Состав для удаления асфальтосмолопарафиновых отложений

Изобретение относится к нефтедобывающей промышленности. Состав для удаления асфальтосмолопарафиновых отложений, включающий углеводородную фракцию и кубовый остаток производства бутиловых спиртов, содержит углеводородную фракцию 85-163°C в смеси кубовым остатком производства бутиловых спиртов при следующих соотношениях, мас.%: углеводородная фракция 85-163°C 50-80, кубовый остаток производства бутиловых спиртов 20-50, указанную смесь подвергают непрерывному волновому воздействию с частотой 7,2 кГц. Технический результат - повышение растворяющей способности состава для удаления АСПО в «жестких условиях», расширение сырьевой базы и снижение себестоимости за счет исключения дефицитных добавок, которые являются сырьем нефтехимии. 2 пр., 3 табл.

 

Изобретение относится к нефтедобывающей промышленности.

Известен состав для растворения АСПО (Патент РФ №2098443), который содержит в мас.%: бензиновая фракция с содержанием предельных углеводородов C6-C8 не менее 50 мас.%, углеводородов нормального изостроения с числом углеродных атомов С4 в количестве 6,66-17,4 мас.% и С5 в количестве 18,45-29,89 мас.% - 25-75 и легкая пиролизная смола или этилбензольная фракция - 25-75. Недостатком указанного состава является относительно низкая эффективность удаления АСПО из добывающих скважин нефтяных месторождений, характеризующихся высоким содержанием смол, асфальтов и высокомолекулярных парафинов. Кроме того, компоненты данного состава являются ценным дефицитным нефтехимическим сырьем.

Известен состав для удаления АСПО (Патент РФ №2228432), содержащий углеводородную фракцию 70-165°C - растворитель, полученную из бензиновой фракций процесса реформинга с добавлением в нее 15,9-17,3% дициклопентана или указанную фракцию, полученную ректификацией жидких продуктов пиролиза, в состав которой входит 15,9-17,9% смеси циклопентана и дициклопентана, а также неогенные ПАВ ОП-7 и ОП-10 и ПАВ-неонолы и полярный неэлектролит, представленный алифатическими спиртами: метиловым, изопропиловым, н-бутиловым, изобутиловым. Компоненты состава взяты в соотношении, мас.%: растворитель 98,8-99,2, ПАВ 03-05, полярный неэлектролит 05-07.

Недостатком указанного состава является низкая эффективность удаления АСПО в так называемых «жестких условиях», когда при высоких температурах отложения образуют плотный слой на поверхности металла нефтепромыслового оборудования, магистральных нефтепроводов. Указанный состав содержит дорогостоящие и дефицитные компоненты ПАВ.

Наиболее близким к предлагаемому изобретению по технической сущности является состав для удаления асфальтосмолопарафиновых отложений - АСПО, содержащий смесь этилбензольной фракции - ЭБФ или бутилбензольной фракции - ББФ (отхода алкилирования бензола) и кубового остатка производства бутиловых спиртов - КОБС (Патент SU 1738814, 07.06.1992 г. Состав для восстановления приемистости водонагнетательных скважин).

Недостатком является низкая эффективность удаления АСПО в «жестких условиях», когда при высоких температурах отложения образуют плотный слой на поверхности металла нефтепромыслового оборудования, магистральных нефтепроводов.

Техническим результатом настоящего изобретения является повышение растворяющей способности состава для удаления АСПО в «жестких условиях», расширение сырьевой базы и снижение себестоимости за счет исключения из состава ПАВ и дефицитных добавок, которые являются сырьем нефтехимии.

Указанный технический результат достигается тем, что состав для удаления асфальтосмолопарафиновых отложений, включающий углеводородную фракцию и полярный неэлектролит, согласно изобретению содержит углеводородную фракцию 85-163°C в смеси с полярным неэлектролитом - кубовым остатком производства бутиловых спиртов при следующем соотношении компонентов:

- углеводородная фракция 85-163°C 50-80%,

- кубовый остаток производства бутиловых спиртов 20-50%.

При этом полученную смесь подвергают непрерывному волновому воздействию с частотой 7,2 кГц без присутствия поверхностно активных веществ.

Углеводородная фракция 85-163°C представляет собой смесь ароматических и непредельных углеводородов, является попутным продуктом, получаемым на этиленовых установках при пиролизе углеводородных газов, бензинов, дизельной фракции или их смесей со следующим составом (массовая доля в %): стирол - 1,7-7,0; 1,2,4-триметилбензол - 22-38,5; изопропилбензол - 0,2-0,4; ксилол - 14-21; дициклопентадиен - 10-16.

Непрерывное волновое воздействие смеси растворитель - полярный неэлектролит способствует увеличению емкости растворителя АСПО за счет наложения на жидкостной поток кавитационно-вихревого воздействия в замкнутом пространстве реакционного аппарата, реализуя переход от эффекта идеального вытеснения к эффекту идеального смешения фаз, что способствует увеличению растворяющей способности предлагаемого растворителя.

Кроме того, в качестве полярного неэлектролита используется кубовый остаток производства бутиловых спиртов, который является отходом этого производства.

Пример 1 (приготовление состава в лабораторных условиях).

В колбу емкостью 250 мл добавляют 125 г углеводородной фракции с температурой кипения 85-163°C, к ней добавляют 125 г полярного неэлектролита - кубового остатка производства бутиловых спиртов и подвергают диспергированию (непрерывной волновой обработке) с частотой 7,2 кГц в стационарном режиме. В качестве волнового излучателя используют гидроакустический аппарат непрерывного действия. Аналогичным образом готовят другие составы с различным соотношением ингредиентов в заявленных пределах (углеводородная фракция 85-163°C 50-80%, кубовый остаток производства бутиловых спиртов 20-50%).

При проведении лабораторных испытаний исследовали следующие свойства предлагаемого состава: эффективность удаления АСПО. Данные о составе используемых АСПО приведены в таблице 1.

Пример 2. Предлагаемые составы использовали на эффективность удаления АСПО по методу СТП-03-153-2001 «Методика лабораторная по определению растворяющей и удаляющей способности растворителей АСПО (метод Б). Для испытаний образцов АСПО, характеристика которых приведена в таблице 1, формировали шарики диаметром 10-12 мм, которые после взвешивания на аналитических весах на металлической сетке помещали в мерные цилиндры емкостью 25 мл, в который предварительно наливали 10 мл исследуемого растворителя. Испытания проводили 2 часа, при этом через каждые 15-30 минут фиксировали изменения физического состояния отложений. Если через 2 часа на сетке остались отложения, то их вынимали из растворителя, высушивали и взвешивали на аналитических весах.

Расчет эффективности проводили по формуле:

где m1 - масса отложений после эксперимента, г;

m - масса отложений, взятая для эксперимента, г.

Результаты приведены в таблицах 2 и 3.

Пример 3. Емкость растворения или насыщаемость состава по отношению к АСПО определяли по той же методике (метод В) следующим образом. На металлическую сетку с размером ячейки 2-4 мм2 помещали точно взвешенное количество АСПО массой 2 г. Затем сетку с отложениями помещали в мерный цилиндр емкостью 25 мл, в который приливали испытуемый растворитель объемом Y1 (10 мл), и оставляли на 30 минут. По истечении времени отложения на сетке вынимали, осматривали, затем вновь опускали в цилиндр и добавляли вновь растворитель объемом Y2 (5 мл). Через 30 минут сетку с отложениями вынимали, осматривали, затем вновь опускали в цилиндр, добавляя новую порцию растворителя объемом Y3 (5 мл). Эксперимент продолжили до полного растворения (диспергирования) отложений.

Емкость растворителя (насыщаемость АСПО) определяли по формуле:

где m - масса навески, г;

V - объем растворителя (V1+V2+…+Vn), см3;

1000 - переводной коэффициент, кг/м3.

Аналогично определяли емкость растворения каждого состава по отношению к испытуемым АСПО. Полученные результаты приведены в таблицах 2 и 3.

Как видно из этих таблиц, для эффективного удаления АСПО двух видов необходимо не более 2 часов. При этом, как показали эксперименты, уже через 1,5 часа АСПО всех типов удаляются предлагаемыми составами более чем на 90%. Что же касается состава по прототипу, то для эффективного удаления двух типов АСПО требуется более 2 часов, а через 2 часа эффективность удаления не превышает 70%. При этом емкость известного состава по отношению к АСПО всех двух типов в 1,2-1,5 раз ниже, чем в предлагаемых растворителях.

Результаты исследования составов, приготовленных по примеру 1, показали, что при заявленных соотношениях компонентов (углеводородная фракция 85-163°C 50-80%, кубовый остаток производства бутиловых спиртов 20-50%) эффективность растворения АСПО превышает результаты по прототипу.

Состав для удаления асфальтосмолопарафиновых отложений, включающий углеводородную фракцию и кубовый остаток производства бутиловых спиртов, отличающийся тем, что содержит углеводородную фракцию 85-163°C в смеси кубовым остатком производства бутиловых спиртов при следующих соотношениях, мас.%: углеводородная фракция 85-163°C 50-80, кубовый остаток производства бутиловых спиртов 20-50, указанную смесь подвергают непрерывному волновому воздействию с частотой 7,2 кГц.



 

Похожие патенты:

Группа изобретений относится к извлечению нефти из пласта. Технический результат – добыча приблизительно 60 % нефти, оставшейся в керне после заводнения.

Изобретение относится к нефтегазодобывающей промышленности, а именно к расширяющимся тампонажным материалам, и может быть использовано при цементировании межколонного пространства в нефтяных и газовых скважинах, а также к строительной сфере для крепления элементов строительных конструкций, анкерных болтов, элементов декора.

Изобретение относится к разработке жидких полезных ископаемых, таких как нефть, природный газ, сланцевый газ. Способ приготовления самосуспендирующегося проппанта, характеризующийся тем, что содержит шаги: использование в качестве наполнителя одного или более из материалов: кварцевый песок, керамзит, металлические частицы, сферические частицы стекла, спеченный боксит, спеченный глинозем, спеченный цирконий, синтетическая смола, плакированный песок и частицы измельченной ореховой скорлупы, нагрев наполнителя до 50-300°С, охлаждение до температуры ниже 240°С, добавление адгезива в количестве 0,5-15 мас.% от массы наполнителя и перемешивание, когда температура полученной смеси снижается до температуры ниже 150°С, добавление водорастворимого полимерного материала в количестве 0,1-5 мас.% от массы наполнителя и перемешивание, металлическая частица выполняется из одного или более следующих материалов: углеродистая сталь, нержавеющая сталь, алюминиевый сплав, железоникелевый сплав и ферромарганцевый сплав, водорастворимый полимерный материал выбирается из натурального полимерного, синтетического полимерного или полунатурального полусинтетического полимерного материала, который разбухает или быстро растворяется в воде, адгезив содержит все материалы, имеющие функции адгезива, содержащие натуральный адгезив и синтетический адгезив, натуральный адгезив содержит животный клей, растительную камедь и минеральный клей, животный клей выбирают из одного или более веществ: кожный клей, костяной клей, шеллак, казеиновый клей, альбуминовый клей и рыбный клей, растительная камедь выбирают из одного или более веществ: крахмал, декстрин, терпентин, тунговое масло, аравийская камедь и натуральный каучук, минеральный клей выбирают из одного или более веществ: минеральный воск и асфальт, синтетический адгезив выбирают из одного или более веществ: фенольная смола, эпоксидная смола, ненасыщенная полиэфирная смола и гетероциклический полимерный адгезив.

Изобретение относится к нефтяной промышленности. Технический результат - повышение надежности реализации способа; повышение качества обработки призабойной зоны пласта с одновременным снижением затрат на реализацию и упрощением технологи.

Изобретение относится к нефтедобывающей промышленности, в частности к способам добычи нефти из неоднородного нефтяного пласта путем регулирования охвата пласта заводнением и перераспределения фильтрационных потоков.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при кислотной обработке призабойной зоны карбонатного пласта. Технический результат - повышение эффективности проведения кислотной обработки карбонатного пласта за счет снижения коррозионной активности по отношению к промысловому оборудованию, выполненному из стали, и повышение растворяющей способности кислотного состава по отношению к карбонатному пласту.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва продуктивного пласта, расположенного между породами-неколлекторами - глинистыми прослоями.

Группа изобретений относится к нефтедобывающей промышленности. Технический результат - направленное термохимическое воздействие на нефтенасыщенные пропластки, подключение в разработку ранее не охваченных нефтенасыщенных, низкопроницаемых зон пласта, увеличение охвата пласта тепловым воздействием, повышение нефтеотдачи пласта.

Изобретение относится к нефтедобывающей промышленности, в частности к способам обработки призабойной зоны добывающей скважины или скважины, переведенной в нагнетательную из добывающей скважины, работа которых осложнена выпадением парафиновых асфальто-смолистых веществ (АСВ) в призабойной зоне.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано в кислотных обработках призабойной зоны скважин, разглинизации пласта и удалении солеотложений.

Изобретение относится к производству керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче углеводородов методом гидравлического разрыва пласта. Шихта для производства легковесных керамических проппантов содержит 90,0-99,5 мас.% природного песка и 0,5-10 мас.% цементного клинкера и/или цемента. Легковесный кремнеземистый проппант, изготовленный из указанной шихты, характеризуется пониженной насыпной плотностью до 1,4 г/см3 и демонстрирует пониженную разрушаемость под нагрузкой 10000 psi. 2 н.п. ф-лы, 1 табл.

Настоящее изобретение касается способа получения гидрофобно-ассоциирующих макромономеров М и новых макромономеров. Описан способ получения макромономера М общей формулы (I) ,причем структурные единицы (-СН2-СН2-O-)k и (-CH2-CH(R3)-O-)l и при необходимости -(-СН2-СН2-O-)m в блочной структуре располагаются в представленной в формуле (I) последовательности, причем остатки и индексы имеют следующие значения: k это число от 10 до 150; l это число от 5 до 25; m это число от 0 до 15; R1 это Н; R2 независимо друг от друга представляет собой двухвалентную соединительную группу -O-(Cn'H2n')-, причем n' означает натуральное число от 3 до 5; R3 независимо друг от друга представляет собой углеводородный остаток с 2-14 атомами углерода, с тем условием, что сумма атомов углерода во всех углеводородных остатках R3 находится в пределах от 15 до 50; R4 представляет собой Н, включающий в себя следующие этапы: a) реакция моноэтилен-ненасыщенного спирта А1 общей формулы (II) ,с этиленоксидом, причем остатки R1 и R2 имеют заданные выше значения; с добавлением щелочного катализатора K1, содержащего KOMe и/или NaOMe; причем получают алкоксилированный спирт А2; b) реакция алкоксилированного спирта А2 по меньшей мере с одним алкиленоксидом Z формул (Z), причем R3 имеет заданное выше значение; с добавлением щелочного катализатора K2, причем катализатор К2 содержит по меньшей мере одно основное соединение натрия, выбранное из NaOH, NaOMe и NaOEt; причем концентрация ионов калия при реакции на этапе b) меньше или равна 0,9 моль% относительно использованного спирта А2; и причем реакцию на этапе b) проводят при температуре, меньшей или равной 135°С, причем получают алкоксилированный спирт A3 согласно формуле (III), ,где R4=Н, причем остатки R1, R2 и R3 и индексы k и l имеют заданные выше значения; c) при необходимости - реакция по меньшей мере части алкоксилированного спирта A3 с этиленоксидом, причем получают алкоксилированный спирт А4, который соответствует макромономеру М согласно формуле (I), где R4=Н, a m больше 0. Также описан макромономер, полученный указанным выше способом. Технический результат – получение гидрофобно-ассоциирующих макромономеров, обладающих малым количеством групп, создающих поперечную сшивку, и которые можно полимеризовать с получением сополимеров с малым количеством гелей. 4 н. и 15 з.п. ф-лы, 1 табл., 30 пр.

Изобретение относится к помещаемому в воду формованному полимерному изделию для получения текучей среды для гидравлического разрыва пласта при бурении и способу изготовления его. Помещаемое в воду формованное полимерное изделие имеет структуру дисперсии, в которой гидролизующийся полимер диспергируется в матрице водорастворимого полимера. Гидролизующийся полимер диспергирован в матрице в гранулированной или волокнистой форме. Матрица водорастворимого полимера содержится в количестве, составляющем от 10 до 150 массовых частей в расчете на 100 массовых частей гидролизующегося полимера. Формованное полимерное изделие может упрощать операцию смешивания с водой без ухудшения свойств гидролизующегося полимера. 2 н. и 6 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Изобретение относится к области строительства и ремонта нефтегазовых скважин, а именно к вспененным тампонажным материалам, применяемым при креплении обсадных колонн. Технический результат заключается в снижении реологических и фильтрационных свойств тампонажного раствора, а также в повышении его растекаемости и стабильности, при одновременном повышении прочности образующегося тампонажного камня. Пеноцементный тампонажный материал включает портландцемент, ускоритель схватывания - водорастворимые соли кальция, гидроксиэтилцеллюлозу, пенообразующее поверхностно-активное вещество ПАВ - оксиэтилированные жирные спирты, добавку и воду, при этом в качестве добавки материал содержит адгезионную добавку - латекс редиспергируемый, и понизитель водоотдачи - полимер на основе 2-акрил-2-метилпропан сульфокислоты, а в качестве ПАВ - оксиэтилированные жирные спирты со степенью оксиэтилирования 6-12 и числом метиленовых групп 10-20, при следующем соотношении компонентов, мас.ч: портландцемент 100; ускоритель схватывания 1,0-3,0; гидроксиэтилцеллюлоза 0,1-0,2; указанное ПАВ 0,2-0,4; указанная адгезионная добавка 1,0-5,0; указанный понизитель водоотдачи 0,4-0,6; вода 48-50. Изобретение развито в зависимых пунктах формулы изобретения. 6 з.п. ф-лы, 3 табл.

Изобретение относится к извлечению углеводородов из подземного пласта. Способ извлечения углеводородов из подземного пласта, включающий формирование суспензии, содержащей флюид-носитель и реакционно-способные наночастицы, каждая из которых содержит ядро, содержащее один или более из следующих металлов: Mg, Mn и Zn, и оболочку из оксида алюминия, наносимую на и полностью инкапсулирующую ядро, ядро является более реакционно-способным экзотермически реагировать с водой, чем оболочка из оксида алюминия, подачу суспензии в подземный пласт, содержащий углеводородный материал с образованием эмульсии, стабилизированной реакционно-способными наночастицами и содержащей диспергированную фазу из углеводородного материала и непрерывную фазу из водного материала, экзотермическую реакцию по крайней мере части реакционно-способных наночастиц по крайней мере с водным материалом внутри подземного пласта, при этом образуется обработанный углеводородный материал из углеводородного материала, и извлечение обработанного углеводородного материала из подземного пласта. Способ извлечения углеводородов из подземного пласта, включающий выбор дискретных покрытых наночастиц, каждая из которых содержит ядро, содержащее сплав металла, реакционно-способного экзотермически реагировать с водой, и оболочку, содержащую органический материал менее реакционно-способный экзотермически реагировать с водой, чем сплав металла, выбор жидкости из группы, состоящей из нефти и неполярной органической жидкости, выбор по меньшей мере одной добавки из группы, состоящей из катализатора наночастиц, поверхностно-активного вещества, эмульгатора, ингибитора коррозии, диспергирующего агента, ингибитора отложений, растворителя отложений, противовспенивателя и биоцидного агента, смешивание дискретных покрытых наночастиц с жидкостью и по меньшей мере одной добавкой для формирования суспензии, в основном состоящей из дискретных, покрытых наночастиц, жидкости и по меньшей мере одной добавки, закачивание суспензии в подземный пласт, содержащий углеводородный материал, прикрепленный к внутренним поверхностям подземного пласта, изменение по крайней мере одного из следующих параметров: температура, значение рН, состав материала и давление в подземном пласте, обеспечивает реакцию по крайней мере части дискретных, покрытых наночастиц с водным материалом и формирование стабилизированной эмульсии, включающей обработанный углеводородный материал, и извлечение стабилизированной эмульсии из подземного пласта. Способ обработки углеводородного материала в подземном пласте, включающий формирование суспензии, состоящей из дискретных функционализированных наночастиц, способных экзотермически реагировать с водой, каждая из дискретных функционализированных наночастиц содержит ядро, содержащее сплав Mg или безводный AlCl3, оболочку, наносимую на и полностью инкапсулирующую ядро, и включающую оксид алюминия, функциональные группы, прикрепляются к оболочке и выбираются из группы, состоящей из карбоксильных групп, групп простого эфира, кетоновых групп, аминогруппы, гидроксильной группы, алкоксигруппы, алкильных группы, арильных групп, аралкильных групп, алкарильных групп, группы лактона, имидазольной группы, пиридиновой группы и фторированной группы, и жидкости, выбранной из группы, состоящей из пресной воды, морской воды, добываемой воды, солевого раствора, водной пены и смеси воды и спирта, доставку суспензии в межпоровые пространства подземного пласта, содержащего углеводородный материал, при этом образуется эмульсия, стабилизированная дискретными функционализированными наночастицами, и реакцию по крайней мере части дискретных функционализированных наночастиц стабилизированной эмульсии внутри подземного пласта для выделения тепла и изменения по крайней мере одного свойства углеводородного материала. Изобретение развито в зависимых пунктах формулы. Технический результат – повышение эффективности извлечения углеводородов. 3 н. и 14 з.п. ф-лы, 1 ил.

Изобретение относится к нефтяной и газовой промышленности. Технический результат - оптимизация структурно-реологических свойств бурового раствора, обеспечение безаварийного бурения глубоких скважин в условиях, характеризующихся высокими забойными температурами и аномально высокими пластовыми давлениями. Буровой раствор для вскрытия пластов с аномально высокими забойными температурами и пластовыми давлениями содержит, мас.%: минеральное масло ВМГЗ 56,13-59,50; альфа-олефины фракции С12-С14 18,71-21,60; органобентонит BENTOLUX ОВМ 1,82-2,18; синтетический полимерный латекс 2,58-3,02; эмульгатор MP-150 2,61-3,09; оксид кальция СаО 0,39-2,38; 30%-ный водный раствор хлорида кальция CaCl2 7,44-15,32; гидрофобизатор АБР-40 1,86-2,14 и галенитовый утяжелитель - до необходимой плотности сверх 100 мас.%. 2 ил., 1 табл.

Изобретение относится к нефтегазодобывающей промышленности, а именно к расширяющимся тампонажным материалам, и может быть использовано при цементировании межколонного пространства в нефтяных и газовых скважинах, а также к строительной сфере для крепления элементов строительных конструкций, анкерных болтов, элементов декора. Технический результат - увеличение линейного расширения, прочности при сжатии. Состав тампонирующего действия содержит смесь портландцемента и тампонажного портландцемента, кварцевый песок с размером зерен не более 2,5 мм, предварительно обработанный потоком ускоренных электронов с величиной поглощенной дозы 600 кГр, при следующем соотношении компонентов, мас. %: портландцемент 24-29, тампонажный портландцемент 3-5, указанный кварцевый песок с размером зерен не более 2,5 мм 68-71. 1 табл.

Изобретение относится к безглинистым буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении продуктивных пластов и неустойчивых глинистых пород в условиях воздействия высоких температур до 160°C. Технический результат изобретения - повышение термостойкости раствора при бурении продуктивных пластов и неустойчивых глинистых пород в условиях воздействия температуры до 160°C. Катионный буровой раствор содержит, мас.%: сополимер Силфок 2540С, полученный сополимеризацией из смеси мономеров - хлорида диаллилдиметиламмония и малеинового ангидрида в соотношении от 99:1 до 92:8, 5-7; сульфат алюминия 10-15; каустическую соду 3,6-5,4; катионный полимер на основе дадмаха - Flodrill DB 45CR 0,5-1; воду - остальное. 1 табл.

Изобретение относится к флюиду для обработки скважин для повышения добычи углеводородов из пласта и способам его использования. Флюид для обработки скважин, включающий сшиватель - ацетилацетонат циркония, растворенный в растворителе - бензиловом спирте, и гидратируемый полимер, способный к гелеобразованию в присутствии ацетилацетоната циркония. Способ интенсификации подземного пласта, через который проходит скважина, включающий закачивание в скважину указанного выше флюида. Способ интенсификации подземного пласта, через который проходит скважина, заключающийся в том, что в скважину закачивают флюид для обработки скважин, включающий ацетилацетонат циркония, растворенный в смеси бензилового спирта и 2,2-диметил-1,3-диоксолан-4(ил)-метанола, и гидратируемый полимер, способный к гелеобразованию в присутствии сшивающего агента - ацетилацетоната циркония, и замедляют сшивку флюида для обработки скважин, пока температура внутри скважины составляет по крайней мере 100°F. Изобретение развито в зависимых пунктах формулы. Технический результат – повышение эффективности обработки. 3 н. и 21 з.п. ф-лы, 4 пр., 4 ил.

Изобретение относится к нефтяной и газовой промышленности. Технический результат - улучшение качества утяжеленного бурового раствора, оптимизация структурно-реологических свойств, безаварийное бурение глубоких скважин в условиях высоких пластовых давлений и температур. Утяжеленный минерализованный безглинистый буровой раствор содержит, мас.%: формиат натрия 37-42; полисахарид ксанатанового типа «StabVisco-F» 0,27-0,32; модифицированный крахмал «МК-3» 0,84-1,06; гидрофобизирующая жидкость ГКЖ-11 0,69-1,01; смазывающую добавку «Экстра-С» 1,63-1,97; воду - остальное; утяжеляющую добавку - галенитовый утяжелитель до плотности 1900-2600 кг/м3 сверх 100 мас.%. 2 ил., 1 табл.
Наверх