Способ определения концентрации водорода в наночастицах палладия

Использование: для определения концентрации водорода в наночастицах палладия. Сущность изобретения заключается в том, что измеряют спектр рентгеновского поглощения за К-краем палладия в интервале 24320±10-24440±20 эВ, определяют значение коэффициента поглощения в точках первых двух максимумов и рассчитывают концентрацию водорода С по формуле , где μA - значение коэффициента поглощения в точке первого краевого максимума, μB - значение коэффициента поглощения в точке второго краевого максимума, k1=0.903±0.001, k2=0.0320±0.0003. Технический результат: упрощение обработки рентгеновских спектров поглощения, а также сокращение времени измерения. 1 з.п. ф-лы, 6 ил.

 

Изобретение относится к способам измерения и анализа наноструктур и может быть использовано при разработке материалов для водородной энергетики и нефтехимической промышленности, в частности для контроля каталитической активности нанокатализаторов на основе палладия.

В настоящий момент известны несколько способов определения концентрации водорода в нанокатализаторах на основе палладия, который является наиболее активным катализатором в процессах гидрирования, в частности при избирательном гидрировании алкинов для образования алкенов, широко используемом в нефтехимической промышленности. При этом способы определения концентрации водорода можно разделить на прямые, основанные на непосредственном измерении количества водорода, абсорбируемого или десорбируемого с поверхности наночастиц палладия, и косвенные, при которых измеряют эффекты, сопутствующие изменению концентрации водорода в наночастицах.

Одной из первых публикаций, относящихся к косвенным методам определения концентрации водорода в металлах, является способ, описанный в статье «Volume changes during hydrogen absorption in metals» R. Griessenand R. Feenstra. J. Phys. F: Met. Phys. 15 (1985) 1013-1019 [1]. Метод основан на измерении плотности образца массивного палладия при заданных температуре и внешнем давлении водорода. По измеренной плотности вычисляется концентрация водорода, поглощенного образцом. Данный метод не может быть применен к наноразмерному палладию.

Для измерения концентрации водорода в наноразмерных образцах использован метод рентгеновской дифракции (X-RayDiffraction (XRD)). (US 7951976, НКИ 568/388, МПК6 B01J 23/652; С07С 1/24; С07С 15/02; С07С 29/145; С07С 31/10; С07С 45/73; С07С 45/74; С07С 49/04; С07С 49/203, дата публикации 31.05.2011. Synthesizing and utilizing novel nano-crystalline zinc chromite-supported nano-palladium catalyst) [2], (A Study on the Formation of Palladium Hydride in a Carbon-Supported Palladium Catalyst. Nabin K. Nag. J. Phys. Chem. В 2001, 105, 5945-5949) [3]. Образец устанавливается в рентгеновском дифрактометре на образце держателе. Источник рентгеновского излучения и детектор располагаются под равными углами по разные стороны от нормали к поверхности образца. Путем изменения угла падения рентгеновского излучения на образец измеряют угловую зависимость интенсивности I(2θ). По пикам полученной зависимости определяются межплоскостные расстояния кристаллической структуры образца, по которым находится концентрация С водорода расположенного в кристаллической области образца. Однако метод рентгеновской дифракции не пригоден при исследовании наночастиц менее 2 нм, а также малоэффективен для любых наночастиц, расположенных на кристаллической подложке.

Данная задача решена измерением оптического отклика для наночастиц палладия, расположенных на наноплазмонном сенсоре, представляющем собой золотой нанодиск диаметром 76 нм и толщиной 30 нм (Indirect Nanoplasmonic Sensing: Ultrasensitive Experimental Platform for Nanomaterials Science and Optical Nanocalorimetry, Christoph Langhammer, Elin M. Larsson, Bengt Kasemo, and Igor Zoric, Nano Letters 10 (2010) 3529-3538) [4]. Золотой нанодиск покрывается слоем диоксида кремния толщиной 10 нм, на которую напыляются наночастицы палладия. Система помещается в вакуумную камеру между источником монохроматического света и детектором. В камере задаются температура и давления водорода. Измеряют зависимость оптического поглощения от длины падающей волны. По ширине максимума поглощения определяется концентрация водорода в образце. Недостатком данного метода является его дороговизна и техническая сложность подготовки образца к измерению, а также необходимость предварительной калибровки установки независимыми методами.

Недостатком всех косвенных способов является значительное влияние посторонних факторов, не связанных с присутствием водорода. Это температурная разупорядоченность атомов кристаллической решетки палладия, дефекты структуры и др., которые влияют на результаты измерений.

Прямые способы измерения концентрации водорода в палладии используют для исключения влияния факторов, не связанных с присутствием водорода.

Одним из наиболее распространенных прямых методов является термогравиметрический анализ, примененный к наночастицам палладия в работе (The decomposition of electrochemically loaded palladium hydride: a thermal analysis study. L.E.A. Berlouis, P.J. Hall, A.J. MacKinnon, A.W. Wark, D. Manuelli, V. Gervais, J.E. Robertson. Journal of Alloys and Compounds, Volumes 253-254, 20 May, 1997, Pages 207-209) [5]. В предложенном методе образец наноразмерного палладия, заполненный водородом, располагается на высокоточных весах. Весы измеряют массу образца как функцию от температуры m=ƒ(T). По уменьшению массы образца после нагревания находят массу Δm выделившегося водорода. Недостатком данного метода является невозможность измерения зависимости выделения водорода от давления, а также невозможность измерения процессов адсорбции водорода.

Близким к вышеописанному является метод газовой порометрии (BET), применение которого к наночастицам палладия на углеродных подложках описано в работе (Hydride phase formation in carbon supported palladium hydride nanoparticles by in situ EXAFS and XRD. A.L. Bugaev, A.A. Guda, K.A. Lomachenko, A. Lazzarini, V.V. Srabionyan, J.G. Vitillo, A. Piovano, E. Groppo, L.A. Bugaev, A.V. Soldatov, V.P. Dmitriev, R. Pellegrini, J.A. van Bokhoven, C. Lamberti. J. Phys. Conf. Ser. 712 (1), 012032). Образец помещается в стеклянную ячейку, подключенную к вакуумной системе. На ячейку подается заданное количество водорода. Прибор измеряет падение давление в ячейки за счет поглощения водорода образцом. Результат измерений подвержен влиянию доли водорода, который адсорбируется на материале подложки и на поверхности наночастиц, что требует проведения дополнительных калибровочных измерений и вносит вклад в абсолютную погрешность метода.

Наиболее близким по выполнению и достигаемому результату к заявляемому изобретению является способ измерения концентрации водорода в наночастицах палладия по спектрам EXAFS (Extended X-ray Absorption Fine Structure - протяженная тонкая структура рентгеновского поглощения) за К-краем поглощения палладия [6] снятым на источниках синхротронного излучения, поскольку необходимо провести измерения в широком интервале энергий - до 1000 эВ за краем поглощения. При измерениях капилляр с образцом помещается между двумя ионизирующими камерами, измеряющими интенсивность рентгеновского пучка до и после прохождения образца, коэффициент поглощения определяется как логарифм отношения интенсивности рентгеновского пучка до и после прохождения образца. Из спектра (коэффициента поглощения) вычитают фон и производят прямое преобразование Фурье. Полученный Фурье-образ подгоняется теоретической функцией путем подбора структурных параметров. По определенным в результате подгонки межатомным расстояниям находится концентрация водорода внутри наночастиц палладия.

Недостатком данного способа является сложность обработки рентгеновских спектров поглощения, обусловленная необходимостью проведения Фурье-анализа, требующего к тому же измерения широкого энергетического интервала энергий до 1000 эВ на дорогостоящем источнике синхротронного излучения.

Техническим результатом является упрощение обработки рентгеновских спектров поглощения, а также сокращение времени измерения за счет уменьшения измеряемого интервала и удешевление процесса за счет возможности использования лабораторных установок вместо источников синхротронного излучения.

Технический результат достигается способом определения концентрации водорода С в наночастицах палладия, характеризующимся тем, что измеряют спектр рентгеновского поглощения XANES (X-ray Absorption Near Edge Structure или тонкая околопороговая структура спектров рентгеновского поглощения) за К-краем палладия в интервале 24320±10 - 24440±20 эВ, определяют значение коэффициента поглощения в точках первых двух краевых максимумов и рассчитывают концентрацию водорода С по формуле , где μA - значение коэффициента поглощения в точке первого краевого максимума, μB - значение коэффициента поглощения в точке второго краевого максимума, k1=0.903±0.001, k2=0.0320±0.0003.

Определение значения коэффициента поглощения в интервале энергий 24320±10 - 24440±20 эВ осуществляют после предварительной обработки измеренного спектра [8]. Для этого по измеренным интенсивностям рентгеновского излучения до (I0(Е)) и после (It(E)) прохождения образца вычисляют коэффициент поглощения для каждого значения энергии по формуле ; отрезок спектра до края поглощения интерполируют линейной функцией на послекраевую область и вычитают полученную функцию из спектра поглощения на всем диапазоне. Область спектра после края поглощения аппроксимируют полиномом второй степени, после чего нормировку спектра осуществляют путем деления всех значений спектра на соответствующие значения полученной аппроксимирующей функции. Затем вычисляют первую производную для спектра и находят два первых значения энергии EA и EB, при которых производная обращается в ноль, меняя знак с положительного на отрицательный. Эти значения энергии соответствуют первым двум максимумам μA и μB коэффициента поглощения. Рассчитывается отношение μAB.

Установление коэффициентов k1=0.903±0.001, k2=0.0320±0.0003 произведено экспериментально путем построения калибровочной кривой. При этом последовательно изменялась температура и давление в ячейке с образцом, с целью получения экспериментальной зависимости между соотношением μAB и значением концентрации водорода в наночастицах, которое определялось с помощью метода-прототипа. Для построения калибровочной кривой диапазон изменения значений температуры составлял 50°С - 150°С при шаге 5°С, диапазон изменения значений давления подаваемого водорода в капилляр с образцом составлял 0-1000 мбар при шаге 10 мбар. Данный диапазон внешних условий является важным для практического использования метода в области каталитических реакций.

Ниже приведен пример осуществления изобретения.

Для исследования взяли порошок наночастиц палладия со средним размером 5 нм на подложке из углерода. Образец был помещен в герметичную ячейку. Измерение спектров проводили на спектрометре Rigaku R-XAS, подключенном к персональному компьютеру. Была проведена серия измерений спектров для различных значений парциального давления водорода в ячейке. При напуске водорода в ячейку стехиометрия наночастиц палладия изменялась от PdH0 до PdHx и концентрация водорода "х" внутри наночастиц была искомой величиной.

Схема реализации способа отображена на фиг. 1. В держателе 1 спектрометра размещена ячейка 2 с образцом, представляющим собой наночастицы палладия средних размеров 5 нм на подложке, не содержащей в своем составе палладий. Под ячейкой 2 расположен газовый нагреватель 3. Ячейка 2 соединена патрубком 4 с насосом 5, выход которого соединен с емкостью 6, заполненной водородом. Пучок монохроматического рентгеновского излучения посылается из источника рентгеновского излучения 7 в направлении образца. Входной 8 и выходной 9 детекторы располагаются на пути рентгеновского пучка до и после прохождения образца. Рентгеновский спектрометр использован в режиме «на прохождение» рентгеновского излучения, при котором входной 8 и выходной 9 детекторы измеряют интенсивность рентгеновского пучка до и после прохождения ячейки с образцом 2. Температура Т регулируется посредством газового нагревателя 3. Насос 5 позволяет подавать/откачивать водород в ячейку с образцом 2. Перед измерением спектра рентгеновского поглощения устанавливаются требуемые температура и давление, после чего в автоматическом режиме проводится измерение интенсивностей рентгеновского излучения до и после образца входным 8 и выходным 9 детекторами в зависимости от энергии падающего излучения.

Блок-схема алгоритма компьютерной обработки рентгеновских спектров поглощения (фиг. 2) содержит блок вычисления коэффициента поглощения 10 по формуле , где I0(Е) и It(E) - интенсивности рентгеновского излучения, измеряемые на входном 8 и выходном 9 детекторах, блок условия повторения вычисления коэффициента поглощения 11, блок вычисления среднеарифметического значения коэффициента поглощения для серии из N спектров 12, блок обработки спектров 13, блок нахождения точек максимума 14, блок определения значения коэффициента поглощения в точках максимума 15 и блок определения концентрации 16 С водорода в наночастицах палладия по формуле .

На фиг. 3-6 приведены условия, результаты измерений и сравнительный анализ определения концентрации водорода в наночастицах палладия с помощью метода прототипа EXAFS (Extended X-ray Absorption Fine Structure - протяженная тонкая структура рентгеновского поглощения) и заявленного способа по спектрам XANES (X-ray Absorption Near Edge Structure или тонкая околопороговая структура спектров рентгеновского поглощения).

Фиг. 3 - набор давлений и температур, для которых произведено сравнение результатов определения концентрации водорода заявленным методом и прототипом. Точки, в которых измерены спектры рентгеновского поглощения, в ходе изотермической абсорбции и изобарной десорбции водорода обозначены кружочками и треугольниками соответственно.

Фиг. 4 - экспериментальные спектры рентгеновского поглощения в околопороговой области XANES (X-ray Absorption Near Edge Structure или тонкая околопороговая структура спектров рентгеновского поглощения) для чистых наночастиц палладия в отсутствие водорода (сплошная линия) и наночастиц палладия, насыщенных водородом при давлении водорода 20 мбар (пунктирная линия) и 1000 мбар (пунктирно-точечная линия).

Фиг. 5 - сравнительный график зависимостей концентрации водорода в наночастицах палладия от давления при температуре Т=50°С, определенных методом-прототипом (сплошная линия) и заявленным способом (пунктирная линия).

Фиг. 6 - Корреляция межатомных расстояний R, в единицах , и отношения значений коэффициентов поглощения μAB первых двух краевых максимумов спектра XANES (X-ray Absorption Near Edge Structure или тонкая околопороговая структура спектров рентгеновского поглощения) в процессе адсорбции (круги) и десорбции (квадраты) водорода. Пунктирная линия получена путем линейной аппроксимации экспериментальных точек.

Как видно из фиг. 5, максимальное отклонение значений концентрации водорода, найденных заявленным методом, от значений, полученных методом-прототипом, составляет 0.19 при концентрации водорода 25%. Следовательно, относительная погрешность определения концентрации водорода в наночастицах палладия в диапазоне концентрация от 5 до 32% с использованием заявленного способа не превышает 0.8% и является достаточной для практического применения.

Таким образом, предлагаемый способ позволяет определять концентрацию водорода в наночастицах палладия без измерения широкого энергетического интервала спектра (что способствует сокращению времени измерения), без использования синхротронного излучения (что способствует удешевлению процесса), без дополнительного Фурье-анализа для обработки спектров (что способствует упрощению обработки рентгеновских спектров поглощения).

Источники информации

1. R. Griessen and R. Feenstra. J. Phys. F: Met. Phys. 15 (1985) 1013-1019.

2. US 7951976, НКИ 568/388, МПК6 B01J 23/652; C07C 1/24; C07C 15/02; C07C 29/145; C07C 31/10; C07C 45/73; C07C 45/74; C07C 49/04; C07C 49/203, дата публикации 31.05.2011. Synthesizing and utilizing novel nano-crystalline zinc chromite-supported nano-palladium catalyst.

3. A Study on the Formation of Palladium Hydride in a Carbon-Supported Palladium Catalyst. Nabin K. Nag. J. Phys. Chem. В 2001, 105, 5945-5949.

4. Indirect Nanoplasmonic Sensing: Ultrasensitive Experimental Platform for Nanomaterials Science and Optical Nanocalorimetry, ChristophLanghammer, Elin M. Larsson, BengtKasemo, and Igor Zoric, Nano Letters 10, 3529-3538 (2010).

5. The decomposition of electrochemically loaded palladium hydride: a thermal analysis study. L.E.A Berlouis, P.J Hall, A.J MacKinnon, A.W Wark, D Manuelli, V Gervais, Journal of Alloys and Compounds, 253(20), 207-209.

6. Hydride phase formation in carbon supported palladium hydride nanoparticles by in situ EXAFS and XRD. A.L. Bugaev, A.A. Guda, K.A. Lomachenko, A. Lazzarini, V.V. Srabionyan, J.G. Vitillo, A. Piovano, E. Groppo, L.A. Bugaev, A.V. Soldatov, V.P. Dmitriev, R. Pellegrini, J.A. van Bokhoven, C. Lamberti. J. Phys. Conf. Ser. 712 (1), 012032 (2016).

7. X-ray-absorption study of the interaction of hydrogen with clusters of supported palladium. R.J. Davis, S.M. Landry, J.A. Horsley, M. Boudart. Phys. Rev. В 39, 10580-10583 (1989).

8. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. B. Ravel and M. Newville. J. Synch. Rad. 12(4). 537-541 (2005).

1. Способ определения концентрации водорода в наночастицах палладия, характеризующийся тем, что измеряют спектр рентгеновского поглощения за К-краем палладия в интервале 24320±10-24440±20 эВ, определяют значение коэффициента поглощения в точках первых двух максимумов и рассчитывают концентрацию водорода С по формуле , где μA - значение коэффициента поглощения в точке первого краевого максимума, μB - значение коэффициента поглощения в точке второго краевого максимума, k1=0.903±0.001, k2=0.0320±0.0003.

2. Способ по п. 1, характеризующийся тем, что определение коэффициента поглощения для двух первых максимумов спектра поглощения в интервале энергий 24320±10-24440±20 эВ осуществляют после предварительной обработки измеренного спектра; для этого по измеренным интенсивностям рентгеновского излучения до (I0(E)) и после (It(E)) прохождения образца вычисляют коэффициент поглощения для каждого значения энергии по формуле ; отрезок спектра до края поглощения интерполируют линейной функцией на послекраевую область и вычитают полученную функцию из спектра поглощения на всем диапазоне; область спектра после края поглощения аппроксимируют полиномом второй степени, после чего нормировку спектра осуществляют путем деления всех значений спектра на соответствующие значения полученной аппроксимирующей функции; затем вычисляют первую производную для спектра и находят два первых значения энергии ЕА и EB, при которых производная обращается в ноль, меняя знак с положительного на отрицательный; эти значения энергии соответствуют первым двум максимумам μA и μB коэффициента поглощения.



 

Похожие патенты:

Изобретение предназначено для использования в мясной промышленности. Мясоперерабатывающее устройство содержит мясоперерабатывающий блок (2) для переработки мяса или мясопродукта, при этом блок (2) содержит выпуск (4) блока; и рентгеновский анализатор (6), содержащий источник (10) рентгеновского излучения для испускания пучка (24) рентгеновских лучей к переработанному мясу в зоне (22) анализа, и связанный с ним детектор (12) рентгеновского излучения для обнаружения рентгеновских лучей, проходящих от источника (10) и взаимодействующих с переработанным мясом; транспортер (14), расположенный внутри корпуса (8) и выполненный с возможностью транспортировки переработанного мяса от впуска (16) к выпуску (18) через зону (22) анализа, расположенную снаружи перерабатывающего блока (2).

Изобретение относится к пищевой промышленности, а именно, к определению анатомо-морфологических дефектов зерна или семян зерновых культур с помощью рентгенографии.

Изобретение относится к определению в зерновых культурах и семенах скрытой зараженности, обусловленной повреждением насекомыми вредителями, с помощью рентгенографии в зерноперерабатывающей промышленности и семеноводстве.

Использование: для исследования фильтрационно-емкостных свойств горных пород. Сущность изобретения заключается в том, что производят выбор образцов керна в широком диапазоне фильтрационно-емкостных свойств, осуществляют сканирование с помощью рентгеновского микротомографа отобранных образцов с получением трехмерных изображений образцов, которые сегментируют на поровое пространство и скелет породы, выделяют из сегментированных изображений несколько фрагментов, для каждого фрагмента определяют значение пористости (м0), увеличивают пористость фрагмента путем попиксельного расширения порового пространства и определяют его значение (м1), с помощью гидродинамического симулятора определяют значение проницаемости (к1) фрагмента, по полученным значениям пористости и проницаемости для всех фрагментов, выделенных из каждого образца, строят их тренды, по линиям трендов определяют значения проницаемости исходных фрагментов (к0), соответствующие значениям (м0), и по установленным значениям пористости и проницаемости для исходных фрагментов находят их корреляционную связь.

Предлагаемое изобретение относится к приспособлениям для крепления рентгеновских аппаратов. Задача: повышение производительности труда, повышение надежности эксплуатации рентгеновского аппарата, улучшение качества снимков, улучшение условий труда дефектоскописта.

Изобретение относится к области рентгенологии, точнее к способам неразрушающего контроля багажа и грузов, и может быть использовано при антитеррористическом досмотре на транспорте и на контрольно-пропускных пунктах различного назначения, а также в медицинской рентгенодиагностике.

Группа изобретений предназначена для использования в мясоперерабатывающей промышленности. Линия инспекции и сортировки мяса включает подающее устройство, устройство радиационной инспекции, режущее устройство и отбраковывающее устройство.

Изобретение относится к области рентгенотехники и может быть использовано в различных измерительных устройствах для контроля состава и структуры промышленных и биологических объектов.

Использование: для компьютерной томографии. Сущность изобретения заключается в том, что каждая детекторная сборка содержит по меньшей мере один узел детектирующих кристаллов, имеющий первую энергетическую характеристику, и узел, имеющий вторую энергетическую характеристику, оба из которых расположены вдоль первого направления через интервалы, при этом каждый узел детектирующих кристаллов, имеющий первую/вторую энергетическую характеристику, включает в себя по меньшей мере один детектирующий кристалл, имеющий первую/вторую энергетическую характеристику, расположенный вдоль второго направления.

Использование: для определения количественного содержания самородного золота в руде. Сущность изобретения заключается в том, что монослой кусков в пробе руды с характерным линейным размером отдельных кусков Н, не большим десятикратного характерного линейного размера наименьшей подлежащей обнаружению и учету частицы золота h (H≤10h), размещают между приемником рентгеновского изображения и источником рентгеновского излучения с размером фокусного пятна d, не большим h (d≤h), формируют теневое рентгеновское изображение пробы руды, на котором характерный размер рентгеновского изображения наименьшей частицы золота имеет размер А, не меньший чем трехкратный линейный размер пикселя D приемника рентгеновского изображения (A≥3D).

Изобретение относится к приготовлению металлических наночастиц железа из водного золя на основе наночастиц ферригидрита и может быть использовано в медицине. Водный золь на основе наночастиц ферригидрита, полученных в результате культивирования бактерий Klebsiella oxytoca, выделенных из сапропеля озера Боровое Красноярского края, обрабатывают в режиме кавитации в течение 4-24 мин на аппарате серии "Волна" УЗТА-0,4/22-ОМ с интенсивностью ультразвукового воздействия >10 Вт/см2 и частотой 22 кГц.

Изобретение относится к нанотехнологиям и может быть использовано для получения наноуглерода. Способ включает подачу в реакционную камеру, выполненную в виде ствола, периодически закрываемого с одного и открытого с другого конца, со стороны закрываемого конца через систему быстродействующих клапанов и смеситель в проточном режиме чистого или с добавкой кислорода ацетилена, а затем легко детонирующей ацетилен-кислородной смеси, инициирование детонации у закрытого конца камеры и после прохождения детонационной волны образование наноуглерода в результате детонационного разложения ацетилена, при этом в конце цикла получения наноуглерода производят продувку ствола газообразным углеводородом с общей формулой CnH2n+2 или CnH2n, реализуют частотное повторение циклов в автоматическом режиме, а полученный наноуглерод собирают в коллекторе.

Изобретение относится к химической технологии получения оксикарбида молибдена и может быть использовано в углекислотной конверсии природного газа в качестве катализатора.

Изобретение относится к металлургии, а именно к получению заготовки из наноструктурного сплава титан-никель с эффектом памяти формы, и может быть использовано в машиностроении, медицине и технике.

Изобретение относится к получению однофазного нанокристаллического порошка феррита висмута BiFeO3 с ферромагнитными свойствами. Способ включает смешивание нитратов висмута Bi(NO3)3, нитратов железа Fe(NO3)3, глицерина и воды с получением раствора, выпаривание полученного раствора с образованием геля и нагрев его до температуры вспышки с образованием порошка.

Изобретение относится к химии и нанотехнологии и может быть использовано при изготовлении электродов и суперконденсаторов. В проточном реакторе устанавливают температуру обработки в диапазоне (500 – 900) °С, включая указанные значения, обеспечивающую разложение прекурсора углерода и осаждение углерода на равномерно распределённый в прекурсоре темплат, предварительно температурно подготовленный при пропускании потока инертного газа.

Изобретение относится к полимерному соединению, к вариантам композиций, предназначенных для изготовления различных органических или гибридных оптоэлектронных изделий, структур и устройств, в том числе органических фотовольтаических устройств и органических светоизлучающих транзисторов, а также к способу получения полимерного соединения и его применению.

Изобретение относится к области интенсификации теплообмена при конденсации внутри труб и каналов, а также конденсации на поверхностях, расположенных в объеме пара.

Изобретение относится к полимерному соединению, к вариантам композиций, предназначенных для изготовления полимерных фотовольтаических, светоизлучающих устройств и органических транзисторов, а также к способу получения полимерного соединения и его применению.

Изобретение относится к неорганической химии, а именно к нанотрубкам на основе сложных неорганических оксидов, которые могут быть использованы в качестве сорбентов, гетерогенных катализаторов и компонентов композитных материалов фрикционного и конструкционного назначения.

Изобретение относится к клеевой полимерной промышленности и может быть использовано в производстве древесно-стружечных плит, в том числе ориентированных стружечных плит, фанеры, клееных строительных конструкций и других изделий из древесины. Клеевая композиция содержит компоненты при следующем соотношении, мас.%: связующее карбамидоформальдегидная смола (97,41-98,36), отвердитель хлорид аммония (0,64 - 1,59), модификатор аморфный диоксид кремния (0,05 -1,00). Диоксид кремния представлен в виде порошка с нанопористой структурой частиц и удельной их поверхностью от 120 до 400 м2/г. Обеспечивается повышение прочности клеевой композиции и уменьшение расхода модификатора. 2 ил., 1 табл.

Использование: для определения концентрации водорода в наночастицах палладия. Сущность изобретения заключается в том, что измеряют спектр рентгеновского поглощения за К-краем палладия в интервале 24320±10-24440±20 эВ, определяют значение коэффициента поглощения в точках первых двух максимумов и рассчитывают концентрацию водорода С по формуле, где μA - значение коэффициента поглощения в точке первого краевого максимума, μB - значение коэффициента поглощения в точке второго краевого максимума, k10.903±0.001, k20.0320±0.0003. Технический результат: упрощение обработки рентгеновских спектров поглощения, а также сокращение времени измерения. 1 з.п. ф-лы, 6 ил.

Наверх