионоактивное поверхностно-активное вещество лаурилсульфат натрия и склеивающее вещество - Камцелл-700 при следующем соотношении компонентов, мас.%: ПЭГ-4000 65÷85, лаурилсульфат натрия 7÷22, Камцелл-700 5÷13. 1 табл.

Изобретение относится к горной и нефтегазодобывающей промышленности и может быть использовано при разработке месторождений полезных ископаемых подземным способом и ремонтно-изоляционных работах в тоннелях, нефтяных и газовых скважинах. Тампонажный раствор содержит 48-50 мас. % конверторного шлака, 33-35 мас. % электросталеплавильного шлака, 9-11 мас. % горелой породы шахтных отвалов и шлам отработанных электролитов кислотных аккумуляторов - остальное. При этом конверторный шлак имеет следующий состав, мас. %: SiO2 35,43; Al2O3 8,51; Fe2O3 1,94; FeO 2,83; MnO 1,15; CaO 29,97 (в т.ч. СаОсвоб. 0,39); MgO 20,69; SO3 0,04; P2O5 0,14, а электросталеплавильный шлак имеет следующий состав, мас. %: SiO2 26,63; Al2O3 5,33; FeO 0,95; MnO 0,37; CaO 55,55 (в т.ч. СаОсвоб. 0,71); MgO 9,68; S 1,41; P2O5 0,03; Cr2O3 0,05. Техническим результатом является расширение номенклатуры бесцементных тампонажных растворов с повышенной прочностью тампонажного камня. 3 табл.

Изобретение относится к нефтедобывающей промышленности. Технический результат - увеличение производительности нагнетательных скважин, уменьшение времени осуществления способа, его упрощение и удешевление. Способ многостадийной обработки призабойной зоны нагнетательной скважины в терригенных и карбонатных пластах включает стадии: солянокислотную обработку кислотной композицией объемом 0,5-1 м3/м с последующей продавкой водным раствором наночастиц коллоидной двуокиси кремния или водным раствором поверхностно-активного вещества ПАВ объемом 2-3 м3/м; глинокислотную обработку глинокислотной композицией на основе соляной и плавиковой кислот объемом 0,5-0,8 м3/м с последующей продавкой водным раствором наночастиц коллоидной двуокиси кремния или водным раствором ПАВ объемом 2-3 м3/м; обработку углеводородным растворителем объемом 0,5 м3/м и глинокислотной композицией на основе соляной и плавиковой кислот объемом 0,5 м3/м с последующей продавкой водным раствором наночастиц коллоидной двуокиси кремния или водным раствором ПАВ объемом 2-3 м3/м. В качестве кислотной композиции используют следующий состав, об.%: 30%-ная соляная кислота 50-63; диэтиленгликоль 6-16; уксусная кислота 1-3; гидрофобизатор на основе амидов 1-3; ингибитор коррозии 1,5-2; техническая вода – остальное. В качестве глинокислотной композиции используют следующий состав, об.%: 30%-ная соляная кислота 48-60; плавиковая кислота 1-4; диэтиленгликоль 6-16; уксусная кислота 1-3; гидрофобизатор на основе амидов 1-3; ингибитор коррозии 1,5-2; техническая вода – остальное. В качестве водного раствора наночастиц коллоидной двуокиси кремния используют 1-2%-ный водный раствор наночастиц коллоидной двуокиси кремния, содержащий, мас.%: коллоидную двуокись кремния в акриловой кислоте 32-40; монометиловый эфир пропиленгликоля 59,5-67,5; воду – остальное. В качестве водного раствора ПАВ используют 2-4%-ный водный раствор ПАВ, содержащий, мас.%: диэтиленгликоль 1-3; гидрофобизатор на основе амидов 0,5-2; техническую воду – остальное. В качестве углеводородного растворителя используют растворитель на основе толуольной фракции прямогонного бензина или на основе концентрата ароматических углеводородов С10. 1 з.п. ф-лы, 7 ил.

Изобретение относится к газодобывающей промышленности и может быть использовано для удаления водогазоконденсатной смеси с забоя газовых и газоконденсатных скважин. Техническим результатом является создание состава пенообразователя с высокой пенообразующей способностью, позволяющего обеспечить эффективное удаление водогазоконденсатной смеси с забоя газовых и газоконденсатных скважин при различной минерализации скважинной жидкости, в широком диапазоне содержания газового конденсата и сохраняющего свои физико-химические свойства при повышенных температурах. Состав содержит ПАВ, антифриз и пресную воду, в качестве ПАВ содержит МОРПЕН, представляющий собой смесь водо- и маслорастворимых алкилсульфатов и сульфоэтоксилатов натрия, в качестве антифриза содержит смесь полиэтиленгликоля и моноэтиленгликоля при следующем соотношении компонентов, мас. %: МОРПЕН-24,0÷75,0; МЭГ-13,3÷40,0; ПЭГ-4,0÷5,0; вода - остальное. Способ приготовления состава включает перемешивание всех его компонентов при комнатной температуре до образования однородного раствора. 1 з.п. ф-лы, 6 табл., 4 пр.

Изобретение относится к нефтегазовой промышленности, в частности к тампонажным смесям, и может быть использовано при одноступенчатом цементировании протяженных (более 2500 м) обсадных колонн, перекрывающих интервалы проницаемых пластов и пластов с низкими градиентами гидроразрыва при нормальных, умеренных и повышенных температурах. Тампонажная смесь при следующих соотношениях компонентов включает в себя, мас.%: портландцемент тампонажный - 47,83-48,77, золу-уноса ТЭЦ - 44,94-47,80, микрокремнезем МК-85 или МК-65 0,96-2,93, регулятор структурообразования - гидроксиэтилцеллюлозу Натросол 250 - 0,29-0,49, нитрилотриметилфосфоновую кислоту НТФК - 0,01-0,02, хлорид натрия - 1,95-3,83. Техническим результатом является высокоэффективное цементирование протяженных (более 2500 м) обсадных колонн в одну ступень одним составом с плотностью раствора 1600±20 кг/м3 по всему интервалу размещения при нормальных и умеренных температурах, обладающим необходимым временем загустевания для безопасного выполнения работ по цементированию. 1 табл, 1 пр.

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности кислотной обработки карбонатных нефтяных коллекторов. Способ кислотной обработки коллекторов с водонефтяным контактом включает спуск в горизонтальный ствол скважины колонны гибких труб, закачку геля с плотностью, большей плотности воды, и заполнением гелем части горизонтального ствола скважины, а также рабочей жидкости для обработки коллектора с заполнением другой части горизонтального ствола скважины, последовательную поинтервальную обработку пласта, по окончании выполнения обработки проведение освоения скважины свабированием, отбор продукции из горизонтальной скважины. Причем бурят или выбирают уже пробуренную, находящуюся в эксплуатации горизонтальную скважину в продуктивном карбонатном коллекторе с открытым условно горизонтальным стволом, на профиле условно горизонтального ствола выделяют один или несколько участков А, расположенных ближе к кровле пласта, длиной не менее 5 м, а также соответствующие соседние участки В, расположенные ближе к водонефтяному контакту. В середину участка А, расположенного ближе к «носку» условно горизонтального ствола, спускают гибкую безмуфтовую трубу с установленной на конце трубы гидромониторной насадкой, через которую закачивают раствор поверхностно-активного вещества в объеме из расчета 0,1-1,1 м3 на метр длины суммы соответствующего участка А и соседнего одного или двух В, проводят технологическую выдержку в течение 0,4-3 часов. Затем закачивают гель, который подбирают из условия невозможности его прокачки в коллектор при давлении Рк, при котором затем будут закачивать кислоту, объем геля определяют как 0,4-0,8 от объема соответствующего одного или двух участков В, являющихся соседними к участку А, в котором проводят операцию. Гель доводят до соответствующего участка А, продавливая по гибким трубам жидкостью, не растворяющей гель, проводят технологическую выдержку в течение времени, требуемом для оседания геля в нижнюю часть участков В. После закачивают кислоту под давлением Рк и в объеме в м3, равном (0,02-0,5)h на метр длины соответствующего участка А, где h - средняя толщина пласта вдоль участка А в метрах, проводят технологическую выдержку для реакции раствора кислоты с коллектором, закачивают растворитель геля в объеме не менее объема закачанного геля. Затем переходят к обработке следующего участка А, перемещая трубу с гидромониторной насадкой в сторону «пятки» условно горизонтального ствола. После завершения обработки всех участков А условно горизонтальный ствол скважины промывают и пускают в эксплуатацию. 1 ил.

Изобретение относится к способам получения водорастворимых ингибиторов коррозии для защиты эксплуатационных трубопроводов для природного газа. Получают компонент а) – смесь модифицированных производных имидазолина, проводят реакцию конденсации диэтилентриамина с жирными кислотами и алифатическими дикарбоновыми кислотами при температуре не менее 140° C. Получают смесь аминоамидов с кислотным числом <10 мг КОН/г. При температуре выше 180° C проводят реакцию конденсации. Получают смесь соединений с кислотным числом <1 мг КОН/г в количестве 0,1-50 мас.%. Нейтрализуют смесь при комнатной температуре в реакционной среде, содержащей компонент е) - алифатические спирты в количестве 15-99,7 мас.%, алифатической и/или ароматической монокарбоновой кислотой в количестве 0,05-25 мас.%. Получают конечный продукт и добавляют к компоненту а) в количестве 0,15-75 мас.% и компоненту е) следующие компоненты: b) - оксиэтиленированные жирные амины, с) - подщелачивающий агент и f) - противовспениватель. Изобретение направлено на повышение антикоррозийных свойств ингибитора коррозии. 2 н. и 12 з.п. ф-лы, 1 табл., 13 пр.
Наверх