Способ определения координат источника радиоизлучения

Изобретение относится к радионавигации и может использоваться для определения пространственных координат (ПК) объекта - источника радиоизлучения (ИР), находящегося на стационарном или подвижном объекте. Достигаемый технический результат - обеспечение однозначного определения ПК ИР без привлечения дополнительной информации. Указанный результат достигается за счет того, что на объекте синхронизированно формируют и передают радиосигнал в виде двух гармонических колебаний с заданными частотами ƒi и ƒj. При приеме и обработке радиосигналов обеспечивают выполнение заданных в способе условий. На каждой n-той станции синхронизированно принимают передаваемый с объекта радиосигнал. Принятые сигналы передают по соответствующим линиям связи (электрическим, оптическим и др.) в единый центр. В нем осуществляют прием каждого из принятых по линиям связи аналоговых радиосигналов и его преобразование в соответствующий ему цифровой сигнал, содержащий две цифровые составляющие. Для них формируют квадратурные им цифровые компоненты (КЦК). По полученным таким образом цифровым сигналам (ЦС) для различных двух n-тых ЦС формируют КЦК, соответствующие разностям фаз колебаний с одинаковыми частотами ƒi и соответствующие разностям фаз колебаний с одинаковыми частотами ƒj. По сформированным таким образом КЦК и при выполнении заданных в способе условий однозначно определяют относительные дальности до объекта от фазовых центров антенн станций. И по относительным дальностям однозначно определяют пространственные координаты фазового центра антенны объекта.

 

Изобретение относится к радионавигации и может быть использовано для определения координат объектов, стационарных или подвижных, и управления их движением в зонах навигации. Радиосигнал формирует и передает источник радиоизлучения, находящийся на объекте. Его принимают системой стационарных наземных станций с заданными координатами фазовых центров антенн, передают принятые станциями радиосигналы в единый центр приема и обработки и в нем определяют пространственные координаты фазового центра антенны объекта. Реализация способа позволит, в том числе, упростить соответствующие системы позиционирования, обеспечить точность и однозначность измерения координат объекта.

Известны способы определения координат объектов, основанные на применении угломерных, дальномерных, разностно и суммарно-дальномерных и комбинированных методов определения местоположения объекта с амплитудными, временными, частотными, фазовыми и импульсно-фазовыми методами измерения параметров радиосигнала (Патенты РФ №2018855, 2096800, 2115137, 2213979, 2258242, 2264598, 2309420, 2325666, 2363117, 2371737, 2378660, 2430385, 2439617, 2506605, 2507529, 2510518, 2539968, 2558640, 2559813, 2567114, 2568104, 2572589, 2584976, 2597007, 2598000, 2599984, 2602506; Патенты США №9423502 В2, 9465099 В2, 9485629 В2, 9488735 В2, 9661604 В1, 9681267 В2, 2016/0327630 А1. 2016/0330584 А1, 2016/0337933 А1; Основы испытаний летательных аппаратов / Е.И. Кринецкий и др. Под ред. Е.И. Кринецкого. - М.: Машиностр., 1979, с. 64-89; Радиотехнические системы / Ю.М. Казаринов и др. Под ред. Ю.М. Казаринова. - М.: ИЦ «Академия», 2008, с. 7, 17-18, пп. 7.1-7.4, гл. 10; Мельников Ю.П., Попов С.В. Радиотехническая разведка. Методы оценки эффективности местоопределения источников излучения. - М.: Радиотехника, 2008, гл. 5; Кинкулькин И.Е. и др. Фазовый метод определения координат. - М.: Сов. радио, 1979, с. 10-11, 97-100).

Известные способы имеют те или иные недостатки, например необходимость механического перемещения антенной системы, невозможность однозначного определения координат объекта, необходимость априорной информации о местоположении объекта, необходимость общей синхронизации передающих и принимающих радиосигналы радиотехнических объектов, недостаточные быстродействие и точность.

По критерию минимальной достаточности наиболее близким является способ определения координат объектов по патенту RU №2617711.

Преимуществом заявляемого способа определения координат объектов по сравнению с известными способами является обеспечение однозначного определения пространственных координат объекта без привлечения дополнительной информации. Это достигается тем, что на объекте синхронизированно формируют и передают радиосигнал в виде двух гармонических колебаний с заданными частотами ƒi и ƒj. При приеме и обработке радиосигналов обеспечивают выполнение заданных в способе условий. На каждой n-той станции синхронизированно принимают передаваемый с объекта радиосигнал. Принятые сигналы передают по соответствующим линиям связи (электрическим, оптическим и др.) в единый центр. В нем осуществляют прием каждого из принятых по линиям связи аналоговых радиосигналов и его преобразование в соответствующий ему цифровой сигнал, содержащий две цифровых составляющих. Для них формируют квадратурные им цифровые компоненты (КЦК). По полученным таким образом цифровым сигналам (ЦС) для различных двух n-тых ЦС формируют КЦК, соответствующие разностям фаз колебаний с одинаковыми частотами ƒi и соответствующие разностям фаз колебаний с одинаковыми частотами ƒj. По сформированным таким образом КЦК и при выполнении заданных в способе условий однозначно определяют относительные дальности до объекта от фазовых центров антенн станций. И по относительным дальностям однозначно определяют пространственные координаты фазового центра антенны объекта.

Для достижения указанного технического результата в соответствии с настоящим изобретением в способе определения координат источника радиоизлучения, находящегося на передающем радиосигналы объекте, в том числе подвижном, радиосигналы принимают системой, состоящей из N≥4 упорядоченно пронумерованных n-тых наземных станций, где n изменяется от 1 до N, с заданными в трехмерной декартовой системе координатами фазовых центров их антенн, а на объекте синхронизированно формируют и передают радиосигнал в виде двух гармонических колебаний с соответственно заданными частотами ƒi=iΔƒ и ƒj=jΔƒ, где Δƒ - заданная частота, индекс i является заданным целым положительным числом, индекс j=i+k, при этом целое положительное число k задано так, чтобы i и j были взаимно простыми числами, упомянутый радиосигнал синхронизированно принимают на каждой наземной n-той станции и передают его по соответствующим n-тым линиям связи в единый центр приема и обработки радиосигналов, в котором известны все упомянутые числа и частоты, в нем, используя единую опорную частоту генератора, осуществляют прием каждого n-того из принятых по линиям связи N радиосигналов, преобразуют каждый n-тый аналоговый радиосигнал, состоящий из двух упомянутых составляющих с частотами ƒi и ƒj, в соответствующий ему цифровой, содержащий две цифровые составляющие Qni и Qnj, соответственно. Для каждой из них каждого n-того радиосигнала любым из известных алгоритмов формируют квадратурные им цифровые компоненты Ini и Inj, соответственно, по полученным таким образом цифровым сигналам для различных двух n-тых цифровых сигналов формируют цифровые квадратурные компоненты, соответствующие разностям фаз колебаний с одинаковыми частотами ƒi и соответствующие разностям фаз колебаний с одинаковыми частотами ƒj. По сформированным таким образом цифровым квадратурным компонентам при условии, что расстояния между фазовыми центрами антенн для любой пары из N станций, отнесенные к скорости распространения радиосигналов и увеличенные на абсолютную величину известной в упомянутом едином центре разности временных задержек радиосигналов, соответствующих этой паре радиосигналов, возникающих при приеме, передаче по линиям связи и обработке, не должны превышать периода T, равного 1/Δƒ.

С учетом указанных разностей временных задержек радиосигналов однозначно определяют относительные дальности до объекта от указанных фазовых центров антенн станций и по относительным дальностям однозначно определяют пространственные координаты фазового центра антенны объекта.

Совокупность всех признаков позволяет определить пространственные координаты объекта с достижением указанного технического результата.

В существующем уровне техники не выявлено источников информации, которые содержали бы сведения о способах того же назначения с указанной совокупностью признаков. Ниже изобретение описано более детально.

Сущность способа заключается в следующем.

Источник радиоизлучения находится на передающем радиосигналы объекте, в том числе подвижном. Радиосигнал принимают системой, состоящей из N≥4 упорядоченно пронумерованных n-тых наземных станций, где n изменяется от 1 до N, с заданными в трехмерной декартовой системе координатами фазовых центров их антенн.

На объекте синхронизированно формируют и передают радиосигнал в виде двух гармонических колебаний с соответственно заданными частотами ƒi=iΔƒ и ƒj=jΔƒ, где Δƒ - заданная частота. Индекс i является заданным целым положительным числом, индекс j=i+k, при этом целое положительное число k задано так, чтобы i и j были взаимно простыми числами.

Радиосигнал синхронизированно принимают на каждой наземной n-той станции и передают его по соответствующим n-тым линиям связи (электрическим, оптическим и др.) в единый центр приема и обработки радиосигналов, в котором известны все упомянутые числа и частоты. В нем, используя единую опорную частоту генератора, осуществляют прием каждого n-того из принятых по линиям связи N радиосигналов и преобразуют каждый n-тый аналоговый радиосигнал, состоящий из двух упомянутых составляющих с частотами ƒi и ƒj, в соответствующий ему цифровой сигнал, содержащий две цифровые составляющие Qni и Qnj, соответственно. Для каждой из этих составляющих каждого n-того радиосигнала любым из известных алгоритмов (например, с использованием дискретного преобразования Гильберта [Рабинер Л., Голд Б. Теория и применение цифровой обработки сигналов. М.: Мир, п. 2.26, 1978]) формируют квадратурные им цифровые компоненты Ini и Inj, соответственно.

По полученным таким образом цифровым сигналам (ЦС) для различных двух n-тых ЦС формируют КЦК, соответствующие разностям фаз колебаний с одинаковыми частотами ƒi и соответствующие разностям фаз колебаний с одинаковыми частотами ƒj. Формирование последних КЦК производят используя простые тригонометрические преобразования.

По сформированным таким образом КЦК однозначно определяют относительные дальности до объекта от фазовых центров антенн станций. При этом должны быть соблюдены следующие условия: расстояния между фазовыми центрами антенн для любой пары из N станций, отнесенные к скорости распространения радиосигналов и увеличенные на абсолютную величину известной в упомянутом едином центре разности временных задержек радиосигналов, соответствующих этой паре радиосигналов, возникающих при приеме, передаче по линиям связи и обработке, не должны превышать периода T, равного 1/Δƒ (с учетом указанных разностей временных задержек радиосигналов). Далее по относительным дальностям однозначно определяют пространственные координаты фазового центра антенны объекта.

Способ позволяет исключить влияние случайных начальных фаз излучаемых гармонических колебаний.

Представление квадратурных компонент в цифровом виде дает определенное преимущество при решении задачи за счет простоты ее программной реализации. Цифровую обработку принятых сигналов можно реализовать как в спектральной (применение преобразования Фурье), так и временной области (применении цифровых фильтров). Кроме того, формирование последних указанных КЦК производят используя простые тригонометрические преобразования, что также упрощает решение задачи.

В качестве метода определения пространственных координат объекта по относительным дальностям до него можно использовать любой из известных методов, например из защищенных патентами RU (№2530231, 2530239, 2530240), или из защищенных международными заявками в системе PCT (WO/2015/012737, WO/2015/012733, WO/2015/012734), или опубликованными в статьях автора (Алгоритм определения пространственных координат объекта по относительным дальностям до него // Нелинейный мир. 2015. №5. С. 38-41; Итерационный алгоритм определения пространственных координат объекта // Информационно-измерительные и управляющие системы. 2016. Т. 14. №7. С. 64-69).

Способ может найти применение для построения универсальной навигационно-посадочной системы.

Перечислим основные достоинства способа:

- обеспечивает однозначное определение пространственных координат объекта без привлечения дополнительной информации,

- требуется синхронизация совокупности принимающих станций, а на объекте, передающем радиосигналы, используется своя система отсчета времени,

- сигналы, заданные в аналитическом виде, проще формировать и преобразовывать, благодаря, в том числе, этому повышается точность измерений,

- позволяет съэкономить частотный ресурс (по сравнению со способами формирования радиосигнала в виде более двух гармонических колебаний),

- обеспечивает возможность производить измерения с использованием существующей элементной базы и микропроцессорной техники.

Результативность и эффективность использования заявляемого способа состоит в том, что он может быть применен на практике для развития и совершенствования радиотехнических систем определения координат объектов, а также в других приложениях. Способ позволяет однозначно определять координаты с большой точностью и более просто по сравнению с известными способами, обеспечивает неограниченную пропускную способность реализующей его системы.

Таким образом, заявляемый способ обеспечивает появление новых свойств, не достигаемых в аналогах. Проведенный анализ позволил установить: аналоги с совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют, что указывает на соответствие заявленного способа условию «новизны».

Также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения действий на достижение указанного результата. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень». Таким образом, заявленное изобретение соответствует критериям «новизна» и «изобретательский уровень», а также критерию «промышленная применимость».

Способ определения координат источника радиоизлучения, находящегося на передающем радиосигналы объекте, в том числе подвижном, при котором радиосигналы принимают системой, состоящей из N≥4 упорядоченно пронумерованных n-тых наземных станций, где n изменяется от 1 до N, с заданными в трехмерной декартовой системе координатами фазовых центров их антенн, а на объекте синхронизированно формируют и передают радиосигнал в виде двух гармонических колебаний с соответственно заданными частотами и , где - заданная частота, индекс i является заданным целым положительным числом, индекс j=i+k, при этом целое положительное число k задано так, чтобы i и j были взаимно простыми числами, упомянутый радиосигнал синхронизировано принимают на каждой наземной n-той станции и передают его по соответствующим n-тым линиям связи в единый центр приема и обработки радиосигналов, в котором известны все упомянутые числа и частоты, в нем, используя единую опорную частоту генератора, осуществляют прием каждого n-того из принятых по линиям связи N радиосигналов, преобразуют каждый n-тый аналоговый радиосигнал, состоящий из двух упомянутых составляющих с частотами и , в соответствующий ему цифровой, содержащий две цифровые составляющие Qni Qnj, соответственно, для каждой из них каждого n-того радиосигнала любым из известных алгоритмов формируют квадратурные им цифровые компоненты Ini и Inj, соответственно, по полученным таким образом цифровым сигналам для различных двух n-тых цифровых сигналов формируют цифровые квадратурные компоненты, соответствующие разностям фаз колебаний с одинаковыми частотами и соответствующие разностям фаз колебаний с одинаковыми частотами , и по сформированным таким образом цифровым квадратурным компонентам при условии, что расстояния между фазовыми центрами антенн для любой пары из N станций, отнесенные к скорости распространения радиосигналов и увеличенные на абсолютную величину известной в упомянутом едином центре разности временных задержек радиосигналов, соответствующих этой паре радиосигналов, возникающих при приеме, передаче по линиям связи и обработке, не должны превышать периода Т, равного , с учетом указанных разностей временных задержек радиосигналов однозначно определяют относительные дальности до объекта от указанных фазовых центров антенн станций и по относительным дальностям однозначно определяют пространственные координаты фазового центра антенны объекта.



 

Похожие патенты:

Изобретение относится к беспроводной связи. Технический результат заключается в обеспечении возврата в сеть с коммутацией каналов (CSFB) для оборудования пользователя (UE).

Группа изобретений относится к системам беспроводных сетей связи. Технический результат заключается в уменьшении частоты конфликтов запросов на соединение.

Изобретение относится к реализации сети удаленных терминалов. Технический результат – предоставление возможности оператору обмениваться данными с любыми технологическими установками автоматизированной системы управления, связанной с удаленными терминалами в сети, с помощью отдельного удаленного терминала сети.

Изобретение относится к способу и устройству коммутации резервных линий связи для пакетной обработки данных. Технический результат заключается в повышении эффективности использования ресурсов радиосвязи за счет операции синхронизации вторичной атрибутивной информации.

Изобретение относится к сетям беспроводной связи. Технический результат состоит в устранении потерь ортогональности при передачах поднесущих.

Изобретение относится к коммуникационным технологиям. Технический результат заключается в расширении арсенала средств для установки рабочего состояния устройств.

Изобретение относится к области технологий сети связи. Технический результат изобретения заключается в реализации автоматического определения функции передачи посредством электронного устройства и уменьшении этапов операции по разрешению функции передачи пользователем.

Изобретение относится к радиотехнике. Технический результат – создание технического решения, альтернативного известному решению.

Изобретение относится к транспортной сети малых сот, которая выполнена с возможностью взаимодействия с ядром 3GPP и дополнительно выполнена с возможностью предоставления мобильных широкополосных услуг мобильным терминалам 3GPP.

Изобретение относится к системе для переключения электронных связей между первой сетью и второй сетью, где первая сеть содержит одну из сотовой сети мобильной связи или спутниковой сети связи, а вторая сеть содержит другую из указанных сетей связи.

Изобретение относится к системам радиотелеметрии, в частности к устройствам передачи телеметрической информации в космической отрасли. Технический результат заключается в повышении количества передаваемой видеоинформации в полосе частот используемого радиоканала.

Изобретение относится к области спутникового радиоконтроля и может быть использовано при поиске и локализации позиций земных станций (ЗС) спутниковой связи - источников помех стволам с прямой ретрансляцией спутников-ретрансляторов (СР) на геостационарной орбите.

Группа изобретений относится к медицине. Зондовое устройство для ультразвуковой диагностической визуализации содержит: блок выполнения соединения, который выполняет процедуру соединения зондового устройства с устройством ультразвуковой визуализации посредством Персональной системы основных служб (PBSS), которая соответствует стандарту WiGig Альянса гигабитной беспроводной связи (WGA); блок формирования кадров, который формирует кадр данных с форматом, подходящим для PBSS, используя эхо-сигнал, принятый посредством преобразователя; блок беспроводной связи, который передает кадр данных на устройство ультразвуковой визуализации, используя сигнальный канал в частотном диапазоне 60 ГГц посредством PBSS.

Предлагаемый модем относится к технике связи и может быть использован в радиоинтерферометрии со сверхдлинными базами (РСДБ), в службе единого времени и частоты, а также для обмена информацией между наземными пунктами, разнесенными на большие расстояния, с использованием геостационарного ИСЗ-ретранслятора.

Изобретение относится к области технологии применения противопожарной техники, а именно к управлению мобильными робототехническими средствами пожаротушения. Способ группового управления мобильными наземными и воздушными робототехническими средствами обеспечивает управление роботами по радиоканалам и спутниковому каналу связи.

Изобретение относится к мобильной связи. Раскрыт способ выполнения связи от устройства к устройству (D2D) пользовательским оборудованием в системе беспроводной связи.

Изобретение относится к системе беспроводной связи и относится к способу передачи/приема информации, связанной с идентификацией ассоциации (AID), причем способ передачи/приема содержит: этап, на котором вторая STA, имеющая линию прямой связи с первой STA, принимает от первой STA кадр объявления, связанный с обновленным AID; и этап, на котором вторая STA передает кадр ACK в ответ на кадр объявления, причем кадр объявления содержит одну или более пар AID-MAC-адрес, и вторая STA обновляет AID станции (STA), соответствующей одной или более парам AID-MAC-адрес.

Изобретение относится к области беспроводной связи, более конкретно, варианты осуществления относятся к области протоколов связи между беспроводными передатчиками и приемниками.

Изобретение относится к технике связи и может использоваться в беспроводных системах связи. Технический результат состоит в повышении пропускной способности за счет использования технологий, относящихся к поддержанию беспроводных соединений между станциями (STA).

Изобретение относится к системам радиосвязи, которые используют ретрансляторы с многостанционным доступом, и направлено на создание многоступенчатых систем ретрансляции на базе полносвязных кластеров с восстановлением информации в каждом кластере.

Изобретение относится к сетям беспроводной связи. Технический результат состоит в устранении потерь ортогональности при передачах поднесущих.

Изобретение относится к радионавигации и может использоваться для определения пространственных координат объекта - источника радиоизлучения, находящегося на стационарном или подвижном объекте. Достигаемый технический результат - обеспечение однозначного определения ПК ИР без привлечения дополнительной информации. Указанный результат достигается за счет того, что на объекте синхронизированно формируют и передают радиосигнал в виде двух гармонических колебаний с заданными частотами ƒi и ƒj. При приеме и обработке радиосигналов обеспечивают выполнение заданных в способе условий. На каждой n-той станции синхронизированно принимают передаваемый с объекта радиосигнал. Принятые сигналы передают по соответствующим линиям связи в единый центр. В нем осуществляют прием каждого из принятых по линиям связи аналоговых радиосигналов и его преобразование в соответствующий ему цифровой сигнал, содержащий две цифровые составляющие. Для них формируют квадратурные им цифровые компоненты. По полученным таким образом цифровым сигналам для различных двух n-тых ЦС формируют КЦК, соответствующие разностям фаз колебаний с одинаковыми частотами ƒi и соответствующие разностям фаз колебаний с одинаковыми частотами ƒj. По сформированным таким образом КЦК и при выполнении заданных в способе условий однозначно определяют относительные дальности до объекта от фазовых центров антенн станций. И по относительным дальностям однозначно определяют пространственные координаты фазового центра антенны объекта.

Наверх