Устройство определения параметров взвешенных частиц

Изобретение относится к области для определения параметров взвешенных частиц. Устройство определения параметров взвешенных частиц содержит воздуховод, лазерный излучатель, объектив, матрицу ПЗС для регистрации и обработки не менее двух изображений плоской области потока частиц, «вырезаемой» световым ножом, а также содержит последовательно соединенные акустический излучатель, усилители мощности, цифроаналоговые преобразователи, датчик температуры, усилители, аналого-цифровые преобразователи, DSP-процессор, ЭВМ, интерфейс сопряжения с внешними устройствами, цифровой индикатор. Технический результат - повышение информативности данных и определение поля скоростей, размер, форму, плотность и массу взвешенных частиц. 2 ил.

 

Изобретение относится к технике измерений, в частности к оптическим методам контроля, и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных частиц.

Известен способ анализа взвешенных частиц (АС SU 507807, G01N 15/02 от 08.01.1974 г.), основанный на облучении исследуемого объекта электромагнитным и акустическим излучениями и регистрации рассеянного частицами электромагнитного излучения, в котором с целью повышения точности анализа облучение осуществляют одновременно обоими видами излучений, регистрируют изменение частоты: моночастотного электромагнитного излучения, а размер частиц находят по формуле R = где η - коэффициент вязкости среды; V0 - амплитуда скорости частиц под действием акустических колебаний; Δf - максимальное изменение частот отраженного моночастотного электромагнитного излучения; λ - длина волны моночастотного электромагнитного излучения; ρ - плотность частицы; F - частота акустических колебаний.

Недостатком способа является сложность реализации и малая точность при определения размеров и плотности вещества частиц, обусловленные высокой методической погрешностью.

Известен способ визуализации течения газа или жидкости на поверхности объекта (патент RU 2288476, G01P 5/20, G01M 9/06, от 14.03.2005 г.), который включает размещение на исследуемой поверхности объекта слоя вязкой жидкости с оптически инородными частицами, помещение объекта в поток газа или жидкости и получение картины течения газа или жидкости на поверхности объекта. В качестве оптически инородных частиц используют нерастворимые в вязкой жидкости оптически инородные частицы, которые помещают на поверхности вязкой жидкости или в ее толщу. Для получения картины течения газа или жидкости на поверхности объекта регистрируют при интересующем режиме потока газа или жидкости два или более последовательных изображения распределения частиц на исследуемой поверхности объекта так, чтобы смещение свободной поверхности слоя вязкой жидкости под действием внешнего потока за время проведения регистрации серии последовательных изображений на исследуемом режиме обтекания составляло порядка 0,1-1% от размера регистрируемой поверхности, и этот слой мог быть использован для визуализации другого режима течения газа или жидкости. Далее определяют параметры движения частиц в слое вязкой жидкости путем анализа зарегистрированной последовательности изображений и из полученных параметров движения частиц восстанавливают картину течения газа или жидкости на поверхности объекта.

Недостатком способа является малая информативность, позволяющая только визуализировать распределение твердых частиц в течении газов или жидкости, т.е. размер, форма и плотность частиц не определяются.

Известен фотоэлектрический способ измерения размеров и концентрации взвешенных частиц (АС SU 1520399, G01N 15/02 от 18.02.1988 г), в котором в потоке частиц, освещенных неподвижным пучком света, возбуждают акустическое колебание в направлении, перпендикулярном направлению потока и оси пучка, и регистрируют "пачки" импульсов рассеянного частицами света, возникающие при пересечении пучка света колеблющимися частицами, по амплитудам которых судят о размерах частиц, а по средней частоте повторения "пачек" - о концентрации частиц.

Недостатком способа является отсутствие возможности определения массы и плотности взвешенных частиц.

Известен способ определения параметров дисперсных частиц (Пат. RU 2346261, G01N 15/02 от 09.07.2007 г.), в котором объем с дисперсными частицами зондируют пучком маломощного лазерного излучения и одновременно с зондирующим лазерным излучением исследуемый объем подвергают воздействию ультразвуковых колебаний. По динамической составляющей рассеянного и отраженного (под малыми углами относительно направления распространения) от дисперсных частиц излучения определяют их собственные частоты механических колебаний, из которых находят размер частиц.

Недостатком способа является отсутствие возможности определения массы и плотности взвешенных частиц.

Известен оптический способ бесконтактного измерения скорости течений жидкости и газа, основанный на лазерной доплеровской анемометрии (ЛДА), позволяющий измерять скорости сопутствующих потоку частиц в фиксированной точке течения (Albrecht Н.Е., Borys М., Damascke N., Тгореа С. Laser Doppler and Phase Doppler Measurement Techniques. Berlin: Springer. 2003, 738 p.).

Недостатком указанного способа является малая информативность - способ позволяет определять только скорость течения жидкости или газа и не позволяет определять размерные параметры, плотность вещества и массу частиц.

Известны способ и устройство измерения скорости, размеров и концентрации частиц в потоке (Патент GB 2480440, G06T 7/20 от 30.06.2010), основанные на совместном использовании лазерной доплеровской анемометрии (ЛДА) и цифровой трассерной визуализации (particle image velocimetry- PIV). Изобретение позволяет одновременно проводить измерения потока и частиц (как сферических, так и не сферических до нано/микроразмеров) и обеспечивает высокую скорость обработки полученных изображений за счет использования высокоскоростного приемника изображений.

Недостатком способа является отсутствие возможности определения массы и плотности взвешенных частиц в потоке.

Известны способ и устройство для оптического измерения размера или скорости объекта, движущегося в жидкости через поле (пат. FR 2689247, G01P 3/38, 5/00, 5/22, G01N 15/02, G01B 11/00, от 24.03.1992 г.), в котором первое изображение движущегося объекта или жидкости берется вдоль оптической оси для первого момента времени, фиксируется с помощью датчика ПЗС-матрицы камеры, после чего во второй момент времени фиксируется второе изображение движущегося объекта или жидкости по той же оптической оси с помощью датчика ПЗС-матрицы камеры и далее полученные изображения одновременно обрабатываются для того, чтобы определить размер и скорость объекта путем вычитания одного сигнала из другого или вывести скорость жидкости с помощью автокорреляционной функции.

Недостатком способа и основанного на нем устройства является отсутствие возможности определения массы и плотности движущегося объекта в потоке жидкости.

Известны способ и устройство для измерения перемещения изображений частиц для многократного экспонирования велосиметрии (пат. US 4729109, G01P 5/00, G01P 5/18, H04N 13/00 от 29.05.1985 г.), в котором описан цифровой метод измерения смещений компактных изображений, в частности изображения частиц, записанных на любой носитель записи. Метод сжимает двумерное изображение поля частиц двух изображений. Смещение частиц между несколькими экспозициями определяется путем оцифровки двух одномерных изображений, вычисления их автокорреляции и поиска пиков этих автокорреляций. Этот метод особенно пригоден для измерения поля скоростей жидкостей, содержащих много мелких частиц.

Недостатком указанного способа и устройства является то, что он позволяет определять только поле скорости жидкости, содержащей много мелких частиц и не позволяет определять размер, форму, плотность вещества и массу частиц.

Наиболее близким по технической сути к предлагаемому способу является способ цифровой трассерной визуализация - PIV (particle image velocimetry) для анализа поля скорости потока в фиксированном сечении по трекам частиц (М. Raffel, С. Willert and J. Kompenhans, Particle Image Velocimetry, a Practical Guide, Springer, Berlin, 1998), сущность которого заключается в измерении перемещения частиц примеси, находящихся в плоскости сечения, за фиксированный интервал времени. Измерительной областью потока считается плоскость, «вырезаемая» световым ножом. Частицы в измерительной плоскости потока должны быть освещены минимум дважды. Образы частиц регистрируются на цифровую камеру. Последующая обработка изображений позволяет рассчитать смещения частиц за время между вспышками источника света и построить поле скорости.

Недостатком указанного способа является малая информативность - способ позволяют определять лишь поле скорости потока в фиксированном сечении по трекам частиц и не позволяет определять размер, форму, плотность вещества и массу частиц.

Технический результат, который может быть получен при осуществлении предлагаемого изобретения, состоит в повышении информативности и точности данных при измерении параметров частиц за счет введения дополнительного акустического излучения и регистрации получаемых при этом изображений колебаний частиц потока.

Этот результат достигается тем, что устройство определения параметров взвешенных частиц, содержащее воздуховод, лазерный излучатель, объектив, матрицу ПЗС для регистрации и обработки не менее двух изображений «вырезаемую» световым ножом плоскую область потока частиц, отличающееся тем, что дополнительно содержит последовательно соединенные акустический излучатель, усилители мощности, цифроаналоговые преобразователи, датчик температуры, усилители, аналого-цифровые преобразователи, DSP- процессор, ЭВМ, интерфейс сопряжения с внешними устройствами, цифровой индикатор.

На фиг. 1 представлена схема устройства, а на фиг. 2 - общая схема устройства регистрации изображения перемещения частиц примеси в плоскости светового ножа.

На схеме, поясняющей работу устройства, показано следующее: воздушный поток 1 с частицами 2, плоскость регистрации ПЗС 3, линза, формирующая световой нож 4, смотровое окно, прозрачное для световых волн 5, лазерный излучатель 6, усилители мощности 7, 17, цифроаналоговые преобразватели (ЦАП) 8, 18, датчик температуры 9, усилители 10, 13, аналого-цифровые преобразователи (АЦП) 11, 14, матрица ПЗС 12 с объективом 12', DSP- процессор 15, акустический излучатель 16, ЭВМ (микроконтроллер) 19, интерфейс сопряжения с внешними устройствами 20, цифровой индикатор 21, узкий световой поток в плоскости (световой нож) 22, воздуховод для пропускания потока через плоскость регистрации ПЗС 23, акустическое излучение 24.

Устройство работает следующим образом.

Воздушный поток 1, содержащий частицы 2, через смотровое окно 5 освещают световым пучком в виде светового ножа 22, формируемого лазерным излучателем 6 и объективом 4. Лазерный излучатель 6 управляется микроконтроллером 19 через цифроаналоговый преобразователь 8 и усилитель мощности 7.

В начале измерения в измерительной плоскости 3, «вырезаемой» световым ножом 22 (в плоскости регистрации ПЗС), поток частиц освещается серией последовательных вспышек лазерным излучателей 6. Полученные изображения регистрируются матрицей ПЗС 12 с объективом 12' и далее через усилитель 13 и АЦП 14 поступают на DSP-процессор, который проводит обработку полученных изображений и рассчитывает смещения частиц за время между вспышками лазерного излучателя. Далее информация поступает на ЭВМ (микроконтроллер) 19, который строит поле скоростей потока частиц с помощью вычисления автокорреляции двух последовательных изображений и поиска пиков этих автокорреляций (М. Raffel, С. Willert and J. Kompenhans, Particle Image Velocimetry, a Practical Guide, Springer, Berlin, 1998), а также определяет размер частиц с помощью цифровой обработки полученных изображений.

Далее начинает работать акустический излучатель 16, амплитуда и частота излучаемых волн которого направляется перпендикулярно потоку частиц. Амплитуда и частота акустического излучения 24 задается алгоритмом работы ЭВМ (микроконтроллера) 19 при помощи формирования управляющих импульсов через ЦАП 18 и усилителя мощности 17 на вход акустического излучателя 16. В измерительной плоскости 3, «вырезаемой» световым ножом 22, в которой поток частиц освещаются лазерным излучателем 6 и акустическим излучателем 16 в течение минимум двух периодов звуковых колебаний с учетом релаксации частиц, и полученные серии колеблющихся изображений потока частиц регистрируются матрицей ПЗС 12 через объектив 12' и далее через усилитель 13 и АЦП 14 поступают на DSP-процессор 15, который проводит предварительную обработку полученных изображений. Затем полученные данные подаются на микроконтроллер 19, который, с учетом температуры среды (газа, жидкости) измеряемого потока, получаемого при помощи датчика температуры 9, усилителя 10 и АЦП 11, рассчитывает плотность и массу частиц, попавших в плоскость регистрации по формулам приведенным ниже в зависимости от амплитуды и частоты звуковых колебаний с учетом данных, полученных в начале измерения.

В результате устройство позволяет определить параметры движения потока - поле скоростей потока и размер и форму частиц с использованием светового излучения, а плотность и массу вещества взвешенных частиц в потоке с использованием светового и акустического излучения.

Результаты проведенных измерений выдаются на жидкокристаллический экран 21, а также могут быть переданы на внешние устройства при помощи интерфейса сопряжения с устройствами 20.

Воздуховод для пропускания потока через плоскость регистрации ПЗС 23 может иметь (фиг. 2) как прямоугольную форму, так и цилиндрическую форму, причем последняя предпочтительней из-за более симметричного распределения воздушного потока, не нарушающего требования изокинетичности отбора пробы для непрерывного измерения.

Алгоритмом ЭВМ (микроконтроллера) 19 устройства предусмотрена оценка коэффициентов увлечения аэрозольных частиц по получаемым при помощи описанного устройства изображениям колеблющихся частиц и определение плотности и массы этих частиц в исследуемом потоке.

В результате работы микроконтроллера 19 по заданному алгоритму с помощью регистрации не менее двух изображений потока частиц определяются параметры движения потока - поле скоростей потока, размер, форма частиц, и с помощью регистрации серий изображений в течение минимум двух периодов звуковых колебаний с учетом релаксации частиц в потоке колеблющихся частиц в акустическом поле определяются значения плотности и массы веществ, взвешенных в потоке частиц с учетом всех полученных ранее данных.

Таким образом, рассмотренное устройство, в отличие от известных, позволяет существенно повысить информативность данных и определять поля скоростей, размер, форму, плотность и массу взвешенных частиц.

Устройство определения параметров взвешенных частиц, содержащее воздуховод, лазерный излучатель, объектив, матрицу ПЗС для регистрации и обработки не менее двух изображений плоской области потока частиц, «вырезаемой» световым ножом, отличающееся тем, что дополнительно содержит последовательно соединенные акустический излучатель, усилители мощности, цифроаналоговые преобразователи, датчик температуры, усилители, аналого-цифровые преобразователи, DSP-процессор, ЭВМ, интерфейс сопряжения с внешними устройствами, цифровой индикатор.



 

Похожие патенты:

Изобретение относится к контрольно-измерительной технике и позволяет исследовать газожидкостные вихревые течения с любым соотношением жидкости и газа. Способ основан на совместном использовании ЛДА и PIV, включающем пропускание через измерительный объем лазерного излучения, проведение измерений с получением полного периода пульсаций, определение на основе полученной информации временного интервала между сериями изображений, по которым вычисляют мгновенные PIV поля скорости, освещение исследуемого вихревого течения когерентным лазерным светом, фиксирование изображений двумя CCD камерами, принимающими отраженный свет, и запись информации в заданном интервале времени.

Группа изобретений относится к медицинской технике, а именно к средствам определения характеристик потока крови. Устройство содержит светоизлучающий блок, выполненный с возможностью излучения света в направлении элемента, блок регистрации света, выполненный с возможностью регистрации света, рассеянного обратно на элементе, оптический блок, выполненный с возможностью пространственного разделения участка элемента падения света элемента и участка элемента регистрации света элемента друг от друга, при этом оптический блок содержит элемент разделения светового пути, выполненный с возможностью разделения пути излучаемого света и пути обратно рассеянного света, и блок определения, выполненный с возможностью определения характеристики потока объекта на основе света, указывающего на излучаемый свет, и регистрируемого обратно рассеянного света.

Способ измерения поля скоростей в газовых и конденсированных средах, в котором структурированное зондирующее поле в исследуемой среде формируют в виде параллельных световых плоскостей на длинах волн, соответствующих цветовой чувствительности пикселей фотоматрицы, движущихся в этих плоскостях.

Изобретение относится к измерительной технике и касается способа измерения скорости течения жидкости с рассеивающими свет частицами. Способ включает в себя освещение потока жидкости одновременно двумя пучками лазерного излучения и определение спектра мощности P12(f) отраженного сигнала.

Изобретение относится к контрольно-измерительной технике и позволяет исследовать кинематические характеристики гидропотоков. Способ, основанный на совместном использовании лазерной доплеровской анемометрии (ЛДА) и цифровой трассерной визуализации (PIV), включает установку CCD камер под углом, вычисленным с помощью корректирующего модуля пробоотбора взвеси калибровочных частиц, определение временного интервала между сериями изображений, фиксирование и запись изображений засеянных частиц и статистическое условное осреднение мгновенных полей скорости, при этом внесение корректировок в параметры пороговой чувствительности CCD камер осуществляют в продолжение исследований при уменьшении регистрируемых событий на 10% или более, либо через каждые 3 часа.

Изобретение относится к контрольно-измерительной технике и позволяет исследовать потоки жидкости и газа. Изобретение основано на совместном использовании ЛДА и PIV.

Изобретение относится к измерительной технике и может быть использовано, в частности, в прикладной метеорологии для оперативного дистанционного измерения скорости и направления ветра.

Изобретение относится к измерениям турбулентностей атмосферы с помощью лидарной системы, в частности на борту летательных аппаратов. .

Изобретение относится к измерительной технике и может быть использовано, в частности, в прикладной метеорологии для оперативного дистанционного определения скорости и направления ветра.

Изобретение относится к устройствам автоматического контроля крупности частиц в потоке пульпы в процессе измельчения материала и может быть использовано в области обогащения руд полезных ископаемых, а также в горно-металлургической, строительной и других областях промышленности.

Изобретение относится к измерительному устройству и к способу отбора образцов. Способ содержит следующие этапы: а) добавление образца в камеру, в которой обеспечены магнитные частицы, при этом образец содержит целевой компонент, и камера имеет поверхность обнаружения; b) приложение силы магнитного поля к магнитным частицам, чтобы притянуть магнитные частицы к поверхности обнаружения.

Изобретение относится к измерительному устройству и к способу отбора образцов. Способ содержит следующие этапы: а) добавление образца в камеру, в которой обеспечены магнитные частицы, при этом образец содержит целевой компонент, и камера имеет поверхность обнаружения; b) приложение силы магнитного поля к магнитным частицам, чтобы притянуть магнитные частицы к поверхности обнаружения.

Изобретение относится к технике измерений, в частности к оптическим методам контроля, и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных частиц.

Изобретение относится к технике измерений, в частности к оптическим методам контроля, и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных частиц.

Использование: в технике измерений, при определении параметров взвешенных частиц. Способ определения параметров взвешенных частиц, сущность которого заключается в измерении перемещения частиц, находящихся в плоскости сечения, за фиксированный интервал времени в измерительной плоскости, «вырезаемой» световым ножом, в котором частицы в измерительной плоскости потока освещаются минимум дважды и регистрируются на цифровую камеру, а последующая обработка изображений позволяет рассчитать амплитуду смещения частиц за время между вспышками источника света и построить поле скорости, а для повышения информативности способа и возможности определения размера, плотности и массы вещества частиц в поток дополнительно направляется акустическое излучение заданной частоты и амплитуды, и дополнительно регистрируются облученные акустическим излучением изображения перемещения частиц примеси в плоскости светового ножа минимум два периода звуковых колебаний с учетом релаксации частиц, а для определения вязкости среды измеряется температура потока.

Изобретение относится к системе судового энергетического оборудования, в частности к способам анализа отработавших газов. Технический результат заключается в возможности определения оптимального режима нагрузки дизеля и контроля процесса горения топлива на основе полученных параметров, а именно размеров твердых частиц отработавших газов дизеля.

Изобретение относится к системам и способам обнаружения частиц в жидком агенте. Способ обнаружения частиц в жидком агенте, содержащемся в контейнере, включает в себя избирательное освещение, по меньшей мере, части жидкого агента, получение изображения из освещенной части жидкого агента, анализ данных изображения, представляющих изображение, с использованием процессора данных, для получения концентрации частиц, измерение значения интенсивности изображения данных изображения с использованием процессора данных и определение уровня качества жидкого агента на основании концентрации частиц и измеренного значения интенсивности изображения.

Изобретение относится к физике коллоидов и может быть использовано для определения функции распределения коллоидных частиц по размерам. Заявлен способ измерения функции распределения коллоидных частиц по размерам в водных растворах, включающий помещение исследуемого коллоидного раствора в ячейку, представляющую собой плоский конденсатор, поляризацию раствора под действием внешнего электрического поля с напряженностью 1-103 В/см, измерение характеристик среды, их компьютерную обработку.

Изобретение относится к контрольно-измерительной технике, в частности к оптико-электронным устройствам измерения параметров дисперсных сред. Заявленное устройство содержит лазерный источник зондирующего излучения, фотоэлектрический приемник излучения и оптический сканер в виде вращающегося уголкового отражателя и двухлинзовой оптической системы.

Изобретение относится к области для определения параметров взвешенных частиц. Устройство определения параметров взвешенных частиц содержит воздуховод, лазерный излучатель, объектив, матрицу ПЗС для регистрации и обработки не менее двух изображений плоской области потока частиц, «вырезаемой» световым ножом, а также содержит последовательно соединенные акустический излучатель, усилители мощности, цифроаналоговые преобразователи, датчик температуры, усилители, аналого-цифровые преобразователи, DSP-процессор, ЭВМ, интерфейс сопряжения с внешними устройствами, цифровой индикатор. Технический результат - повышение информативности данных и определение поля скоростей, размер, форму, плотность и массу взвешенных частиц. 2 ил.

Наверх