Новый сульфатированный фукоолигосахарид и способ его получения



Новый сульфатированный фукоолигосахарид и способ его получения
Новый сульфатированный фукоолигосахарид и способ его получения
Новый сульфатированный фукоолигосахарид и способ его получения
Новый сульфатированный фукоолигосахарид и способ его получения

Владельцы патента RU 2648142:

Федеральное государственное бюджетное учреждение науки Тихоокеанский институт биоорганической химии им. Г.Б. Елякова Дальневосточного отделения Российской академии наук (ТИБОХ ДВО РАН) (RU)
Институт биологии Шандуньской академии наук (CN)

Группа изобретений относится к биотехнологии. Предложены новый сульфатированный фукоолигосахарид формулы II, представленной на фиг.3, и способ его получения. Осуществляют обработку фукоидана из Sargassum horneri рекомбинантной фукоиданазой FFA1 в Tris-HCl буфере с рН 7,2 при 37°С в течение 72-75 ч. Затем нагревают до 100°C в течение 5-10 мин. Далее высокомолекулярные продукты гидролиза осаждают 75% водным раствором этанола или ацетона. Затем образовавшийся осадок отделяют с помощью центрифугирования при 9000-10000 g в течение 20-30 мин. Супернатант наносят на колонку с анионообменным сорбентом, уравновешенную водой, и элюируют фукоолигосахариды линейным градиентом гидрокарбоната аммония со скоростью 1 мл/мин. Сначала элюируют сульфатированный фукоолигосахарид формулы II, затем сульфатированный фукоолигосахарид формулы I. Полученные фракции целевых продуктов лиофильно высушивают. Изобретение расширяет арсенал сульфатированных фукоолигосахаридов, полученных из бурой водоросли Sargassum horneri. 2 н.п. ф-лы, 3 ил., 2 табл., 2 пр.

 

Изобретение относится к биотехнологии и касается получения новых сульфатированных фукоолигосахаридов из фукоиданов. Эти соединения могут быть использованы в научных исследованиях, а также в медицине, косметологии, сельском хозяйстве.

Фукоиданы - сульфатированные гетерополисахариды бурых водорослей обладают широким спектром биологической активности [Fitton, J.H., Stringer, D.N., and Karpiniec, S.S. (2015). Therapies from Fucoidan: An Update. Marin Drugs 13, 5920-5946]. Однако использование полимерных молекул в медицине практически невозможно из-за гетерогенности препаратов полисахаридов и невозможности их стандартизации. Поэтому стоит проблема получения из фукоидана олигосахаридов, имеющих постоянные структуры и стандартные характеристики. Применение ферментов для деполимеризации биологически активных фукоиданов и получение олигосахаридов открывает новые возможности использования этих соединений в фармацевтике и косметологии [Kusaykin, M.I., Silchenko, A.S., Zakharenko, A.M., and Zvyagintseva, T.N. (2016). Fucoidanases. Glycobiology 26, 3-12].

Описано использование фукозилированных олигосахаридов в составе композиции, используемой для предупреждения и/или лечения атопического дерматита и экземы [RU 2586776 С2, 10.06.2016], желудочно-кишечной инфекции [WO2016139333 А1, 09.09.2016]. Предложены новые N-сульфатированные олигосахариды, стимулирующие образование сосудов [RU 2559629 С2, 10.08.2015], а также новые сульфатированные производные олигосахаридов, эффективные в качестве ингибиторов гепаринсульфат-связывающих белков [RU 2483074 С2, 27.05.2013]. Известны фукоолигосахариды, которые могут быть использованы для защиты растений от патогенов [US 6984630 В1, 10.01.2006].

По сравнению с получением сульфатированных олигосахаридов многостадийным методом органического синтеза, ферментативное получение подобных олигосахаридов из фукоиданов отличается меньшей трудоёмкостью, существенно меньшим числом стадий получения и высоким выходом продуктов реакции.

Описано получение фукоолигосахаридов из фуканов деполимеризацией с помощью бактериальных эндофуканаз [US 6984630 В1, 10.01.2006].

Описано получение фукоолигосахаридов, используемых в области гликотехнологии, с помощью ферментов из фукоидана, полученного из бурых водорослей порядка Laminarinales. [US 6927289 В2, 09.08.2005].

Раннее нами были получены фукоолигосахариды ферментативным гидролизом фукоидана из бурой водоросли Fucus evanescens. Для этого фукоидан смешивали с нативной фукоиданазой FFA из морской бактерии Formosa algae в 0,015 М Na-фосфатном буфере, рН 7,2 и инкубировали в течение 72 ч при 25ºС. Высокомолекулярные продукты гидролиза осаждали 75% водным раствором этанола. Выпавший осадок центрифугировали при 10000 g в течение 30 мин. Супернатант упаривали на роторном испарителе, растворяли в дистиллированной воде и наносили на термостатируемую колонку с биогелем Р-6, уравновешенную водой. Фукоолигосахариды элюировали со скоростью 0,7 мл/мин. Присутствие сахаров в исследуемых фракциях проверяли фенол-сернокислотным методом. Низкомолекулярные фракции олигосахаридов объединяли, концентрировали на роторном испарителе и рехроматографировали. В результате получали дисахариды [Сильченко А.С. Фукоиданазы и альгинат-лиазы морской бактерии Formosa algae KMM 3553T и морского моллюска Lambis sp: диссертация на соискание ученой степени канд. хим. наук. ТИБОХ ДВО РАН, Владивосток, 2014, стр. 69].

На фиг. 1 (А, Б) представлены структуры дисахаридов.

Задача изобретения – расширение арсенала сульфатированных фукоолигосахаридов. Задача решена разработкой способа их получения из фукоидана, выделенного из бурой водоросли Sargassum horneri.

Технический результат, обеспечиваемый изобретением, заключается в получении новых сульфатированных фукоолигосахаридов постоянной структуры из фукоидана из Sargassum horneri.

В доступной патентной и другой научно-технической литературе заявляемые сульфатированные фукоолигосахариды не обнаружены.

Заявляемый сульфатированный фукоолигосахарид формулы I состоит из остатков фукозы (n=4), связанных чередующимися 1→3;1→4 гликозидными связями, сульфатные группы расположены при С2 в 1→3-связанных остатках фукозы, и при С2 и С3 в 1→4-связанных остатках фукозы.

На фиг. 2 представлена структура сульфатированного фукоолигосахарида формулы I.

Заявляемый сульфатированный фукоолигосахарид формулы II состоит из остатков фукозы (n=6), связанных чередующимися 1→3;1→4 гликозидными связями, сульфатные группы расположены при С2 в 1→3-связанных остатках фукозы, и при С2 и С3 в 1→4-связанных остатках фукозы, к третьему моносахаридному остатку, которого присоединена боковая цепь с 1→4 гликозидной связью, состоящая из 2 остатков несульфатированной фукозы, связанных между собой 1→2 гликозидной связью.

На фиг. 3 представлена структура сульфатированного фукоолигосахарида формулы II.

Заявляемый способ получения сульфатированных фукоолигосахаридов формул I и II заключается в том, что рекомбинантную фукоиданазу FFA1 в Tris-HCl буфере рН 7,2 смешивают с 5-10% раствором фукоидана из Sargassum horneri, смесь инкубируют при 37°С в течение 72-75 часов, затем нагревают до 100°С в течение 5-10 мин, далее высокомолекулярные продукты гидролиза осаждают 75% водным раствором этанола или ацетона, затем образовавшийся осадок отделяют с помощью центрифугирования при 9000-10000 g в течение 20-30 мин, а супернатант наносят на колонку с анионообменным сорбентом, уравновешенную водой, и элюируют фукоолигосахариды линейным градиентом гидрокарбоната аммония со скоростью 1 мл/мин, сначала сульфатированный фукоолигосахарид формулы II, затем сульфатированный фукоолигосахарид формулы I, далее полученные фракции целевых продуктов лиофильно высушивают.

Рекомбинантную фукоиданазу FFA1 получают известным способом [Сильченко А.С. Фукоиданазы и альгинат-лиазы морской бактерии Formosa algae KMM 3553T и морского моллюска Lambis sp: диссертация на соискание ученой степени канд. хим. наук. ТИБОХ ДВО РАН, Владивосток, 2014, стр. 110].

Фукоидан получают из бурой водоросли Sargassum horneri по известной методике [Zvyagintseva, T. N., Shevchenko, N. M., et.al. (1999). A new procedure for the separation of water-soluble polysaccharides from brown seaweeds. Carbohydr. Res. 322, 32-39].

Изобретение иллюстрируется примерами конкретного выполнения.

ПРИМЕР 1

Рекомбинантную фукоиданазу FFA1 (1 мг) в Tris-HCl буфере, рН 7,2 смешивают с 5% раствором фукоидана из Sargassum horneri. Смесь инкубируют при 37°С в течение 72 ч, затем нагревают до 100°С в течение 5 мин. Образовавшийся осадок отделяют с помощью центрифугирования и отбрасывают. В супернатант добавляют этанол до достижения его концентрации 75%. Выпавший осадок (высокомолекулярная фракция) центрифугируют при 9000 g в течение 20 мин. Супернатант (низкомолекулярная фракция) наносят на колонку с сорбентом Q-Sepharose, уравновешенную водой. Олигосахариды элюируют линейным градиентом гидрокарбоната аммония со скоростью 1 мл/мин, сначала сульфатированный фукоолигосахарид формулы II, затем сульфатированный фукоолигосахарид формулы I. Полученные фракции олигосахаридов лиофильно высушивают. Выход целевых продуктов составляет 5-15% от веса низкомолекулярной фракции.

ПРИМЕР 2

Рекомбинантную фукоиданазу FFA1 (1 мг) в Tris-HCl буфере, рН 7,2 смешивают с 10% раствором фукоидана из Sargassum horneri. Смесь инкубируют при 37°С в течение 75 ч, затем нагревают до 100°С в течение 10 мин. Образовавшийся осадок отделяют с помощью центрифугирования и отбрасывают. В супернатант добавляют ацетон до достижения его концентрации 75%. Выпавший осадок (высокомолекулярная фракция) центрифугируют при 10000 g в течение 30 мин. Супернатант (низкомолекулярная фракция) наносят на колонку с сорбентом Mono-Q, уравновешенную водой. Олигосахариды элюируют линейным градиентом гидрокарбоната аммония со скоростью 1 мл/мин, сначала сульфатированный фукоолигосахарид формулы II, затем сульфатированный фукоолигосахарид формулы I. Полученные фракции олигосахаридов лиофильно высушивают. Выход целевых продуктов составляет 7-20% от веса низкомолекулярной фракции.

Структура полученных олигосахаридов была установлена с помощью ЯМР спектроскопии.

На 1H-спектре олигосахарида формулы I были обнаружены химические сдвиги, принадлежащие четырём разным остаткам α-метил-L-фукопиранозида, обозначенным буквами a-d, представленные в таблице 1. С помощью спектров 1DTOXY и COSY были определены хим. сдвиги, принадлежащие каждому остатку, и их последовательность. Из HSQC-спектра было установлено соотношение между хим. сдвигами 1H и 13C. Спектр ROESY показал корреляцию между H1 остатка d и H4 остатка c, H1 остатка c и H3 остатка a, H1 остатка b и H3 и H4 остатка d. В спектре HMBC наблюдалась связь между С1 остатка d и H4 остатка c, С1 остатка c и H3 остатка a, С1 остатка b и H3 и остатка d. Аналогично протоны d1, c1 и b1 коррелировали с атомами углерода c4, a3 и d3 соответственно. На основании этого был сделан вывод, что олигосахарид формулы I имеет углеродный скелет α-L-Fucp-1→3-α-L-Fucp-1→4-α-L-Fucp-1→3-α-L-Fucp.

Спектр 1H снят при 700 MHz, 308 К, хим. сдвиги измерены относительно хим. сдвига ацетона 2,225. Спектр 13С снят при 700 MHz, 308 К, хим. сдвиги измерены относительно хим. сдвига ацетона 31,45.

Аналогичным образом была установлена структура олигосахарида формулы II. 1H-спектр показал наличие шести разных моносахаридных остатков. Спектры 1DTOXY, COSY и HSQC позволили установить протонные и углеродные хим. сдвиги каждого из них, представленные в таблице 2.

На спектре ROESY наблюдается корреляция между H1 остатка a’ и H4 остатка d’, H1 остатка e’ и H3 остатка d’, H1 остатка d’ и H4 остатка c’, H1 остатка c’ и H3 остатка b’, H1 остатка f’ и H2 остатка a’. В спектре HMBC атомы углерода a’1, d’1, e’1, f’1, c’1 коррелируют с протонами d’4, c’4, d’3, a’2 и b’3 соответственно, а протоны a’1, e’1, f’1, d’1 – с атомами углерода d’4, d’3, a’2, c’4 соответственно. Кроме того, в спектре HMBC наблюдается связь атома углерода b’3 с протоном c’1 или d’1.

Спектр 1H снят при 700 MHz, 308 К, хим. сдвиги измерены относительно хим. сдвига ацетона 2,225. Спектр 13С снят при 700 MHz, 308 К, хим. сдвиги измерены относительно хим. сдвига ацетона 31,45.

На основании вышесказанного был сделан вывод, что олигосахарид формулы II имеет разветвлённую структуру вида

α-L-Fucp-1→2-α-L-Fucp-1↓4

α-L-Fucp-1→3-α-L-Fucp-1→4-α-L-Fucp-1→3-α-L-Fucp.

Положение сульфатов в моносахаридных остатках было установлено путём сравнения сдвигов их протонов с фукозой (H1 = 5,19, H2 = 3,76, H3 = 3,85, H4 = 3,80, H5 = 4,19, H6 = 1,20) и сдвигов их углеродных атомов с α-метил-L-фукопиранозидом (C1 = 100,5, C2 = 69,0, С3 = 70,6, С4 = 72,9, С5 = 67,5, С6 = 16,5). Сульфатирование в положении 2 было вычислено из смещения H2 в слабое поле на 0,8-0,9 ppm относительно фукозы и C2 – на 4-6 ppm относительно α-метил-L-фукопиранозида. По сдвигу H3 в слабое поле на 0,9-1,0 ppm и C3 – на 4-6 ppm было установлено наличие сульфатов в положении 3.

Заявляемые сульфатированные фукоолигосахариды используют в научных исследованиях в качестве субстратов фукоиданаз, фукозидаз и сульфатаз.

1. Способ получения сульфатированных фукоолигосахаридов формулы I, представленной на фиг. 2, и формулы II, представленной на фиг. 3, заключающийся в том, что рекомбинантную фукоиданазу FFA1 в Tris-HCl буфере, рН 7,2 смешивают с 5-10% раствором фукоидана из Sargassum horneri, смесь инкубируют при 37°C в течение 72-75 ч, затем нагревают до 100°C в течение 5-10 мин, далее высокомолекулярные продукты гидролиза осаждают 75% водным раствором этанола или ацетона, затем образовавшийся осадок отделяют с помощью центрифугирования при 9000-10000 g в течение 20-30 мин, а супернатант наносят на колонку с анионообменным сорбентом, уравновешенную водой, и элюируют фукоолигосахариды линейным градиентом гидрокарбоната аммония со скоростью 1 мл/мин, сначала сульфатированный фукоолигосахарид формулы II, затем сульфатированный фукоолигосахарид формулы I, далее полученные фракции целевых продуктов лиофильно высушивают.

2. Сульфатированный фукоолигосахарид формулы II, представленной на фиг. 3.



 

Похожие патенты:

Группа изобретений относится к области биотехнологии. Представлена бактериальная клетка-хозяин для получения фукозилированных олигосахаридов, содержащая вектор экспрессии, который кодирует полипептид с альфа-1,3-фукозилтрансферазной активностью и в котором последовательность соответствующей нуклеиновой кислоты функционально связана с контрольными последовательностями.

Группа изобретений относится к области биотехнологии. Представлена бактериальная клетка, которая способна образовывать по меньшей мере один рамнолипид и генетически модифицированная таким образом, что по сравнению с ее диким типом она имеет повышенную активность двух ферментов Е1 и Е2 или трех ферментов Е1, Е2 и Е3 и по меньшей мере одного фермента Е8, который катализирует экспорт рамнолипидов из клетки в окружающую среду, при этом фермент Е1 способен катализировать превращение 3-гидроксиалканоил-АСР через 3-гидроксиалканоил-3-гидроксиалкановую кислоту АСР в гидроксиалканоил-3-гидроксиалкановую кислоту, фермент Е2 представляет собой рамнозилтрансферазу I, а фермент Е3 – рамнозилтрансферазу II.

Изобретение относится к области биотехнологии. Предложен способ получения этиленово-ненасыщенного гликозида формулы I где n, A, X, R3 и R4 имеют значения, приведенные в формуле.

Настоящее изобретение относится к олигосахаридам для синтеза сахаров, а также способу их получения, где олигосахариды содержат фрагмент: причем тетрасахарид включает X1, гексасахарид включает X1, X2, октасахарид включает X1, X2, X3, декасахарид включает X1, X2, X3, X4, додекасахарид включает X1, X2, X3, X4; X1-X4 представляют собой: или где R8 представляет собой водород или алкил; R1 - R2, R5 - R7 представляют собой защитные группы.
Изобретение относится к биотехнологии и может быть использовано в пищевой промышленности. Способ получения мальтобионата предусматривает получение субстрата, применяемого в процессе получения сусла или затора и содержащего мальтозу; и превращение мальтозы в мальтобионат посредством реакции, катализируемой карбогидратоксидазой, например карбогидратоксидазой из Microdochium nivale CBS 100236.
Изобретение относится к способу получения производных стероидных гликозидов Ruscus aculeatus (рускосапонинов). .
Изобретение относится к способу получения производных стероидных гликозидов Ruscus aculeatus (рускосапонинов). .

Изобретение относится к области биотехнологии, конкретно к композиции для лечения или профилактики интерферон-β-зависимого заболевания, и может быть использовано в медицине.Синтетическим путем получают гликозилированный полипептид, имеющий однородную структуру сахарной цепи и обладающий активностью интерферона-β.

Изобретение относится к области биотехнологии, конкретно к получению гликозилированных полипептидов, обладающих сродством к рецепторам соматостатина, и может быть использовано в медицине для лечения или профилактики связанного с соматостатином заболевания.

Изобретение относится к области биотехнологии, конкретно к получению гликозилированных полипептидов, обладающих сродством к соматостатиновым рецепторам, и может быть использовано в медицине для лечения или профилактики связанных с соматостатином заболеваний.

Настоящее изобретение относится к способу гидролиза лигноцеллюлозы и может быть использовано в химической промышленности. Предложенный способ включает предоставление фракционированной лигноцеллюлозной биомассы, содержащей фракцию твердых веществ, содержащую необязательно нерастворимый С5-олигосахарид, целлюлозу и лигнин, и первую жидкую фракцию при первой температуре не более 240°С, содержащую растворимые C5-сахариды, выбранные из C5-олигосахаридов, ксилозы, арабинозы, ликсозы, рибозы и их смесей; контактирование указанной первой жидкой фракции с твердым кислотным катализатором с образованием второй жидкой фракции при температуре не более 240°С; где указанная вторая температура меньше, чем указанная первая температура; где указанное контактирование сдвигает молекулярно-массовое распределение указанных растворимых C5-сахаридов к меньшей средней молекулярной массе; необязательно гидролиз указанной второй жидкой фракции с использованием кислоты или фермента с получением C5-сахаридов, выбранных из C5-олигосахаридов, содержащих меньше мономерных звеньев, ксилозы, арабинозы, ликсозы, рибозы и их смесей; где указанную фракционированную лигноцеллюлозную биомассу получают приведением указанной целлюлозной биомассы в контакт с первой реакционной жидкостью, содержащей горячую воду под давлением и необязательно диоксид углерода; где указанная первая реакционная жидкость дополнительно содержит кислоту, где указанная лигноцеллюлозная биомасса содержит древесину мягких пород; где указанная первая реакционная жидкость находится при температуре менее 100°С под давлением, достаточным для поддержания указываемой первой реакционной жидкости в жидкой форме.

Настоящее изобретение относится к способам переработки лигноцеллюлозной биомассы. Предложенный способ включает подачу лигноцеллюлозной биомассы, включающей первую твердую фракцию целлюлозы и лигнина и первую жидкую фракцию; необязательно, разделение указанных твердой и жидкой фракций; смешение указанной твердой фракции с водой с образованием пульпы с предварительным нагреванием пульпы до 210°С-240°С при 225-250 бар; контактирование указанной пульпы со второй реакционной жидкостью с образованием второй реакционной смеси, включающей вторую твердую фракцию лигнина и вторую жидкую фракцию растворимого С6 сахарида, выбранного из С6 моносахаридов, С6 олигосахаридов и их смесей; где указанная вторая реакционная жидкость включает сверхкритическую воду и, необязательно, диоксид углерода и находится при температуре, по меньшей мере, 374,2°С и давлении, достаточном для поддержания указанной второй реакционной жидкости в сверхкритическом состоянии; понижение температуры указанной пульпы ниже 140°С; необязательно кислотный гидролиз указанной второй жидкой фракции с образованием композиции, включающей С6 сахарид, выбранный из С6 олигосахарида, имеющего меньшее число элементарных звеньев, глюкозы, галактозы, маннозы, фруктозы и их смесей.

Изобретение относится к получению тетравалентных неогликоконъюгатов с углеводным разветвляющим ядром и производным L-глутаминовой кислоты в гидрофобном блоке, пригодных для приготовления липосом, формулы: Предложены новые тетравалентные неогликоконъюгаты, обеспечивающие повышение аффинности углеводных остатков к рецепторам, а также эффективный способ их получения, включающий конъюгацию азидоэтильного производного углевода, выбранного из 1-O-(2-азидоэтил)-α-D-маннопиранозида или 1-O-(2-азидоэтил)лактозида, с бисгексадецил-N-({3-[N′-2,3,4,6-тетра-O-пропинил-β-D-глюкопиранозилокси]-карбамоил}-пропионил)-L-глутаматом.

Группа изобретений относится к области биотехнологии. Предложен способ получения смеси глюкоолигосахаридов, содержащих две или более последовательных (α1→6) гликозидных связей и две или более последовательных (α1→4) гликозидных связей.
Настоящее изобретение относится к смеси олигосахаридов и к продукту питания, содержащему такую смесь. Смесь олигосахаридов содержит 5-70 мас.% по меньшей мере одного N-ацетилированного олигосахарида, 5-90 мас.% по меньшей мере одного галакто-олигосахарида, 2-50 мас.% по меньшей мере одного сиалилированного олигосахарида и 2-70 мас.% по меньшей мере одного фукозилированного олигосахарида.

Изобретение относится к эффективным для лечения и профилактики инфекционных заболеваний конъюгатам олигосахарид-носителям, содержащим олигосахарид, конъюгированный с носителем через линкер формул VIIIa или VIIIb: где n больше 1, m выбран из 1-10, p выбран из 1-20 и R представляет собой H или алкил, линкер связан с атомом кислорода олигосахарида через концевую CH2 группу, и линкер связан через концевую CO группу с аминогруппой соединения носителя посредством амидной связи, олигосахарид является β-1-6 связанным глюкозамином, и носитель является пептидом, белком, полисахаридом, нуклеиновой кислотой, липидом или столбнячным анатоксином.
Олигосахаридный ингредиент, предназначенный для увеличения содержания сиаловой кислоты в смесях для детского питания, содержащий гликозилированные аминокислоты и пептиды общей формулы RnSacm, где R является остатком аминокислоты, Sac является моносахаридом, выбранным из группы, содержащей N-ацетилнейраминовую кислоту, N-ацетилгалактозамин и галактозу, n имеет значение от 1 до 10, при условии, что если n=1, то R является остатком треонина или серина, а если n имеет значение от 2 до 10, то пептид содержит по меньшей мере один остаток треонина или серина, m имеет значение от 2 до 4, и N-ацетилнейраминовая кислота составляет по меньшей мере 20 мол.% ингредиента, где олигосахаридный компонент содержит от 10 до 25 мол.% N-ацетилгалактозамина, от 10 до 25 мол.% галактозы, от 20 до 50 мол.% N-ацетилнейраминовой кислоты и от 15 до 50 мол.% треонина или серина или их смеси.

Настоящее изобретение относится к способу получения тригидроксиэтилрутозида, который может быть использован в фармацевтической промышленности. В предложенном способе сначала получают 7-моногидроксиэтилрутозид посредством этилирования рутина с последующей очисткой, а затем преобразуют его в тригидроксиэтилрутозид посредсвом гидроксиэтилирования, причем на стадии получения 7-моногидроксиэтилрутозида гидроксильные группы рутина защищены с помощью гидроксил-защищающего агента, гидроксил-защищающим агентом является бура, гидроксиэтилирующим агентом является оксид этилена, растворитель выбран из воды, метанола и этанола, температура реакции составляет 30-50°C, и время 4-14 часов; для очистки используют повторную кристаллизацию из воды, метанола, этанола, изопропанола и их смеси; на стадии получения тригидроксиэтилрутозида из очищенного 7-моногидроксиэтилрутозида гидроксиэтилирующий агент добавляют после растворения или диспергирования 7-моногидроксиэтилрутозида в растворителе, где гидроксиэтилирующим агентом является оксид этилена, растворитель выбран из воды, метанола, этанола, пиридина и их смеси, катализатор выбран из гидроксида натрия, гидроксида калия и аммиачной воды, температура реакции составляет 50-80°C и время реакции составляет 3-8 часов, и продукт пропускают через катионные и анионные смолы, или обрабатывают с помощью макропористой смолы после завершения реакции; где указанные катионные смолы выбраны из сильнокислотных полистирольных катионообменных смол, анионные смолы выбраны из сильноосновных полистирольных анионообменных смол; где указанные макропористые смолы выбраны из неполярных полистирольных макропористых смол и малополярных макропористых смол; на стадии очистки тригидроксиэтилрутозида для очистки используют способ повторной кристаллизации, где растворитель для повторной кристаллизации выбран из воды, метанола, этанола, изопропанола и их смеси, далее осуществляют очистку продукта, обеспечивающую возможность получения 7,3’,4’-тригидроксиэтилрутозида со степенью чистоты более 98% по массе.

Группа изобретений относится к биотехнологии. Предложены новый сульфатированный фукоолигосахарид формулы II, представленной на фиг.3, и способ его получения. Осуществляют обработку фукоидана из Sargassum horneri рекомбинантной фукоиданазой FFA1 в Tris-HCl буфере с рН 7,2 при 37°С в течение 72-75 ч. Затем нагревают до 100°C в течение 5-10 мин. Далее высокомолекулярные продукты гидролиза осаждают 75 водным раствором этанола или ацетона. Затем образовавшийся осадок отделяют с помощью центрифугирования при 9000-10000 g в течение 20-30 мин. Супернатант наносят на колонку с анионообменным сорбентом, уравновешенную водой, и элюируют фукоолигосахариды линейным градиентом гидрокарбоната аммония со скоростью 1 млмин. Сначала элюируют сульфатированный фукоолигосахарид формулы II, затем сульфатированный фукоолигосахарид формулы I. Полученные фракции целевых продуктов лиофильно высушивают. Изобретение расширяет арсенал сульфатированных фукоолигосахаридов, полученных из бурой водоросли Sargassum horneri. 2 н.п. ф-лы, 3 ил., 2 табл., 2 пр.

Наверх