Спутниковая система связи и наблюдения приэкваториальных широт

Изобретение относится к спутниковым системам (СС) связи и наблюдения, использующим легкие спутники, которые функционируют на низких и средних околоземных орбитах и обеспечивают непрерывное региональное покрытие поверхности Земли. Технический результат состоит в обеспечении непрерывного покрытия приэкваториальных широт с заданной кратностью обзора при минимальной высоте и числе орбитальных плоскостей, спутников в них, а также количестве запусков для развертывания СС. Для этого спутниковая система связи содержит множество искусственных спутников Земли, оснащенных бортовыми ретрансляторами с межспутниковой связью, и построена на нескольких орбитальных плоскостях, разнесенных по долготе восходящего узла на одинаковый угол, с равномерным распределением спутников в них. СС построена всего на двух орбитальных плоскостях, развернутых по долготе восходящего узла на 180°, при этом спутники в первой орбитальной плоскости сфазированы со спутниками во второй и обеспечивают непрерывной связью абонентов и наблюдение в заданном приэкваториальном регионе покрытия, ограниченном максимальной широтой, с требуемой кратностью обзора. Технический результат от изобретения заключается в обеспечении непрерывного покрытия приэкваториальных широт с заданной кратностью обзора при минимальной высоте и числе орбитальных плоскостей, спутников в них, а также количестве запусков для развертывания СС. 2 з.п. ф-лы, 2 ил., 3 табл.

 

Область техники

Изобретение относится к спутниковым системам (СС) связи и наблюдения, использующим легкие спутники, которые функционируют на низких и средних околоземных орбитах и обеспечивают непрерывное региональное покрытие поверхности Земли.

Предшествующий уровень техники

Известно, что в различных системах спутниковой связи используются искусственные спутники Земли, летающие на геостационарной, высокоэллиптических и низких околоземных орбитах (см. например В. Кириллов, П. Михеев. Расстояния на миг сократив (Обзор зарубежных низкоорбитальных спутниковых систем связи). ТЕЛЕ-Спутник N8(22), август 1997).

Выбор схемы орбитального построения спутниковых систем связи и наблюдения зависит от назначения данных СС и обеспечения требуемых технических и функциональных характеристики системы в том или ином районе Земли при минимальных затратах. При этом, от выбранных орбит и их характеристик существенно зависят возможности в принципах организации связи, например:

- наиболее используемая в настоящее время для связи геостационарная орбита при многих положительных качествах имеет существенные недостатки. В частности, из-за ограничений по радиовидимости не обеспечивает связь для арктических и антарктических районов Земли с широтами более 65-70° северной и южной широты; из-за большой высоты орбиты возникает значительная задержка радиосигнала (до 0,5-0,6 сек), существенно снижающая качество связи в реальном масштабе времени. Кроме того, требуется значительная мощность ретрансляторов и электрогенерирующих систем спутников;

- высокоэллиптические орбиты вместе со значительным изменением по времени высоты полета спутника имеют ограниченное время радиовидимости (как правило, не более 8 часов в сутки) и для обеспечения непрерывной связи требуют создания системы из нескольких спутников, при этом создание на этих орбитах глобальной связи по всему земному шару является технически и экономически сложной задачей;

- низкоорбитальная система спутниковой связи, вместе с необходимостью значительного количества спутников для организации связи и обеспечением маршрутизации радиосигналов между абонентами, имеет ряд преимуществ: близость спутников к Земле и, следовательно, к абонентам; минимальные задержки сигналов, что улучшает качество голосовой связи, Internet и интерактивного телевидения (видеопереговоры, видеоконференции); снижается потребная мощность и вес бортовой приемо-передающей аппаратуры и систем электропитания спутников, а также аппаратуры абонентов. Расположение орбит системы спутниковой связи ниже радиационных поясов Земли (ниже 1400-1500 км) обеспечивает защиту спутников и радиоэлектронной аппаратуры от жесткого ионизирующего солнечного излучения, что увеличивает их срок активного существования (САС), спутники доставляются на низкую более «дешевую» орбиту, требующую меньших затрат на их выведение в космос.

Известны реализованные в мире низкоорбитальные системы спутниковой связи:

- «Iridium» и «Globalstar» (N. Panagiotarakis, I. Maglogiannis, G. Kormentzasan. Overview of Major Satellite Systems. University of the Aegean Dept. of Information and Communication Systems, GR-83200, Karlovassi, GREECE (Electronically available information in the URL: http://www.iridium.com), (Electronically available information in the URL: http://www.globalstar.com));

- «ORBCOMM» (Низкоорбитальная спутниковая система связи ORBCOMM: реальные и перспективные возможности для Европейского региона (http://kunegin.narod.ru/ref3/niz/leo16.htm));

- «Гонец» (Низкоорбитальная космическая система персональной спутниковой связи и передачи данных / Под ред. Генерального конструктора многофункциональной космической системы персональной спутниковой связи и передачи данных, президента ОАО «Спутниковая система «Гонец» А.И. Галькевича - Тамбов: ООО «Издательство Юлис», 2011. - 169 с., ил.).

Сравнительные характеристики рассмотренных низкоорбитальных СС связи (согласно: А. Крылов. «Анализ создания и развития низкоорбитальных систем спутниковой связи». Журнал «Спутниковая связь и вещание-2011», с. 46-49) приведены в таблице 1. В ней приняты следующие обозначения: h - высота орбиты; i - наклонение орбиты; N - количество спутников в системе; Р - количество орбитальных плоскостей.

Из приведенных в таблице 1 данных по низкоорбитальным СС связи видно, что система «Иридиум» обеспечивает глобальную подвижную связь по всему земному шару. Однако эта система обладает существенным недостатком - в высокоширотных областях, в околополярных зонах Земли, где плотность абонентов связи мала, одновременно находится избыточное количество спутников связи (например, над каждым из полюсов единовременно находится от 7 до 14 спутников).

Система Globalstar при большом количестве спутников (48+8 резервных) обеспечивает непрерывную подвижную связь только в зоне земного шара между 70° северной и 70° южной широтами. Связь в околополярных зонах отсутствует.

Системы ORBCOMM и «Гонец» используется только для периодической связи и пакетной передачи данных. Кроме того, система «Гонец» в полной конфигурации содержит 6 орбитальных плоскостей и с учетом приполярного наклонения, также будет иметь избыточность в количестве единовременных находящихся в приполярной области спутников.

Известна комбинированная СС связи (патент РФ №2496233 опубл. 20.06.2013), состоящая из двух группировок (сегментов), одна из которых содержит N спутников связи, где N - целое число, и расположена на n околоземных орбитах высотой менее 2000 км с наклоном 0°…30°, по N/n спутников на каждой орбите, другая группировка состоит из М спутников связи, где М - целое число, и расположена на m околоземных орбитах высотой менее 2000 км с наклоном 50°…90°. В таблице 2 представлены характеристики предпочтительного варианта исполнения указанной СС.

При этом угол места в точке расположения абонента (угол между лучом на спутник и местным горизонтом) составляет 5-15 градусов; диаметр зоны радиовидимости со спутника, находящегося на орбите высотой 1500 км - 5÷6 тыс. км.

Сегмент №1 данной СС, обслуживающий приэкваториальную область обзора, является наиболее близким к заявляемому изобретению вариантом построения СС регионального покрытия и взят в качестве прототипа.

Основным из недостатков прототипа является баллистическое построение, требующее 3 орбитальных плоскости для обеспечения регионального покрытия приэкваториальных широт ниже 40°, что приводит к необходимости осуществлять минимум три групповых запуска в каждую плоскость для развертывания СС на орбите.

Вторым недостатком являются ограниченная эффективность применения таких систем, поскольку при двух и более кратном покрытии заданной области, они оказываются хуже по критерию минимизации высоты полета, особенно в малых СС с числом спутников менее 24.

Предлагаемая СС связи и наблюдения приэкваториальных широт позволяет, при использовании всего двух орбитальных плоскостей, решить задачу обеспечения непрерывной связью абонентов и наблюдение в заданном регионе покрытия, ограниченном максимальной широтой, с требуемой кратностью обзора. Согласование движения спутников в первой и второй орбитальных плоскостях - фазирование, примененное в предлагаемом изобретении, дает возможность увеличить наклонение орбит и уменьшить высоту полета.

Решение поставленной задачи достигается тем, что спутниковая система связи и наблюдения приэкваториальных широт, содержащая множество искусственных спутников Земли, оснащенных бортовыми ретрансляторами с межспутниковой связью, и построенная на нескольких орбитальных плоскостях, разнесенных по долготе восходящего узла на одинаковый угол, с равномерным распределением спутников в них, отличается, согласно изобретению тем, что она построена всего на двух орбитальных плоскостях, развернутых по долготе восходящего узла на 180°, при этом спутники в первой орбитальной плоскости сфазированы со спутниками во второй и обеспечивают непрерывной связью абонентов и наблюдение в заданном приэкваториальном регионе покрытия, ограниченном максимальной широтой, с требуемой кратностью обзора.

Указанная новая совокупность существенных признаков, отраженных в первом независимом пункте формулы, позволяет достичь следующего технического результата. Благодаря использованию всего двух орбитальных плоскостей при построении СС многократной связи и наблюдения, удается минимизировать количество запусков и стоимость развертывания такой системы на орбите. Тем самым устраняется первый недостаток прототипа. Сфазированное расположение спутников в первой и второй орбитальных плоскостях позволяет увеличить наклонение и минимизировать высоту полета, обеспечивая заданную кратность непрерывного покрытия при минимальном числе спутников в системе. Таким образом, устраняется второй недостаток прототипа.

Одним из вариантов изобретения является построение СС многократной связи и наблюдения для приэкваториальных широт с максимальной границей выше 20°. В этом случае предлагаемый вариант построения двухплоскостной СС оказывается лучшим по критерию минимизации высоты полета, чем даже спутниковая система на экваториальной орбите.

В некоторых случаях, изобретение позволяет сформировать СС многократного покрытия, когда в зоне связи с абонентами одновременно находится несколько спутников из системы, что позволяет резервировать канал связи или увеличить пропускную способность при наличии большого количества абонентов в указанной области (например, крупные города) посредством распределения абонентов по разным спутникам.

Краткое описание чертежей

На фиг. 1 изображен вид с экватора на СС связи в форме развертки с указанием черными цифрами угловой сетки по долготе, отсчитываемой по экваториальной дуге. Синими цифрами обозначены номера орбитальных плоскостей (1, 2). Стрелками - направления движения спутников. Синими линиями показаны трассы орбит. Двумя верхними окружностями обозначены мгновенные зоны обзора двух смежных спутников в плоскости 1, разнесенными по аргументу широты на угол Δϕ. Третьей окружностью в орбитальной плоскости 2 показана соответствующая мгновенная зона обзора третьего спутника, сфазированного с первыми двумя. Пунктирными линиями показаны следы полос непрерывного обзора. Штриховкой обозначена область непрерывного обзора (связи), ограниченная минимальной и максимальной широтами.

На фиг. 2 изображен вид с полюса, обозначаемого точкой «Р», на СС связи и наблюдения, соответствующий предпочтительному варианту изобретения, когда максимальная широта непрерывного определяется точками пересечения полос непрерывного обзора соседних орбитальных плоскостей (точки Б и В) и соответствует пунктирной зеленой линии.

На чертежах приняты следующие обозначения:

Сj - ширина полосы j-кратного обзора;

θ - угол поля обзора спутника на поверхности Земли;

i - наклонение орбиты;

Δϕ - сдвиг по аргументу широты между спутниками в одной плоскости;

dϕ - угловой размер дуги между проекциями на поверхность Земли точки пересечения орбитальных плоскостей и точки пересечения их полос непрерывного обзора;

Ω12 - сдвиг по долготе между восходящими узлами первой и второй орбитальной плоскости;

ϕmax - максимальная широта непрерывного покрытия СС.

Осуществление изобретения

Спутниковая система связи и наблюдения приэкваториальных широт содержит множество искусственных спутников Земли, оснащенных бортовыми ретрансляторами с межспутниковой связью, и построена на нескольких орбитальных плоскостях, разнесенных по долготе восходящего узла на одинаковый угол, с равномерным распределением спутников в них, при этом, она построена всего на двух орбитальных плоскостях, развернутых по долготе восходящего узла на 180°, при этом спутники в первой орбитальной плоскости сфазированы со спутниками во второй и обеспечивают непрерывной связью абонентов и наблюдение в заданном приэкваториальном регионе покрытия, ограниченном максимальной широтой, с требуемой кратностью обзора.

Разнесение орбитальных плоскостей по долготе восходящего узла на угол 180°, согласно фиг. 1 и фиг. 2, позволяет обеспечить непрерывное покрытие региона, ограниченного требуемой минимальной и максимальной широтой. При этом количество спутников в каждой плоскости одинаково и определяется с учетом обеспечения заданной кратности непрерывного покрытия.

Пример. СС связи и наблюдения для приэкваториальных широт.

Предпочтительным вариантом изобретения является построение СС связи и наблюдения для приэкваториальных широт от 0° до 45°, согласно фиг. 1 и фиг. 2, позволяющее обеспечить непрерывную связь на обширной территории с населением порядка 70% от общей численности на Земле. Наклонение орбит для такой системы, согласно фиг. 1, может быть определено из соотношения:

Алгоритм решения для определения основных проектных параметров СС заключается в разрешении системы уравнений:

Порядок решения состоит в следующем. Задается кратность полосы непрерывного обзора j, максимальная широта покрытия ϕmax и количество спутников в системе N. Определяется число спутников S в орбитальной плоскости:

Фазовый сдвиг между положениями спутников в одной плоскости определяется в виде:

Рассогласование по фазе между спутниками смежных сонаправленных орбитальных плоскостей:

Задается первое приближение по величине полосы j - кратного обзора Сj, и методом последовательных приближений разрешается система уравнений (2), определяя само значение полосы j - кратного обзора Сj, угол поля обзора θ и наклонение i.

Аргумент широты спутника «S» в плоскости «Р», считая, что положения первых спутников в соседних плоскостях близки и идут по нарастанию аргумента широты, определим как:

Сдвиг по долготе между восходящими узлами орбитальных плоскостей составляет Ω12=180°.

Для указанного способа построения СС связи и наблюдения приэкваториальных широт в таблице 3 представлено сравнение с вариантами построения экваториальной системы и трехплоскостной СС согласно прототипу. Для всех вариантов систем, высота орбиты определяется из условия обеспечения минимальных углов возвышения спутника над местным горизонтом α=5°.

Как видно из таблицы 3, предлагаемый вариант построения двухплоскостной спутниковой системы связи и наблюдения приэкваториальных широт требует наименьшей высоты орбиты для обеспечения заданной кратности покрытия. Наиболее эффективно использование предлагаемого способа построения для СС однократного обзора с числом спутников не более 20, а также многократного обзора с числом спутников не более 50 при максимальной широте зоны покрытия свыше 30°. Еще одним отличительным преимуществом предлагаемого варианта построения СС связи и наблюдения приэкваториальных широт являются наибольшие значения наклонения орбит, что требует меньших энергетических затрат на выведение и развертывание системы при запуске с Российских космодромов, расположенных выше 50° с.ш.

Групповое выведение спутников в одну орбитальную плоскость осуществляется ракетой-носителем. На орбите выведения спутники отделяются и самостоятельно переводятся в рабочие фазовые положения, разнесенные по аргументу широты с шагом 360°/S, где S - количество спутников в одной орбитальной плоскости. Для запуска в каждую орбитальную плоскость используется минимум одна РН.

Современные возможности средств выведения и небольшие габариты самих спутников позволяют осуществить групповое выведение нескольких аппаратов на рабочую орбиту. С учетом использования для СС связи и наблюдения низких круговых орбит, за один запуск можно вывести 20-30 спутников массой до 300 кг. Это значительно удешевляет стоимость развертывания СС, которая наиболее существенно зависит от количества требуемых РН для доставки аппаратов на орбиту.

1. Спутниковая система связи и наблюдения приэкваториальных широт, содержащая множество искусственных спутников Земли, оснащенных бортовыми ретрансляторами с межспутниковой связью, и построенная на нескольких орбитальных плоскостях, разнесенных по долготе восходящего узла на одинаковый угол, с равномерным распределением спутников в них, отличающаяся тем, что она построена всего на двух орбитальных плоскостях, развернутых по долготе восходящего узла на 180°, при этом спутники в первой орбитальной плоскости сфазированы со спутниками во второй и обеспечивают непрерывной связью абонентов и наблюдение в заданном приэкваториальном регионе покрытия, ограниченном максимальной широтой, с требуемой кратностью обзора.

2. Спутниковая система связи и наблюдения по п. 1, построенная с максимальной широтой непрерывного покрытия выше 20°, что позволяет получить лучшую по критерию минимизации высоты полета спутниковую систему, чем система на экваториальной орбите.

3. Спутниковая система связи и наблюдения по п. 1, построенная таким образом, что при кратности обзора заданного региона два и более, когда в зоне связи с абонентами находится несколько спутников из системы, происходит распределение абонентов по разным спутникам.



 

Похожие патенты:

Изобретение относится к системе для переключения электронных связей между первой сетью и второй сетью, где первая сеть содержит одну из сотовой сети мобильной связи или спутниковой сети связи, а вторая сеть содержит другую из указанных сетей связи.

Изобретение относится к радиотехнике и связи и предназначено для определения координат неизвестного источника сигналов на земной поверхности в системах спутниковой связи, работающих через спутники на геостационарной орбите с прямой ретрансляцией сигналов.

Изобретение относится к способу и системе для осуществления связи полезной нагрузки спутника. Технический результат заключается в уменьшении количества транзитных участков спутниковой связи, необходимых для доставки данных.

Изобретение относится к способу и системе для осуществления связи полезной нагрузки спутника. Технический результат заключается в уменьшении количества транзитных участков спутниковой связи, необходимых для доставки данных.

Изобретение относится к помехоустойчивой радиосвязи, преимущественно к радиообмену пункта управления с беспилотным наземным или авиационным боевым аппаратом. Достигаемый технический вариант – повышение помехоустойчивости систем радиообмена, в частности с боевым летательным аппаратом, Указанный результат достигается за счет того, что в системе радиообмена один или оба приемопередатчика могут быть подвижны.

Изобретение относится к космической технике и может быть использовано при создании бортовых систем управления космических аппаратов (КА). Бортовая система управления космическим аппаратом (КА) содержит бортовую аппаратуру командно-измерительной системы (БА КИС) со средством защиты информации от несанкционированного доступа, циркулирующей в системе управления КА.

Изобретение относится к воздушному летательному аппарату, в частности к управлению информацией в воздушном летательном аппарате. Изобретение раскрывает устройство для предоставления доступа к информации, содержащее существующий узел воздушного летательного аппарата и информационный агент, размещенный в указанном существующем узле воздушного летательного аппарата.

Изобретение относится к области связи и касается тестирования полезной нагрузки орбитального спутника, в частности характеризации передающей антенны (506) орбитального спутника (100), который содержит полезную нагрузку (500), включающую средства (504, 505) усиления сигнала, средства (504, 505) усиления конфигурируют для генерирования теплового шума на входе передающей антенны (102, 506), при помощи наземной станции (103, 104) принимают сигнал, передаваемый передающей антенной (102, 506) по нисходящей линии связи спутника (100) в течение заранее определенного времени, в течение упомянутого заранее определенного времени орбитальным спутником (100) управляют таким образом, чтобы задавать ему угловое смещение с заранее определенным изменением и регистрировать это изменение, производят корреляцию сигнала, переданного по нисходящей линии связи, и изменения углового смещения спутника, чтобы на основании этого вывести изменения коэффициента усиления передающей антенны (102, 506) в зависимости от углового смещения спутника.

Изобретение относится к радионавигации, конкретно к приемникам сигналов спутниковых радионавигационных систем, предназначенным для использования в прецизионных дифференциально-фазовых системах позиционирования.

Изобретение относится к технике связи и может использоваться для предоставления услуг мобильной и фиксированной спутниковой связи. Технический результат состоит в увеличении гибкости использования системы, позволяя абонентам выбрать необходимый абонентский терминал исходя из своих потребностей в услугах связи и финансовых возможностей.

Изобретение относится к области ракетно-космической техники. В способе предстартовой подготовки ракеты-носителя (РН) на стартовом комплексе, включающем ее подъем из горизонтального положения и установку на пусковую установку в вертикальное положение, проводят вертикализацию РН.

Траектория полета двухступенчатой ракеты (1) периодически прогнозируется в течение полета, и прогнозируемая точка падения, когда блок (11) первой ступени ракеты или обтекатель (15) отделяется и отбрасывается от второй ступени (13) ракеты, периодически прогнозируется в каждой промежуточной запланированной точке на прогнозируемой траектории полета.

Изобретение относится к авиационной и ракетной технике и может быть использовано для отделения отсека летательного аппарата (ЛА). Система отделения отсека ЛА содержит устройство крепления отсека к ЛА по стыковочным шпангоутам, выполненное с возможностью расфиксации крепления, и устройство отделения, установленное на ЛА и снабженное толкателем.

Изобретение относится к области ракетной техники, а именно к устройствам обеспечения непрерывного контроля температуры заправленного окислителя в топливном баке ракеты космического назначения (РКН) «Союз-2».

Изобретение относится к космическим аппаратам (КА), создаваемым на базе CubeSat. КА содержит корпус в форме параллелепипеда, состоящий из боковых панелей (18а,…18г), закрепленных на шпангоуте (17) служебной аппаратуры в виде фрезерованной плиты.

Изобретение относится к летательным аппаратам (ЛА). ЛА содержит корпус с реактивным двигателем и цилиндром, размещенный в цилиндре поршень, углубление в корпусе, где размещен взаимодействующий с поршнем механический амортизатор, амортизационный упор в конце цилиндра, цилиндрический соленоид в конце углубления в корпусе, блок электропитания соленоидов внутри корпуса, выдающий электрические импульсы для втягивания поршня внутрь соленоида до начала амортизации и отталкивания поршня с корпусом после амортизации.

Изобретение относится к электротехническому оборудованию систем ориентации и стабилизации космических аппаратов (ИСЗ). Электромеханический исполнительный орган (ЭМИО) содержит маховик (1) с ротором (2) обращенного электродвигателя явнополюсного («когтевого») типа, имеющего статор (6) с трехфазной обмоткой (7).

Изобретение относится к ракетно-космической технике, а именно к конструкции двигательных модулей. Двигательный модуль космического летательного аппарата (КЛА) состоит минимум из двух шпангоутов и трех баков для топлива с верхними полюсными элементами, соединенными с верхним шпангоутом, и нижними полюсными элементами, являющимися опорами всего двигательного модуля, взаимодействующими с соответствующими опорами КЛА, минимум одного баллона высокого давления, ракетных двигателей и агрегатов управления.

Изобретение относится к устройствам разделения отсеков летательных аппаратов (ЛА). Узел разделения отсеков ЛА включает силовые элементы отсеков, соединяющий их болт, упорный элемент в посадочном месте хвостовой части тела болта со стороны его боковой поверхности, и сдвигаемый ограничитель положения упорного элемента, сообщенный с источником газа избыточного давления.

Изобретение относится к управлению относительным движением космического аппарата (КА). Разгрузка управляющих двигателей-маховиков (ДМ) в выбранном канале ориентации осуществляется по двухконтурной схеме.

Изобретение относится к космической технике и может быть использовано для выведения наноспутников на заданные траектории и с заданными скоростями с борта космических станций. Устройство отделения наноспутников состоит из электромеханической системы запуска магнитоиндукционного типа и электронного модуля управления ею. Устройство содержит сильноточный соленоид, помещенный в рабочий зазор системы постоянных неодимовых магнитов, состоящей из набора кольцевых магнитов и соосно установленного неодимового цилиндрического магнита, заключенных в корпус из магнитомягкого материала. Соленоид подключен через ключевое устройство к обмотке, соединенной с микропроцессором. Платы модуля управления размещены в вакуумированных отсеках, что дает возможность долговременной эксплуатации в открытом космосе. Устройство содержит автономную систему энергопитания, состоящую из аккумуляторов, солнечных панелей и контроллера их заряда, который управляется микропроцессором. Техническим результатом является повышение кинетической энергии при запуске отделяемого аппарата. 2 з.п. ф-лы, 2 ил.

Изобретение относится к спутниковым системам связи и наблюдения, использующим легкие спутники, которые функционируют на низких и средних околоземных орбитах и обеспечивают непрерывное региональное покрытие поверхности Земли. Технический результат состоит в обеспечении непрерывного покрытия приэкваториальных широт с заданной кратностью обзора при минимальной высоте и числе орбитальных плоскостей, спутников в них, а также количестве запусков для развертывания СС. Для этого спутниковая система связи содержит множество искусственных спутников Земли, оснащенных бортовыми ретрансляторами с межспутниковой связью, и построена на нескольких орбитальных плоскостях, разнесенных по долготе восходящего узла на одинаковый угол, с равномерным распределением спутников в них. СС построена всего на двух орбитальных плоскостях, развернутых по долготе восходящего узла на 180°, при этом спутники в первой орбитальной плоскости сфазированы со спутниками во второй и обеспечивают непрерывной связью абонентов и наблюдение в заданном приэкваториальном регионе покрытия, ограниченном максимальной широтой, с требуемой кратностью обзора. Технический результат от изобретения заключается в обеспечении непрерывного покрытия приэкваториальных широт с заданной кратностью обзора при минимальной высоте и числе орбитальных плоскостей, спутников в них, а также количестве запусков для развертывания СС. 2 з.п. ф-лы, 2 ил., 3 табл.

Наверх