Способ формирования цифроаналогового сигнала угловой стабилизации нестационарного объекта управления и устройство для его осуществления

Группа изобретений относится к способу и устройству формирования цифроаналогового сигнала угловой стабилизации нестационарного объекта управления. Для формирования сигнала угловой стабилизации задают цифровой сигнал углового положения, измеряют цифровой сигнал углового положения, формируют его запаздывание, измеряют аналоговый сигнал угловой скорости, формируют цифровой сигнал рассогласования и преобразовывают его в аналоговый сигнал, формируют выходной сигнал угловой скорости, измеряют сигнал скоростного напора, формируют ограничение сигнала запаздывания определенным образом, задают сигнал минимального скоростного напора, выставляют минимальный уровень сигнала ограничения суммарного сигнала при значениях скоростного напора, равных или меньше, чем минимальное. Устройство содержит цифровой датчик угла, датчик угловой скорости, цифровой задатчик угла, цифровой блок сравнения, цифроаналоговый преобразователь, суммирующий усилитель, исполнительное устройство, элемент запаздывания, датчик скоростного напора, три адаптивных ограничителя сигнала, однополярный релейный элемент, управляемый ключ, задатчик сигнала минимального скоростного напора, соединенные определенным образом. Обеспечивается повышение точности и качества управления нестационарным объектом управления. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к бортовым системам автоматического управления существенно нестационарными объектами управления в условиях широкого диапазона их применения.

Наиболее близким к предлагаемому изобретению является способ формирования сигнала угловой стабилизации нестационарного объекта управления, заключающийся в том, что задают цифровой сигнал углового положения, измеряют цифровой сигнал углового положения, формируют запаздывание сигнала углового положения, измеряют аналоговый сигнал угловой скорости, формируют цифровой сигнал рассогласования, преобразовывают цифровой сигнал рассогласования в аналоговый сигнал, формируют выходной сигнал суммированием преобразованного сигнала рассогласования и сигнала угловой скорости, измеряют сигнал скоростного напора, формируют ограничение А1 сигнала запаздывания в адаптивной функции по обратно пропорциональной зависимости от сигнала скоростного напора, формируют ограничение А2 заданного цифрового сигнала углового положения в адаптивной функции по обратно пропорциональной зависимости от сигнала скоростного напора, при этом цифровой сигнал рассогласования формируют как разность между сформированными ограниченными сигналами [1].

Наиболее близким к предлагаемому изобретению является устройство угловой стабилизации нестационарного объекта управления, содержащее цифровой датчик угла, датчик угловой скорости, цифровой задатчик угла, последовательно соединенные цифровой блок сравнения, цифроаналоговый преобразователь и суммирующий усилитель, второй вход которого соединен с выходом датчика угловой скорости, исполнительное устройство, элемент запаздывания обратной связи, вход которого соединен с выходом цифрового датчика угла, датчик скоростного напора, выход которого соединен с первым входом первого и с первым входом второго адаптивных ограничителей сигнала, второй вход первого адаптивного ограничителя сигнала соединен с выходом цифрового задатчика угла, а выход - со входом цифрового блока сравнения, второй вход второго адаптивного ограничителя сигнала соединен с выходом элемента запаздывания обратной связи, а выход - со вторым входом цифрового блока сравнения [1].

Недостатками известных решений являются колебательность процессов, ограниченные функциональные возможности и невысокая точность управления.

Техническим результатом в предложенных способе и устройстве является расширение функциональных возможностей, повышение точности управления, уменьшение колебательности координат процессов управления и повышение показателей качества в условиях широкого диапазона параметров нестационарного объекта управления.

Указанный технический результат достигается тем, что в известный способ формирования цифроаналогового сигнала угловой стабилизации нестационарного объекта управления, заключающийся в том, что задают цифровой сигнал углового положения, измеряют цифровой сигнал углового положения, формируют запаздывание сигнала углового положения, измеряют аналоговый сигнала угловой скорости, формируют цифровой сигнал рассогласования, преобразовывают цифровой сигнал рассогласования в аналоговый сигнал, формируют выходной сигнал суммированием преобразованного сигнала рассогласования и сигнала угловой скорости, измеряют сигнал скоростного напора, формируют ограничение А1 сигнала запаздывания в адаптивной функции по обратно пропорциональной зависимости от сигнала скоростного напора q, формируют ограничение А2 заданного цифрового сигнала углового положения в адаптивной функции по обратно пропорциональной зависимости от сигнала скоростного напора q, при этом цифровой сигнал рассогласования формируют как разность между сформированными ограниченными сигналами, дополнительно задают сигнал минимального скоростного напора qmin, формируют сигнал коммутации управляемого ключа и выставляют минимальный уровень сигнала ограничения суммарного сигнала при условии q≤qmin.

Технический результат достигается так же и тем, что в устройство формирования цифроаналогового сигнала угловой стабилизации нестационарного объекта управления, содержащее цифровой датчик угла, датчик угловой скорости, цифровой задатчик угла, последовательно соединенные цифровой блок сравнения, цифроаналоговый преобразователь и суммирующий усилитель, второй вход которого соединен с выходом датчика угловой скорости, исполнительное устройство, элемент запаздывания обратной связи, вход которого соединен с выходом цифрового датчика угла, датчик скоростного напора, выход которого соединен с первым входом первого и с первым входом второго адаптивных ограничителей сигнала, второй вход первого адаптивного ограничителя сигнала соединен с выходом цифрового задатчика угла, а выход - со входом цифрового блока сравнения, второй вход второго адаптивного ограничителя сигнала соединен с выходом элемента запаздывания обратной связи, а выход - со вторым входом цифрового блока сравнения, дополнительно введены последовательно соединенные однополярный релейный элемент, управляемый ключ, третий адаптивный ограничитель сигнала, второй вход которого соединен с выходом суммирующего усилителя, а выход - со входом исполнительного устройства, и задатчик сигнала минимального скоростного напора, подключенный ко второму входу управляемого ключа, при этом вход однополярного релейного элемента соединен с выходом датчика скоростного напора.

Действительно, при этом решении обеспечивается отработка сигналов управления в широком диапазоне изменения высоты, скорости полета и массы нестационарного объекта управления посредством реализации части устройства управления на основе бортовой цифровой вычислительной машины с использованием полного ресурса рулей объекта управления.

Предлагаемые способ и устройство имеют цифровую и аналоговую части, и для их сочетания введен цифроаналоговый преобразователь.

На чертеже представлена блок-схема предложенного устройства формирования сигнала угловой стабилизации с реализацией предложенного способа.

Устройство формирования цифроаналогового сигнала угловой стабилизации нестационарного объекта управления содержит цифровой датчик угла 1 (ЦДУ), датчик угловой скорости 2 (ДУС), цифровой задатчик угла 3 (ЦЗУ), последовательно соединенные цифровой блок сравнения 4 (ЦБС), цифроаналоговый преобразователь 5 (ЦАП) и суммирующий усилитель 6 (СУ), второй вход которого соединен с выходом датчика угловой скорости 2, исполнительное устройство 7 (ИУ). Вход элемента запаздывания обратной связи 8 (ЭЗОС) соединен с выходом цифрового датчика угла 1. Выход датчика скоростного напора 9 (ДСН) соединен с первым входом первого 10 (1АОС) и с первым входом второго 11 (2АОС) адаптивных ограничителей сигнала. Второй вход первого адаптивного ограничителя сигнала 10 соединен с выходом цифрового задатчика угла 3, а выход - со входом цифрового блока сравнения 4. Второй вход второго адаптивного ограничителя сигнала 11 соединен с выходом элемента запаздывания обратной связи 8, а выход - со вторым входом цифрового блока сравнения 4. Устройство содержит последовательно соединенные однополярный релейный элемент 12 (ОРЭ), управляемый ключ 13 (УК), третий адаптивный ограничитель сигнала 14 (3АОС), вход которого соединен с выходом суммирующего усилителя 6, а выход - со входом исполнительного устройства 7. Выход задатчика сигнала минимального скоростного напора 15 (ЗСМСН) подключен ко второму входу управляемого ключа 13. Вход однополярного релейного элемента 12 соединен с выходом датчика скоростного напора 9.

Аналоговая часть устройства включает в себя датчик угловой скорости 2, исполнительное устройство 7 и суммирующий усилитель 6. Цифровые блоки основного контура - это датчик угла 1, задатчик угла 3, блок сравнения 4. Блок 5 - цифроаналоговый преобразователь.

Устройство формирования сигнала угловой стабилизации нестационарного объекта управления работает следующим образом.

Сигнал управления σ для подачи на исполнительное устройство 7 формируется датчиками и блоками 1÷6, 8, 10 в соответствии с законом управления:

где К1, К2 - передаточные числа блока 6;

ωϕ - сигнал угловой скорости на выходе блока 2;

Δϕ - сигнал рассогласования, формируемый в блоке 4:

здесь ϕ - сигнал на выходе блока 11;

ϕзад - сигнал задающего воздействия, подается от задатчика угла 3;

τэз - время задержки элемента запаздывания 8.

Сигнал угла выдается датчиком угла 1, сигнал угловой скорости ωϕ выдается датчиком угловой скорости 2, и сигнал задающего воздействия ϕзад формируется задатчиком угла 3. Коэффициенты К1 и К2 и сигнал σ формируются в суммирующем усилителе 6. Цифроаналоговый преобразователь 5 преобразует цифровой сигнал с выхода блока 4 в аналоговую форму.

Для надежного и корректного полного использования ресурса рулей формируется ограничение передаточного числа блока 14 на выходе суммирующего усилителя 6 при достижении значения скоростного напора q минимального значения qmin, заданного в блоке 15. При достижении q≤qmin блоком 12 вырабатывается сигнал, замыкающий контакт управляемого ключа 13, сигнал с выхода которого подается на блок 14 для ограничения сигнала с выхода блока 6. Благодаря изложенному в критической ситуации (при q≤qmin) сохраняется максимальное необходимое значение ограничения сигнала управления для исполнительного устройства 7 нестационарного объекта управления.

Исполнительное устройство 7 отрабатывает суммарный аналоговый управляющий сигнал σ, отклоняя рули объекта на величину δ. При достижении ограничений сигналов с блоков 10 и 11 в функции скоростного напора от датчика 9 рассогласование равно нулю, что обеспечивает уменьшение колебательности процессов и уменьшение времени переходного процесса.

Значительная часть устройства управления несложно реализуется алгоритмически, все звенья и блоки могут быть также реализованы на элементах автоматики и вычислительной техники, например по [2].

Предложенные способ формирования цифроаналогового сигнала угловой стабилизации нестационарного объекта управления и устройство для его осуществления позволяют расширить функциональные возможности устройства и повысить точность управления.

Источники информации

1. Патент РФ №2601089, G05D 1/08, 29.09.2015.

2. А.У. Ялышев, О.И. Разоренов. Многофункциональные аналоговые регулирующие устройства автоматики. М.: Машиностроение, 1981, с. 107, 126.

1. Способ формирования цифроаналогового сигнала угловой стабилизации нестационарного объекта управления, заключающийся в том, что задают цифровой сигнал углового положения, измеряют цифровой сигнал углового положения, формируют запаздывание сигнала углового положения, измеряют аналоговый сигнала угловой скорости, формируют цифровой сигнал рассогласования, преобразовывают цифровой сигнал рассогласования в аналоговый сигнал, формируют выходной сигнал суммированием преобразованного сигнала рассогласования и сигнала угловой скорости, измеряют сигнал скоростного напора, формируют ограничение А1 сигнала запаздывания в адаптивной функции по обратно пропорциональной зависимости от сигнала скоростного напора q, формируют ограничение А2 заданного цифрового сигнала углового положения в адаптивной функции по обратно пропорциональной зависимости от сигнала скоростного напора q, при этом цифровой сигнал рассогласования формируют как разность между сформированными ограниченными сигналами, отличающийся тем, что задают сигнал минимального скоростного напора qmin, формируют сигнал коммутации управляемого ключа и выставляют минимальный уровень сигнала ограничения суммарного сигнала при условии q≤qmin.

2. Устройство формирования цифроаналогового сигнала угловой стабилизации нестационарного объекта управления, содержащее цифровой датчик угла, датчик угловой скорости, цифровой задатчик угла, последовательно соединенные цифровой блок сравнения, цифроаналоговый преобразователь и суммирующий усилитель, второй вход которого соединен с выходом датчика угловой скорости, исполнительное устройство, элемент запаздывания обратной связи, вход которого соединен с выходом цифрового датчика угла, датчик скоростного напора, выход которого соединен с первым входом первого и с первым входом второго адаптивных ограничителей сигнала, второй вход первого адаптивного ограничителя сигнала соединен с выходом цифрового задатчика угла, а выход - со входом цифрового блока сравнения, второй вход второго адаптивного ограничителя сигнала соединен с выходом элемента запаздывания обратной связи, а выход - со вторым входом цифрового блока сравнения, отличающееся тем, что в него дополнительно введены последовательно соединенные однополярный релейный элемент, управляемый ключ, третий адаптивный ограничитель сигнала, второй вход которого соединен с выходом суммирующего усилителя, а выход - со входом исполнительного устройства, и задатчик сигнала минимального скоростного напора, подключенный ко второму входу управляемого ключа, при этом вход однополярного релейного элемента соединен с выходом датчика скоростного напора.



 

Похожие патенты:

Изобретение относится к области сельскохозяйственного машиностроения, в частности к устройствам автоматизации движения машинно-тракторных агрегатов. Индуктор сельскохозяйственный навигационный для создания переменных магнитных полей, программирующих плановые траектории роботизированных машинно-тракторных агрегатов, выполнен в виде двух идентичных контуров с гоновыми проводами и перемычками между ними.

Изобретение относится к области сельскохозяйственного машиностроения, в частности к устройствам автоматизации управления движением машинно-тракторных агрегатов.

Изобретение относится к области авиации, в частности к системам управления летательными аппаратами. Элемент привода автопилота включает в себя первый и второй электродвигатели, содержащие вращающиеся выходные валы таким образом, что любой один или оба из электродвигателей могут приводить в движение выходной вал элемента привода.

Многофункциональный комплекс бортового оборудования вертолета содержит пульт-вычислитель навигационный с приемником спутниковой связи (1), систему автоматического управления (2), систему электронной индикации (3), навигационную систему (4), включающую в себя устройство определения крена, тангажа и курсоуказатель, вычислитель воздушных сигналов (5), радиотехническое оборудование (6), включающее в себя автоматический радиокомпас, аппаратуру навигации и посадки, радиосвязное оборудование (7), радиовысотомер малых высот (8), защищенный бортовой накопитель (9), метеонавигационную радиолокационную систему (11), генератор цифровых карт (13) и группу резервных приборов (10), включающую в себя указатель приборной скорости, два авиагоризонта, спутниковую антенну (14), обеспечивающую передачу сигнала на соответствующий вход пульта-вычислителя навигационного (1) и соответствующий вход генератора цифровых карт (13).

Система управления направлением движения транспортного средства включает в себя два отдельных устройства привязки; лазерное сканирующее устройство, выполненное с возможностью испускать сигналы лазерного луча и сканировать секторную область лазерным лучом, с тем чтобы измерять расстояние по прямой соединительной линии для соединения лазерного сканирующего устройства с любым из по меньшей мере двух отдельных устройств привязки и угол между соответствующей прямой соединительной линией и корпусом транспортного средства у транспортного средства или угол между прямыми соединительными линиями; процессор, выполненный с возможностью обрабатывать и сохранять данные и определять, является или нет ориентация корпуса транспортного средства в реальном времени отклоняющейся от начальной ориентации корпуса транспортного средства сразу после того, как система начинает работать, в соответствии с результатами, считанными лазерным сканирующим устройством.

Группа изобретений относится к области автоматического управления, в частности к способам управления тележкой с противовесом. Способ управления тележкой с противовесом, при котором выявляют тип препятствия впереди тележки с противовесом, путем измерения высоты препятствия впереди тележки с противовесом.

Система мониторинга маршрутов движения сельскохозяйственных машин при выполнении полевых работ содержит блок приема транзакций с датчиков географического положения сельскохозяйственных машин, блок идентификации датчиков географического положения сельскохозяйственных машин, блок выдачи адресов записей маршрутов движения сельскохозяйственных машин, блок приема данных реквизитов маршрутов движения сельскохозяйственных машин из базы данных сервера системы, первый блок идентификации координат географического положения сельскохозяйственных машин, второй блок идентификации координат географического положения сельскохозяйственных машин, блок коммутации и выдачи данных на информационные входы сельскохозяйственных машин, соединенные определенным образом.

Предложены способ и системы для выработки информации о лесе (204). При этом определяют некоторое количество мест (236) в лесу (204), над которыми датчиковая система (311), содержащая датчик электромагнитной энергии, беспилотного воздушного транспортного средства (230) вырабатывает информацию о лесе (204) путем выработки облака (234) точек с разрешением (239), удовлетворяющим пороговому разрешению (243) облака точек.

Система воздушных сигналов вертолета содержит неподвижный многоканальный проточный аэрометрический приемник в виде разнесенных по высоте экранирующих дисков, трубки полного давления, кольцевые каналы с отверстиями, являющимися приемниками дросселированного статического давления, осесимметричный приемник, отверстие - приемники полного давления результирующего набегающего воздушного потока вихревой колонны, отверстия - приемники для забора давлений, определяющих положение вектора результирующей скорости набегающего воздушного потока, камеру статического давления, кожух, пневмопроводы, пневмометрические преобразователи, измерительные преобразователи температуры, электроизмерительную схему, мультиплексор, аналого-цифровой преобразователь, микропроцессор, коммутаторы, термоэлектрические нагревательные элементы, соединенные определенным образом.

Изобретение относится к способу формирования адаптивного сигнала управления боковым движением летательного аппарата. Для осуществления способа измеряют углы рыскания и крена, углы отклонения рулевых поверхностей, угловой скорости рыскания, угловой скорости крена, поперечное ускорение, производят идентификацию аэродинамических характеристик летательного аппарата на основе восстановления угла скольжения, произведенного с использованием линейного непрерывного фильтра Калмана-Бьюси и погрешностей измерения поперечного ускорения, угловых скоростей рысканья и крена, корректируют коэффициенты усиления контура управления боковым движением, на основе которых формируют адаптивный сигнал управления боковым движением летательного аппарата.

Система предупреждения сваливания содержит датчик угла атаки, средства оповещения, два датчика местных углов атаки, установленные друг от друга на расстоянии не менее 60 % полного размаха крыла, датчики положения элеронов или датчик положения органа управления в поперечном канале, блок управления. Средства оповещения выполнены в виде комбинированного стрелочного индикатора, который содержит корпус с двумя расположенными друг напротив друга секторными шкалами, левую и правую стрелки. Обеспечивается безопасность полета и ускорение обучения пилотированию. 12 з.п. ф-лы, 14 ил.

Изобретение относится к способу автономной ориентации подвижного объекта. Для автономной ориентации подвижного объекта измеряют проекции векторов напряженности результирующего магнитного поля трехосным блоком акселерометров, кажущееся ускорение объекта трехосным блоком акселерометров, абсолютную угловую скорость вращения объекта трехосным блоком гироскопов, выполняют предварительную метрологическую калибровку магнитометров, акселерометров и гироскопов, идентификацию и учет параметров внутренних и внешних помех объекта, алгоритмическую обработку сигналов магнитометров, акселерометров и гироскопов, коррекцию, учет относительных угловых скоростей вращения и редукцию показаний магнитометров, акселерометров и гироскопов, формируют информацию о совокупности базисов векторов геофизических полей и дополнительных векторов в неподвижном и связанном трехгранниках, вычисляют оценки направляющих косинусов и углов ориентации объекта в условиях функциональной избыточности информации, оценки угловых скоростей вращения объекта. Обеспечивается повышение точности автономной ориентации подвижных объектов. 1 ил.

Изобретение относится к способу управления планирующим беспилотным летательным аппаратом (БПЛА). Для управления БПЛА в каждом цикле наведения на каждую опорную точку решают краевую задачу наведения в сопровождающей системе координат с началом на текущем радиус-векторе центра масс БПЛА на высоте, равной высоте очередной опорной точки траектории, преобразуют полученные компоненты требуемого ускорения в скоростную и полускоростную системы координат, определяют требуемые значения угла аэродинамического крена и угла атаки. Обеспечивается управление БПЛА на больших расстояниях от точки наведения. 3 ил., 2 табл.

Изобретение относится к дистанционному мониторингу транспортных средств. Техническим результатом является усовершенствование процесса определения местоположения и отслеживания транспортного средства. Заявлена система для дистанционного мониторинга транспортных средств, включающая компьютерный сервер с процессором и запоминающим устройством, на котором хранятся инструкции, исполняемые процессором, причем сервер выполнен с возможностью принимать аэроснимок, принимать данные, относящиеся к транспортному средству, принимать запрос изображения транспортного средства, идентифицировать транспортное средство на изображении и на основании, по крайней мере, фрагмента аэроснимка, на котором присутствует изображение транспортного средства, предоставлять информацию, содержащую этот фрагмент аэроснимка и/или местоположение транспортного средства, и/или маршрут транспортного средства, и/или событие, в котором участвует транспортное средство, и/или состояние транспортного средства. 3 н. и 16 з.п. ф-лы, 6 ил.

Группа изобретений относится к способу и устройству формирования цифроаналогового сигнала угловой стабилизации нестационарного объекта управления. Для формирования сигнала угловой стабилизации задают цифровой сигнал углового положения, измеряют цифровой сигнал углового положения, формируют его запаздывание, измеряют аналоговый сигнал угловой скорости, формируют цифровой сигнал рассогласования и преобразовывают его в аналоговый сигнал, формируют выходной сигнал угловой скорости, измеряют сигнал скоростного напора, формируют ограничение сигнала запаздывания определенным образом, задают сигнал минимального скоростного напора, выставляют минимальный уровень сигнала ограничения суммарного сигнала при значениях скоростного напора, равных или меньше, чем минимальное. Устройство содержит цифровой датчик угла, датчик угловой скорости, цифровой задатчик угла, цифровой блок сравнения, цифроаналоговый преобразователь, суммирующий усилитель, исполнительное устройство, элемент запаздывания, датчик скоростного напора, три адаптивных ограничителя сигнала, однополярный релейный элемент, управляемый ключ, задатчик сигнала минимального скоростного напора, соединенные определенным образом. Обеспечивается повышение точности и качества управления нестационарным объектом управления. 2 н.п. ф-лы, 1 ил.

Наверх