Способ определения температуры торможения газового потока



Способ определения температуры торможения газового потока
Способ определения температуры торможения газового потока
Способ определения температуры торможения газового потока
Способ определения температуры торможения газового потока
Способ определения температуры торможения газового потока
Способ определения температуры торможения газового потока
Способ определения температуры торможения газового потока
Способ определения температуры торможения газового потока
Способ определения температуры торможения газового потока
G01K2013/024 - Измерение температуры; измерение количества тепла; термочувствительные элементы, не отнесенные к другим классам ( измерение температурных колебаний с целью компенсации их влияния на измерение других переменных величин или для компенсации ошибок в показаниях приборов для измерения температуры, см. G01D или подклассы, к которым отнесены эти переменные величины; радиационная пирометрия G01J; определение физических или химических свойств материалов с использованием тепловых средств G01N 25/00; составные термочувствительные элементы, например биметаллические G12B 1/02)

Владельцы патента RU 2651626:

Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" (RU)

Изобретение относится к области технической физики, а именно к способам определения температуры торможения газового потока, и может быть использовано при длительном локальном измерение полной температуры набегающего потока в элементах газотурбинных двигателей, например в переходных каналах, на выходе из камеры сгорания, с числом Маха от 0.1 до 0.7 набегающего потока и температурой, превышающей 2000K. Сущность изобретения состоит в том, что размещают термопару в закрытом корпусе теплоприемника, устанавливают теплоприемник навстречу потоку газа и определяют температуру торможения потока с учетом коэффициента восстановления температуры. При этом предварительно размещают в корпусе теплоприемника три дополнительные термопары, расположенные по потоку с равным шагом, осуществляют охлаждение теплоприемника, измеряют давление и температуру охлаждающей среды, и распределение температур по длине теплоприемника. Коэффициент восстановления температуры потока определяют по показаниям первой по потоку термопары из соотношения, включающего коэффициенты, характеризующие влияние геометрических параметров теплообменника, влияние расхода охлаждающей среды и влияние температуры охлаждающей среды на распределение температур по оси теплоприемника. Технический результат, достигаемый при осуществлении предлагаемого способа, заключается в упрощении способа за счет обеспечения возможности измерения температур потока, лежащих выше допустимого для средств измерения диапазона. 1 ил.

 

Изобретение относится к области технической физики, а именно к способам определения температуры торможения газового потока, и может быть использовано при длительном локальном измерении полной температуры набегающего потока в элементах газотурбинных двигателей, например в переходных каналах, на выходе из камеры сгорания, с числом Маха от 0,1 до 0,7 набегающего потока и температурой превышающей 2000 K.

Измерение температуры газа, движущегося с большой скоростью, является неотъемлемой частью исследований, проводимых на авиационных газотурбинных двигателях. При движении газа с большой скоростью поток характеризуется двумя температурными параметрами: статической температурой и температурой торможения. Температура торможения есть температура полностью адиабатически заторможенного газа, когда вся его кинетическая энергия без потерь переходит в тепло. При этом при измерении термопарой температуры на процесс торможения газового потока оказывает влияние геометрическая форма преобразователя температуры. Поэтому для количественной оценки сложного процесса торможения газового потока на поверхности «горячего» спая вводится так называемый коэффициент восстановления температуры, учитывающий степень торможения потока теплоприемником.

Известен способ измерения температурного поля газового потока на выходе камеры сгорания, заключающийся в том, что размещают преобразователь температуры, связанный с телевизионным регистратором перпендикулярно потоку газа, преобразуют тепловое излучение от высокотемпературных стержней, интенсивность которого соответствует температуре газового потока, в визуальный образ в виде термограммы решетки, и с помощью программы обработки изображения термограммы решетки получают распределение температур по длине каждого стержня решетки (патент RU 2382995, 2010 г.). В известном техническом решении реализуется большой перепад по радиусу стержня с тем, чтобы температура поверхности была ближе к температуре торможения газового потока, что при установке преобразователя перпендикулярно газовому потоку обеспечить достаточно сложно. При этом для расчета корректирующих коэффициентов при оценке температуры газа по температуре омываемого стержня измеряется температура охлаждающего воздуха на входе и на выходе преобразователя. На процесс измерения влияет место установки камеры регистратора, т.к. оптическая ось телевизионного регистратора должна быть расположена под углом, обеспечивающим наибольшую величину диффузионной излучательной способности материала стержней. Таким образом, недостатком известного способа является сложность его реализации и недостаточная точность определения температуры торможения газового потока.

Известен способ измерения поля температур газового потока, заключающийся в том, что размещают термопары в корпусе неохлаждаемого теплоприемника, выполненного из высокотемпературопроводного материала, устанавливают теплоприемник навстречу потоку газа и определяют температуру потока (патент RU 160313, 2016 г.). В известном техническом решении при работе двигателя часть горячего газа отбирается в открытые камеры торможения в корпусе теплоприемника, обтекает «горячие» спаи термопар и выводится через боковые отверстия. Концы термоэлектродных проводников термопар выводятся в охлаждаемую зону для обеспечения их одинаковой температуры, где осуществляется переход на компенсационные провода и подключение термопар к измерительному прибору.

Наиболее близким по совокупности существенных признаков к заявляемому техническому решению является способ определения температуры торможения газового потока, заключающийся в том, что размещают термопару в закрытом корпусе теплоприемника, устанавливают теплоприемник навстречу потоку газа и определяют температуру торможения потока с учетом коэффициента восстановления температуры (В.А. Григорьев и др. «Испытания авиационных двигателей», М., «Машиностроение», 2009 г., стр. 40-42, рис. 1.9, 1.10, стр. 405-409, рис. 13.2, 13.3). В известном техническом решении корпус теплоприемника представляет собой неохлаждаемую защитную капсулу, предназначенную для защиты «горячего» спая термопары от воздействия повышенного давления и агрессивной среды. Подключение концов термопары к измерительному прибору осуществляется аналогично с известным техническим решением.

В известных технических решениях для непосредственного измерения температур, лежащих в диапазоне 1400-1900K используют термопары из благородных металлов платиновой группы. Недостатком данных термопар является малая величина развиваемых при измерении термоэлектродвижущих сил, в связи с чем требуется применение высокочувствительной электроизмерительной аппаратуры.

Таким образом, общим существенным недостатком известных технических решений является недостаточный диапазон измеряемых температур, определяемый средствами измерения.

Техническая проблема, решение которой обеспечивается при осуществлении заявляемого изобретения, заключается в расширении диапазона измеряемых температур.

Технический результат, достигаемый при осуществлении предлагаемого изобретения, заключается в упрощении способа за счет обеспечения возможности измерения температур потока, лежащих выше допустимого для средств измерения диапазона.

Заявленный технический результат достигается за счет того, что размещают термопару в закрытом корпусе теплоприемника, устанавливают теплоприемник навстречу потоку газа и определяют температуру торможения потока с учетом коэффициента восстановления температуры, при этом предварительно размещают в корпусе теплоприемника три дополнительные термопары, расположенные по потоку с равным шагом, осуществляют охлаждение теплоприемника, измеряют давление и температуру охлаждающей среды, и распределение температур по длине теплоприемника, а коэффициент восстановления температуры потока определяют по показаниям первой по потоку термопары из соотношения:

где K1 - коэффициент восстановления температуры потока по показаниям ближней к потоку термопары;

Т* - температура торможения потока;

Т1 - температура, измеренная первой к потоку термопарой;

Kq - коэффициент, характеризующий влияние геометрических параметров теплообменника на распределение температур по оси теплоприемника, который выбирают из диапазона от 1,2 до 3,5;

KG - коэффициент, характеризующий влияние расхода охлаждающей среды на распределение температур по оси теплоприемника, который выбирают из диапазона от 0,8 до 1,2;

KT - коэффициент, характеризующий влияние температуры охлаждающей среды на распределение температур по оси теплоприемника, который выбирают из диапазона от 0,8 до 1,2.

Указанные существенные признаки обеспечивают решение поставленной технической проблемы с достижением заявленного технического результата, так как:

- осуществление охлаждения теплоприемника обеспечивает создание градиента температур, направленного вдоль охлаждаемого теплоприемника;

- размещение в корпусе теплоприемника трех дополнительных термопар, расположенных по потоку с равным шагом и измерение распределения температур по длине теплоприемника обеспечивает повышение точности измерения температуры потока за счет определения градиента температур вдоль охлаждаемого теплоприемника;

- измерение давления и температуры охлаждающей среды обеспечивает повышение точности определения температуры торможения газового потока за счет регистрации дополнительных параметров процесса;

- определение коэффициента K1 восстановления температуры потока по показаниям первой по потоку термопары из соотношения:

обеспечивает повышение точности определения температуры торможения потока за счет учета влияния различных параметров процесса на распределение температур по оси теплоприемника.

Настоящее изобретение поясняется следующим описанием и иллюстрацией, где на чертеже изображена схема измерения полной температуры потока в соответствии с предлагаемым способом.

На чертеже приняты следующие обозначения:

1 - газовый канал;

2 - поток газа;

3 - охлаждаемая стойка;

4 - насадки;

5 - поток охлаждающей среды.

Способ осуществляется следующим образом.

В газовом канале 1 размещают устройство для измерения температуры потока, включающее охлаждаемую стойку 3, в которой закреплены насадки 4, выполненные из высокотеплопроводного материала (меди), расположенные таким образом, что их внешняя часть направлена вдоль потока 2 газа. В каждой из насадок 4 равномерно по ее длине расположены соответствующие хромель-алюмелевые или хромель-копелевые термопары (на чертеже не показаны), с диапазоном измеряемых температур до 1300K, которые охлаждаются потоком 5 охлаждающей среды (водой). Охлаждение обеспечивает градиент температур по длине каждой из насадок 4 до величин, не превышающих термопрочность меди. Процесс охлаждения регулируют путем изменения давления, температуры и расхода воды.

Определение полной температуры потока осуществляется при помощи термопар косвенным методом по результатам измерения градиента температур вдоль насадок 4 в несколько этапов:

- с помощью блока цифрового преобразования и регистрации аналоговых сигналов (на чертеже не показан) измеряются показания термопар внутри внешней части насадки 4, расположенной в потоке газа, давление и температура охлаждающей среды на входе в охлаждаемую стойку 3;

- данные передаются в блок (на чертеже не показан) математической модели, где с учетом тарировочных данных термопар происходит вычисление полной температуры потока по показаниям первой по потоку термопары в соответствии с соотношением:

где K1 - коэффициент восстановления температуры потока по показаниям ближней к потоку термопары;

Т* - температура торможения потока;

Т1 - температура, измеренная первой к потоку термопарой.

Для каждого конкретного применения коэффициенты Kq, KG, KT определяются на основе решения уравнений Навье-Стокса и тарировки термопар. Математический вид данных аппроксимационных коэффициентов следующий:

где a, b, c, d - тарировочные коэффициенты;

pcool - давление охлаждающей среды на входе в теплоприемник;

Tcool - температура охлаждающей среды на входе в теплоприемник;

параметр, зависящий от градиента температур вдоль оси теплоприемника, где

Т1, Т2, Т3, Т4 - температуры, измеренные последовательно установленными в насадке термопарами.

При этом:

- коэффициент Kq характеризует влияние геометрических параметров теплообменника на распределение температур по оси теплоприемника и выбирается из диапазона от 1,2 до 3,5;

- коэффициент KG, характеризует влияние расхода охлаждающей среды на распределение температур по оси теплоприемника и выбирается из диапазона от 0,8 до 1,2;

- коэффициент KТ характеризует влияние температуры охлаждающей среды на распределение температур по оси теплоприемника и выбирается из диапазона от 0,8 до 1,2.

Таким образом, реализация косвенного определения полной температуры потока по измерению термопарами градиента температур, направленного вдоль охлаждаемого теплоприемника с привлечением определенной математической зависимости, обеспечивает расширение диапазона измеряемых температур.

Способ определения температуры торможения газового потока, заключающийся в том, что размещают термопару в закрытом корпусе теплоприемника, устанавливают теплоприемник навстречу потоку газа и определяют температуру торможения потока с учетом коэффициента восстановления температуры, отличающийся тем, что предварительно размещают в корпусе теплоприемника три дополнительные термопары, расположенные по потоку с равным шагом, осуществляют охлаждение теплоприемника, при этом измеряют давление и температуру охлаждающей среды, и распределение температур по длине теплоприемника, а коэффициент восстановления температуры потока определяют по показаниям первой по потоку термопары из соотношения:

где K1 - коэффициент восстановления температуры потока по показаниям ближней к потоку термопары;

Т* - температура торможения потока;

Т1 - температура, измеренная первой к потоку термопарой;

Kq - коэффициент, характеризующий влияние геометрических параметров теплообменника на распределение температур по оси теплоприемника, который выбирают из диапазона от 1,2 до 3,5;

KG - коэффициент, характеризующий влияние расхода охлаждающей среды на распределение температур по оси теплоприемника, который выбирают из диапазона от 0,8 до 1,2;

KТ - коэффициент, характеризующий влияние температуры охлаждающей среды на распределение температур по оси теплоприемника, который выбирают из диапазона от 0,8 до 1,2.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры раскаленных газовых потоков, включая пламена.

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры потока неоднородных, химически агрессивных и абразивосодержащих газов.

Держатель нанокалориметрического сенсора для измерения теплофизических параметров образца, а также структуры и свойств его поверхности дает возможность проведения экспериментов с одновременным использованием данных методов, что позволяет проводить in-situ исследования структуры и свойств поверхности, а также теплофизических свойств материалов различного типа с возможностью одновременного снятия базовой линии.

Изобретение относится к области приборостроения и может быть использовано в системах контроля технологических процессов. Система датчиков содержит технологический измерительный преобразователь, вибродатчик без внешнего питания и технологический трансмиттер.

Изобретение относится к измерительной технике и может быть использовано для определения температуры нестационарного газового потока, теплового импульса потока, скорости движения фронта теплового возмущения, зависимости скорости движения фронта теплового возмущения от расстояния до источника его возникновения.

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры раскаленных газовых потоков, включая пламена.

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости и температуры потока неоднородных, химически агрессивных и абразивосодержащих газов.

Измерительный преобразователь (260) технологической переменной для восприятия технологической переменной технологической текучей среды в промышленном процессе включает в себя технологическую прокладку (200), имеющую поверхность, выполненную с возможностью образования уплотнения с поверхностью технологического резервуара.

Изобретение относится к ультразвуковому расходомеру для измерения скорости потока и/или расхода текучей среды. Ультразвуковой расходомер содержит: измерительный преобразователь, имеющий соединительные фланцы для присоединения трубопроводов текучей среды и среднюю часть, выполненную с возможностью пропускания текучей среды, по меньшей мере два помещенных в среднюю часть ультразвуковых преобразователя, которые образуют пару ультразвуковых преобразователей и между которыми установлена измерительная цепь, проходящая через поток, датчик давления, удерживаемый в средней части в гнезде датчика давления и имеющий сообщение по текучей среде с внутренностью средней части через гнездо поршня, калибровочный вывод, удерживаемый в средней части в гнезде калибровочного вывода и имеющий сообщение по текучей среде с внутренностью средней части через гнездо поршня, причем поршень в гнезде поршня выполнен с возможностью приведения в два положения, при этом в первом положении датчик давления имеет сообщение по текучей среде с внутренностью средней части, а во втором положении датчик давления через гнездо поршня имеет сообщение по текучей среде с калибровочным выводом.

Изобретение относится к области приборостроения и может быть использовано в системах контроля технологических процессов. Система датчиков содержит технологический измерительный преобразователь, вибродатчик без внешнего питания и технологический трансмиттер.

Изобретение относится к измерительной технике и может быть использовано для определения температуры нестационарного газового потока, теплового импульса потока, скорости движения фронта теплового возмущения, зависимости скорости движения фронта теплового возмущения от расстояния до источника его возникновения.

Изобретение относится к энергетике, в частности к датчикам температуры универсальным, используемым в газогорелочных устройствах для сжигания газа в котлах наружного размещения, и может быть использовано в бытовых газовых аппаратах для автоматического поддержания температуры теплоносителя.

Изобретение относится к термометрии и может быть использовано для измерения быстропротекающих температурных процессов в газодинамике. Предложено дифференциальное устройство измерения температуры газового потока, состоящее из двух каналов измерения, каждый из которых содержит струйный генератор и пьезоэлектрический преобразователь.

Изобретение относится к термометрии и может быть использовано для измерения температуры быстропротекающих высокотемпературных процессов в газодинамике. Устройство представляет собой металлический блок, выполненный в виде соединенного с корпусом цилиндра с продольным осевым каналом, в котором размещена термопара, представляющая собой металлическую трубку с керамической вставкой, в которой проходят термопарные провода, выступающие на конце термопары за пределы металлической трубки с керамической вставкой и соединенные в рабочий спай.

Изобретение относится к области контактных измерений температуры высокотемпературных газов, в частности к средствам измерения температуры газа и распределения ее значений в полостях высокотемпературных элементов газотурбинных двигателей, и может быть применено для экспериментальных исследований рабочего процесса силовых установок при проведении аэродинамических испытаний.

Изобретение относится к области технической физики, а именно к способам определения температуры торможения газового потока, и может быть использовано при длительном локальном измерение полной температуры набегающего потока в элементах газотурбинных двигателей, например в переходных каналах, на выходе из камеры сгорания, с числом Маха от 0.1 до 0.7 набегающего потока и температурой, превышающей 2000K. Сущность изобретения состоит в том, что размещают термопару в закрытом корпусе теплоприемника, устанавливают теплоприемник навстречу потоку газа и определяют температуру торможения потока с учетом коэффициента восстановления температуры. При этом предварительно размещают в корпусе теплоприемника три дополнительные термопары, расположенные по потоку с равным шагом, осуществляют охлаждение теплоприемника, измеряют давление и температуру охлаждающей среды, и распределение температур по длине теплоприемника. Коэффициент восстановления температуры потока определяют по показаниям первой по потоку термопары из соотношения, включающего коэффициенты, характеризующие влияние геометрических параметров теплообменника, влияние расхода охлаждающей среды и влияние температуры охлаждающей среды на распределение температур по оси теплоприемника. Технический результат, достигаемый при осуществлении предлагаемого способа, заключается в упрощении способа за счет обеспечения возможности измерения температур потока, лежащих выше допустимого для средств измерения диапазона. 1 ил.

Наверх