Способ получения сложных эфиров карбоновых кислот в присутствии титансодержащего катализатора

Настоящее изобретение относится к способу получения сложных эфиров карбоновых кислот, который включает этерификацию карбоновой кислоты спиртом в присутствии титаносодержащего катализатора, выбранного из соединений общей формулы Тin(OR)x(OR')xOy, где n представляет собой целое число от 1 до 4; y представляет собой целое число от 0 до 6; х могут быть одинаковыми и различными и представляют собой целое число от 2 до 8; R представляет собой прямой или разветвленный С118алкил, С318циклоалкил, R' представляет собой арил, необязательно содержащий электронодонорный заместитель; или их смеси, при условии, что если n=1, то х=2, а y=0, и если n >1 соединения содержат, по меньшей мере, две алкокси и две арилокси группы. Технический результат - снижение количества используемого катализатора и времени проведения процесса при увеличении степени конверсии исходных реагентов и увеличении выхода целевого продукта. 33 з.п. ф-лы, 5 ил., 2 табл., 11 пр.

 

Изобретение относится к области органического синтеза, а именно к способу получения сложных эфиров этерификацией карбоновых кислот в присутствии катализатора на основе органических соединений титана.

Сложные эфиры карбоновых кислот находят широкое применение в промышленности. Они используются в качестве растворителей, пластификаторов, ароматизаторов и т.д. Например, диметилтерефталат используется для производства полиэфирных волокон и нитей, эмалей и пленок. Диоктиловые эфиры терефталевой кислоты используются как пластификаторы для различных полимерных материалов, в частности, при производстве поливинилхлорида. Такой эфир, как этилакрилат используют в качестве сомономера в реакциях сополимеризации с другими мономерами. Эфиры акриловой кислоты, особенно метилакрилат, применяются в промышленности для производства пластмасс, изготовления прозрачных пленок, обладающих большой механической прочностью. Смолы на основе эфиров акриловой кислоты применяются также в лакокрасочной промышленности.

Уровень техники

Способы этерификации карбоновых кислот спиртами в присутствии различных катализаторов известны достаточно давно. В качестве катализаторов использовались минеральные кислоты. Однако использование таких катализаторов приводило к коррозии оборудования и увеличению затрат на нейтрализацию катализатора после проведения реакции.

Уменьшить вышеуказанные проблемы позволило использование для проведения реакции этерификации органических кислот в частности алкил- и арилсульфокислот.

В публикации международной заявки WO 2012/026661 описан способ получения алкил(мет)акрилатов этерификацией кислоты спиртом с использованием кислот в качестве катализатора, в частности алкил- и арилсульфокислот. Проведение этерификации при температуре выше 100-120°С приводит к снижению селективности процесса этерификации и образованию значительного количества побочных продуктов, что требует проведения дополнительных стадий обработки для повышения общего выхода продукта.

Проблему коррозии и повышения активности катализаторов решали использованием твердофазных катализаторов, таких как твердые суперкислотные катализаторы на основе соединений титана и циркония («Solid catalysts treated with anions. 13. Synthesis of esters from terephthalic and phthalic acids with n-octyl and 2-ethylhexyl alcohol, acrylic acid with ethanol and salicylic acid with methanol catalyzed by solid superacid, Applied Catalysis, 1985,18(2), 401-4 (English)) или катионообменных смол ( EP1726579, US 20110190464).

Использование в процессах этерификации гомогенных титанорганических катализаторов позволило значительно расширить спектр получаемых эфиров, широко используемых в промышленном масштабе.

В заявке на патент JP 60004151 A описан способ получения эфиров терефталевой кислоты этерификацией терефталевой кислоты спиртами, например, 2-этилгексанолом, в присутствии Ti(OPr-iso)4. Проведение процесса в среде азота при давлении до 1,0 кг/см2, в течение 30 мин и 220° или 3,5 кг/см2 в течение 3-х часов при 220°C позволяет достичь конверсии 91%

В публикации международной заявки WO 2007021475 описано получение ди(2-этилгексил)терефталата этерификацией терефталевой кислоты 2-этилгексанолом в присутствии в качестве катализатора алкоксидов титана с 1-18 атомами углерода в алкиле, в частности тетраизопропоксида титана.

В заявке KR 2009092067 A описаны реакции алифатических и ароматических кислот или их ангидридов со спиртами в присутствии титановых катализаторов, таких как тетраоктил- или тетрабутилтитанатов с добавлением нейтрализующего агента и нейтрализующего адсорбента в растворителе, с последующей дистилляцией и фильтрацией смеси. В качестве ароматических кислот используют, в том числе и дикарбоновые кислоты.

В патенте US 3418359 описана этерификация в присутствии двухкомпонентного катализатора содержащего титанат общей формулы Ti(OR)4, где R: ацильная, ненасыщенная углеводородная, циклогексильная, фенильная группы, совместно с дикарбоксилатами цинка. Процесс может быть использован для этерификации ароматических и алифатических кислот. Однако, несмотря на упоминание алифатических кислот, примеры конкретного выполнения этерификации с ними на титановых катализаторах с характеристикой параметров процесса и получаемых результатов отсутствуют.

Наиболее близким к предлагаемому способу является способ этерификации карбоновых кислот или их ангидридов алифатическими первичными или вторичными спиртами в жидкой фазе в присутствии титановых катализаторов, описанный в патенте US 3056818. В данном способе в качестве катализаторов используют соединения MX, где M - титан или цирконий, Х выбирают из класса, состоящего из гидроксильных групп, алкокси групп, ацилокси групп, амино-алкокси групп и атомов галогена, имеющих атомные массы от 35,457 до 79,916 и где, по крайней мере, один X является органическим радикалом, содержащем от 2 до 18 атомов углерода. В качестве катализатора раскрыт тетраизопропилтитанат или тетрафенолят титана. Количество используемого в этом патенте (пример VI) тетрафенолята титана составляет 5300 массовых миллионных долей. Основываясь на результатах, приведенных в примерах конкретного осуществления данного патента, можно сделать вывод, что используемые в изобретении тетраариловые комплексы титана (IV) не имеют преимуществ перед изопропоксидом титана по своей активности. При этом способ требует использования большого количества катализатора.

Недостатком всех вышеуказанных способов является длительное время проведения реакции и использование большого количества катализатора. При этом полная конверсия кислоты в продукт не достигается. Следствием этих недостатков является низкая производительность установки по производству продуктов.

Таким образом, существует необходимость в разработке способов этерификации карбоновых кислот спиртами с использованием существенно меньших количеств катализатора, позволяющих проводить реакцию за меньшее время с хорошей степенью конверсии исходных реагентов и высоким выходом целевого продукта.

Задачей настоящего изобретения является разработка улучшенного способа получения сложных эфиров карбоновых кислот.

Поставленная задача решается использованием в реакции этерификации катализаторов, описанных в данном изобретении и представляющих собой катализаторы на основе органических соединений титана, содержащих, по меньшей мере, две алкокси и две арилокси группы, которые, как неожиданно было обнаружено авторами изобретения, обладают более высокой каталитической активностью, а также повышенной стабильностью в условиях процесса по сравнению с ранее известными катализаторами, что позволяет проводить реакцию этерификации до достижения полной конверсии. Предложенный способ позволяет снизить количество используемого катализатора и время проведения процесса при увеличении степени конверсии исходных реагентов и увеличении выхода целевого продукта.

Краткое описание изобретения

Настоящее изобретение относится к способу получения сложных эфиров карбоновых кислот, который включает этерификацию карбоновой кислоты спиртом в присутствии титаносодержащего катализатора, выбранного из соединений общей формулы:

Тin(OR)x(OR')xOy

где:

n представляет собой целое число от 1 до 4;

y представляет собой целое число от 0 до 6;

х могут быть одинаковыми и различными и представляют собой целое число от 2 до 8;

R представляет собой прямой или разветвленный С118алкил, С318циклоалкил, R' представляет собой арил, необязательно содержащий электронодонорный заместитель;

или их смеси,

при условии, что

если n=1, то х=2, а y=0; и

если n >1, то соединения содержат по меньшей мере две алкокси и две арилокси группы.

Настоящее изобретение также относится к способу получения сложных эфиров карбоновых кислот, который включает этерификацию карбоновой кислоты спиртом в присутствии титаносодержащего катализатора, выбранного из соединений общей формулы I или II:

или

где:

q представляет собой целое число от 1 до 4;

Y независимо представляет собой R или R`

R представляет собой прямой или разветвленный С118алкил, С318циклоалкил, R' представляет собой арил, необязательно содержащий электронодонорный заместитель;

или их смеси, при условии, что соединения содержат, по меньшей мере, две алкокси и две арилокси группы.

Описание рисунков

Фиг. 1 ЯМР1Н спектр катализатора, полученного по Примеру 1а.

Фиг. 2 ЯМР13С спектр катализатора, полученного по Примеру 1а.

Фиг. 3 ЯМР1Н спектр катализатора, полученного по Примеру 1б.

Фиг. 4 ЯМР13С спектр катализатора, полученного по Примеру 1б.

Фиг. 5 ЯМР1Н спектр катализатора, полученного по Примеру 1в.

Подробное описание изобретения

В рамках настоящего изобретения в качестве С1-C18 предпочтительно могут быть использованы метил, этил, н-пропил, изо-ропил, н-бутил, втор-бутил, изобутил, трет-бутил, н-пентил, втор-пентил, изо-пентил, трет-пентил, нео-пентил, гексил, изо-гексил, нео-гексил, втор-гексил и трет-гексил.

В контексте данного изобретения С318циклоалкил предпочтительно представляет собой С57 циклоалкил, наиболее предпочтительно, циклопентил, циклогексил, метициклопентил, метилциклогексил, диметилциклопентил, этилциклопентил, и циклогептил.

Электронодонорный заместитель арильной группы предпочтительно выбрают из С16алкила, арила, С16алкокси, С16 алкиламино, С16алкилтио,

Алкильная часть в электронодонорном заместителе в контексте данного изобретения предпочтительно представляет собой метил, этил, н-пропил, изо-пропил, н-бутил, втор-бутил, изобутил, трет-бутил, н-пентил, втор-пентил, изо-пентил, трет-пентил, 2,2-диметилпентил, гексил, изо-гексил, 2,2-диметилгексил, втор-гексил, трет-гексил.

Арил в контексте данного изобретения предпочтительно представляет собой фенил.

Количество алкокси и арилокси групп в молекуле катализатора может быть одинаковым и различным и составлять от 2 до 8 групп.

В предпочтительном варианте количество алкокси и арилокси групп в молекуле катализатора является одинаковым и составляет от 2 до 5 групп.

Количество алкокси и арилокси групп в молекуле катализатора также может быть различным и независимо составлять 2, 3, 4, 5, 6, 7, 8 групп в зависимости от количества атомов титана и кислорода в молекуле.

Максимальное количество арилокси и алкоксигрупп в молекуле катализатора с одним атомом титана может составлять 4, с двумя атомами титана - 6, с тремя атомами титана - 8 и с четырьмя атомами титана - 10.

Катализатор по данному изобретению может использоваться как в виде индивидуального соединения, так и в виде смеси соединений.

Катализатор по настоящему изобретению может существовать в виде различных структур, а именно в виде моно-, ди-, три- или тетрамеров.

Предпочтительными катализаторами, используемыми в настоящем изобретении являются катализаторы, имеющие следующие структуры:

Катализаторы по настоящему изобретению получают из химически чистого сырья, в качестве которого используют фенол или его производные и тетраалкилтитанаты в среде органического растворителя, предпочтительно абсолютированного толуола в атмосфере инертного газа, предпочтительно азота, добавлением к раствору гидроксиароматического соединения, предпочтительно фенола или его производного в органическом растворителе тетраалкилтитаната при перемешивании и повышенной температуре, предпочтительно при 60-90°С.

Время реакции составляет несколько часов, предпочтительно 10-12 часов, с последующим, при необходимости, удалением растворителя при пониженном давлении.

Известно, что титанаты представляют собой октаэдрический координационный полиэдр из шести лигандов. При этом 2 из 6 лигандов соединены с титаном координационной связью, остальные ковалентной.

Более основные лиганды (алкоксиды) легко замещаются на менее основные (арилоксиды, карбоксилаты). При этом образующиеся титанаты более стабильны и менее подвержены гидролизу. Однако для соединения, у которого лигандное окружение полностью состоит из феноксидных радикалов, каталитическая активность в реакциях этерификации снижается из-за большей инертности к химическому взаимодействию Тi-O-Ar связей.

При высоком содержании алкоксильных лигандов также существует возможность снижения активности за счет понижения концентрации активных центров в результате реакций олигомеризации вследствие гидролиза следовыми количествами воды.

Исходя из вышесказанного для соединений общей формулы I следовало бы ожидать наличие недостатков характерных как для алкоксидных, так и арилоксидных лигандов. Однако авторы изобретения неожиданно обнаружили, что соединение, содержащее оба типа лигандов в эквивалентном количестве, характеризуется существенно более высокой активностью по сравнению с тетраарилтитанатами и большей стабильностью по сравнению с тетраалкилтитанатами, что в результате приводит к большей эффективности такого соединения (выход продукта на единицу катализатора) в реакциях этерификации.

В качестве исходного сырья для этерификации в присутствии указанного катализатора используют различные карбоновые кислоты и спирты.

В качестве кислот используют моно- и полиосновные карбоновые кислоты линейного, разветвленного и циклического строения, в том числе ненасыщенные, ароматические и алифатические. Предпочтительно использование карбоновых кислот, содержащих от 3 до 18 атомов углерода. Наиболее предпочтительными для использования в способе настоящего изобретения являются 2-этилгексановая, терефталевая, изофталевая, фталевая, бензойная, акриловая, метакриловая, стеариновая, адипиновая, янтарная, себациновая, кротоновая, коричная, линолевая, олеиновая, линоленовая, малеиновая, фумаровая, пальмитиновая, лауриновая, пальмитолеиновая кислоты.

В качестве спиртов используют моно- и полиспирты линейного и разветвленного строения, в том числе содержащие в структуре один или более гетероатомов таких как О, S или N. Предпочтительно используют спирты, содержащие от 1 до 18 атомов углерода. Предпочтительными для использования в способе настоящего изобретения являются спирты, содержащие от 1 до 8 атомов углерода, еще более предпочтительно, спирты, содержащие от 4 до 8 атомов углерода, такие как н-бутанол, втор-бутанол, изо-бутанол, н-амиловый спирт, втор-амиловый спирт, изо-амиловый спирт, н-октиловый спирт, 2-этилгексиловый спирт, моноэтиленгликоль, диэтиленгликоль, триэтиленгликоль, тетраэтиленгликоль.

Реакцию этерификации проводят при соотношении карбоксильных групп к гидроксильным группам в общем потоке исходного сырья от 5:1 до 1:5, предпочтительно, от 2:1 до 1:2, более предпочтительно от 1,3:1 до 1:1,3. При этом в избытке берется реагент, который является более эффективным для образования азеотропной смеси с водой. Проведение процесса за рамками этих соотношений приведет к нетехнологичности процесса, так как слишком большой избыток одного исходного реагента приведет к необходимости отделения большого количества непрореагировавшего реагента от конечного продукта - сложного эфира, что является экономически нецелесообразным.

Способ по настоящему изобретению осуществляют взаимодействием спиртов с карбоновыми кислотами в присутствии титансодержащего катализатора при перемешивании в течение необходимого времени при повышенной температуре с последующим выделением из продуктов реакции целевого эфира.

Поскольку реакция этерификации является равновесной реакцией, дополнительно для увеличения степени конверсии реагентов и повышения выхода эфира используют отгонку образующейся в ходе реакции воды в виде азеотропа с последующим его разделением. В зависимости от структуры используемых кислоты и спирта берут избыток реагента, который наиболее эффективно образует азеотропную смесь с водой. Выделенные спирт или кислоту возвращают обратно в реактор. Скорость отгонки азеотропа может регулироваться, в том числе барботированием реакционной смеси током азота.

Процесс предпочтительно проводят при температуре от 100 до 300°С, предпочтительно от 160 до 250°С, более предпочтительно от 175 до 220°С, и давлении, обеспечивающем при заданной температуре кипение реакционной смеси, с отгонкой водного азеотропа до прекращения выделения воды. При температуре ниже 100°C понижается активность катализатора, при температуре выше 300°С увеличивается выход побочных продуктов и, соответственно, уменьшается выход целевого продукта.

Катализатор может быть загружен в реактор как вместе с исходным сырьем, так и при достижении предпочтительной температуры проведения реакции. Количество загружаемого катализатора зависит от содержания титана в его составе и составляет от 50 до 5000 массовых миллионных долей на единицу массы реакционной смеси, предпочтительно от 200 до 1000 массовых миллионных долей на единицу массы реакционной смеси, и более предпочтительно от 500 до 700 массовых миллионных долей на единицу массы реакционной смеси. Использование катализатора в больших количествах нецелесообразно с точки зрения экономической эффективности.

Процесс получения сложных эфиров можно проводить как в периодическом, так и непрерывном режиме в реакторе этерификации, в качестве которого может быть использован любой аппарат, пригодный для проведения этерификации, известный из уровня техники. Реактор должен обеспечивать проведение реакции в токе азота при постоянной отгонке гетероазеотропной смеси для дальнейшего разделения. Скорость отгонки азеотропа регулируют дроссельным клапаном не выше определенного уровня, который составляет от 0 до 6 объемов реактора в час, предпочтительно от 0,2 до 2 объемов реактора в час. Скорость подачи азота в реактор составляет от 0 до 10 объема реактора в час, предпочтительно от 0,1 до 4 объема реактора в час.

Способ согласно настоящему изобретению по сравнению со способами, в которых используют известные из уровня техники катализаторы этерификации, обеспечивает увеличение выхода продукта на 1 моль катализатора и, как следствие, увеличение производительности оборудования. Например, использование нового титанорганического катализатора позволяет получить дополнительно от 12 кг ДОТФ (диоктилтерефталата) с 1 м3 реакционного объема в час, что составляет дополнительно от 96 тонн ДОТФ с 1 м3 реакционного объема в год, без дополнительных энергозатрат. Выделение эфиров карбоновой кислоты из продуктов реакции осуществляют путем удаления непрореагировавшей кислоты и/или спирта с использованием известных из уровня техники способов, которые включают удаление кислых примесей путем их нейтрализации с последующей, при необходимости, фильтрацией (в случае твердых кислот, например, терефталевой), и/или отгонку непрореагировавшего спирта острым паром или вакуумной перегонкой или иными известными способами, с последующим, в случае необходимости, выделением продукта реакции методом ректификации.

В тех случаях, когда исходное сырье, например ненасыщенные кислоты, и/или продукт реакции этерификации, являются веществами, склонными к полимеризации, то процесс этерификации проводят в присутствии ингибитора полимеризации. В качестве ингибитора полимеризации в настоящем изобретении может использоваться любой известный из уровня техники ингибитор, подходящий для этой цели, в частности, ингибитор фенольного типа. Предпочтительно в качестве ингибитора используется гидрохинон и пара-метоксифенол. Количество используемого ингибитора полимеризации в настоящем изобретении составляет 0,01-1%, предпочтительно 0,05-0,2%, наиболее предпочтительно 0,1-0,15% от массы реакционной смеси.

Настоящее изобретение ниже иллюстрируется примерами, которые никоим образом не должны рассматриваться как ограничивающие объем прав.

Примеры

Получение катализатора этерификации.

Пример 1а. Исходные реагенты, а именно фенол и тетраизопропоксид титана, очищают вакуумной перегонкой.

В двугорлую колбу объемом 25 мл, снабженную мешалкой и заполненную сухим азотом, помещают фенол (7,04 ммоль) и 10 мл абсолютированного толуола. К полученному раствору одной порцией добавляют тетраизопропоксид титана (3,52 ммоль). Полученный раствор перемешивают при 80 °С в течение 12 часов в атмосфере инертного газа.

Толуол удаляют на роторном испарителе при 80 °С и давлении от 100 до 2 мм рт.ст. Получают смолоподобное вещество красно-оранжевого цвета.

ЯМР 1Н, ЯМР 13С спектры полученного вещества приведены на Фиг.1 и 2.

Пример 1б. В двугорлую колбу объемом 25 мл, снабженную мешалкой и заполненную сухим азотом, помещают п-третбутилфенол (7,04 ммоль) и 10 мл абсолютированного толуола. К полученному раствору одной порцией добавляют тетраизопропоксид титана (3,52 ммоль). Полученный раствор перемешивают при 80 °С в течение 12 часов в атмосфере инертного газа.

Толуол удаляют на роторном испарителе при 80 °С и давлении от 100 до 2 мм рт.ст. Получают смолоподобное вещество красно-оранжевого цвета.

ЯМР 1Н, ЯМР 13С спектры полученного вещества приведены на Фиг.3 и 4.

Пример 1в. В двугорлую колбу объемом 25 мл, снабженную мешалкой и заполненную сухим азотом, помещают п-нитрофенол (7,04 ммоль) и 10 мл абсолютированного толуола. К полученному раствору одной порцией добавляют тетраизопропоксид титана (3,52 ммоль). Полученный раствор перемешивают при 80 °С в течение 12 часов в атмосфере инертного газа.

Толуол удаляют на роторном испарителе при 80 °С и давлении от 100 до 2 мм рт.ст. Получают кристаллизующееся вещество желтого цвета.

ЯМР 1Н спектры полученного вещества приведены на Фиг.5.

Примеры осуществления способа этерификации

Пример 2 (сравнительный). Получение 2-этилгексил терефталата (ДОТФ) с катализатором тетраизопропоксидом титана.

В стальной реакционный сосуд объемом 500 мл, снабженный обогреваемой рубашкой, регулирующим расход пара клапаном, а также насадкой Дина-Старка для отгонки и разделения азеотропной смеси спирт-вода, загружают 0,63 моль терефталевой кислоты (ТФК) и 1,44 моль 2-этилгексанола при мольном соотношении 1:2,3. Смесь нагревают до 200°С и затем добавляют тетраизопропоксид титана в количестве 600 массовых миллионных долей на смесь кислоты и спирта. Реакцию проводят в течение 4 часов при перемешивании со скоростью 800 оборотов в минуту и пропускании газообразного азота со скоростью 0,05 л/мин. В ходе реакции осуществляют азеотропную отгонку смеси спирта с водой. Отогнанный спирт возвращают обратно в реакционный сосуд. После окончания реакции смесь охлаждают и отфильтровывают непрореагировавшую кислоту. Выход реакции и рассчитанная производительность процесса представлены в Таблице 1.

Пример 3 (сравнительный). Получение 2-этилгексилтерефталата с катализатором тетрафеноксидом титана.

Способ осуществляют в соответствии с методикой, описанной в Примере 2. В качестве катализатора используют тетрафеноксид титана. Выход реакции и рассчитанная производительность процесса представлены в Таблице 1.

Пример 4. Получение 2-этилгексилтерефталата с катализатором, полученным по примеру 1а.

Способ осуществляют в соответствии с методикой, описанной в Примере 2. В качестве катализатора используют диизопропоксидифеноксид титана. Выход реакции и рассчитанная производительность процесса представлены в Таблице1.

Пример 5. Получение 2-этилгексилтерефталата с катализатором, полученным по Примеру 1б.

Способ осуществляют в соответствии с методикой, описанной в Примере 2. В качестве катализатора используют диизопропокси-ди(п-третбутил)феноксид титана. Выход реакции и рассчитанная производительность процесса представлены в Таблице 1.

Пример 6. (сравнительный) Получение 2-этилгексилтерефталата с катализатором, полученным по Примеру 1в.

Способ осуществляют в соответствии с методикой, описанной в Примере 2. В качестве катализатора используют диизопропокси-ди(п-нитро)феноксид титана. Выход реакции и рассчитанная производительность процесса представлены в Таблице 1.

Таблица 1. Результаты синтеза ДОТФ

Пример № Катализатор Выход ДОТФ, % Производительность, кг[ДОТФ]/м3
2 тетраизопропоксид титана 90,0 110,83
3 тетрафеноксид титана 96,2 118,60
4 полученный по примеру 1а 99,5 122,84
5 полученный по примеру 1б 94,8 116,96
6 полученный по примеру 1в 90,1 111,20

Представленные в Таблице 1 данные с очевидностью показывают, что использование катализаторов, содержащих в структуре как арилокси, так и алкилокси группы, неожиданно позволяет увеличить выход продукта и повысить производительность процесса при том же количестве используемого катализатора. Кроме того, полученные данные также показывают, что присутствие в структуре катализатора арила, замещенного электорнодонорным заместителем, делает его существенно более эффективным по сравнению с аналогичным катализатором, в котором арильная группа содержить элекроноакцепторный заместитель.

Пример 7 (сравнительный). Получение 2-этилгексилакрилата с катализатором тетраизопропоксидом титана.

В трехгорлую колбу объемом 250 мл, снабженную магнитной мешалкой, системой для барботирования инертного газа, термометром и насадкой Дина-Старка с обратным холодильником для отгонки и разделения азеотропной смеси спирт-вода, в токе азота помещают акриловую кислоту (0,5 моль) и 2-этилгексанол (0,69 моль) при мольном соотношении 1:1,38. К раствору в качестве ингибитора полимеризации добавляют гидрохинон (0,0012 моль). Приемник насадки Дина-Старка заполняют 2-этилгексанолом. Реакционную смесь нагревают до 115°С и вносят катализатор тетраизопропоксид титана в количестве 600 массовых миллионных долей на смесь кислоты и спирта в виде 15% раствора в 2-этилгексаноле. Реакционную смесь нагревают до 180°С и реакцию проводят в течение 4 часов при постоянном барботировании азотом при скорости перемешивания 600 оборотов в минуту. Азеотропную смесь спирта с водой отгоняют в процессе реакции. Отогнанный спирт возвращают в реакционный сосуд. Из реакционной смеси 2 этилгексилакрилат выделяют ректификацией. Конверсия акриловой кислоты составляет 89%, селективность превращения акриловой кислоты в 2-этилгексилакрилат составляет 87%.

Выход эфира на стадии синтеза составляет 77%.

Пример 8. Получение 2-этилгексилакрилата с катализатором, полученным по Примеру 1а.

Способ осуществляют в соответствии с методикой, описанной в Примере 7. В качестве катализатора используют диизопропоксидифенокси титан в количестве 600 массовых миллионных долей на смесь кислоты и спирта.

Конверсия акриловой кислоты составляет 89%, селективность превращения акриловой кислоты в 2-этилгексилакрилат составляет 93%.

Выход эфира на стадии синтеза составляет 83%.

Представленные в Примерах 7 и 8 данные с очевидностью показывают, что использование катализаторов, содержащих в структуре как арилокси, так и алкилокси группы неожиданно позволяет увеличить селективность и выход процесса.

Пример 9. Получение сложного эфира триэтиленгликоля и 2-этилгексановой кислоты с катализатором, полученным по Примеру 1а.

В двугорлую колбу объемом 500 мл, снабженную насадкой Дина-Старка для отгонки и разделения азеотропной смеси кислота-вода, загружают 0,5 моль триэтиленгликоля и 1,5 моль 2-этилгексановой кислоты в мольном соотношении 1:3. Смесь нагревают до температуры 280°С, затем добавляют катализатор дифенилдиизопропоксид титана в количестве 600 м.д. масс. Реакцию проводят в течение 2 часов при перемешивании со скоростью 600 оборотов в минуту. Азеотропную смесь кислоты с водой отгоняют в процессе реакции. Отогнанную кислоту возвращают в реакционный сосуд. После окончания реакции смесь охлаждают, продукт выделяют перегонкой в вакууме.

Полученные результаты представлены в Таблице 2.

Пример 10 (сравнительный). Получение сложного эфира триэтиленгликоля и 2-этилгексановой кислоты с катализатором тетрафеноксидом титана.

Способ осуществляют в соответствии с методикой, описанной в Примере 9. В качестве катализатора используют тетрафеноксид титана в количестве 800 массовых миллионных долей.

Полученные результаты представлены в Таблице 2.

Пример 11 (сравнительный). Получение сложного эфира триэтиленгликоля и 2-этилгексановой кислоты с катализатором тетраизопропоксидом титана.

Способ осуществляют в соответствии с методикой, описанной в Примере 9. В качестве катализатора используют тетраизопропоксид титана в количестве 800 м.д. масс.

Полученные результаты представлены в Таблице 2.

Таблица 2. Результаты синтеза сложного эфира триэтиленгликоля и 2-этилгексановой кислоты

Пример № Катализатор Количество катализатора, м.д. Конверсия триэтилен
гликоля, %
Время реакции, ч
9 полученный по Примеру 1а 600 100,0 2
10 Тетрафеноксид титана 800 100,0 3
11 Тетраизопропоксид титана 800 100,0 2,5

Представленные в Примерах 9-11 данные с очевидностью показывают, что использование катализаторов, содержащих в структуре как арилокси, так и алкилокси группы неожиданно позволяет очень высокую конверсию спирта при существенно меньшем количестве катализатора и меньшем времени процесса.

1. Способ получения сложных эфиров карбоновых кислот, включающий этерификацию карбоновой кислоты спиртом в присутствии титаносодержащего катализатора, выбранного из соединений общей формулы:

Тin(OR)x(OR')xOy

где:

n представляет собой целое число от 1 до 4;

y представляет собой целое число от 0 до 6;

х могут быть одинаковыми и различными и представляют собой целое число от 2 до 8;

R представляет собой прямой или разветвленный С118алкил, С318циклоалкил, R' представляет собой арил, необязательно содержащий электронодонорный заместитель;

или их смеси,

при условии, что

если n=1, то х=2, а y=0; и,

если n >1, то соединения содержат, по меньшей мере, две алкокси и две арилокси группы.

2. Способ по п. 1, где R' представляет собой фенил, необязательно содержащий электронодонорный заместитель.

3. Способ по п. 2, где электронодонорный заместитель представляет собой С16алкил, арил, С1- С6алкокси, С16диалкиламино, или С16алкилтио группу.

4. Способ по п. 3, где алкильная часть в электронодонорном заместителе представляет собой метил, этил, н-пропил, изо-пропил, н-бутил, втор-бутил, изобутил, трет-бутил, н-пентил, втор-пентил, изо-пентил, трет-пентил, 2,2-диметилпропил, гексил, изо-гексил, 2,2-диметилбутил, втор-гексил, или трет-гексил.

5. Способ по п. 3, где арил представляет собой фенил.

6. Способ по п. 1, где R представляет собой С16алкил.

7. Способ по п. 6, где R представляет собой метил, этил, н-пропил, изо-пропил, н-бутил, втор-бутил, изобутил, трет-бутил, н-пентил, втор-пентил, изо-пентил, трет-пентил, 2,2-диметилпропил, гексил, изо-гексил, 2,2-диметилбутил, втор-гексил, или трет-гексил.

8. Способ по п. 1, где х являются одинаковыми и представляют собой целое число от 2 до 5.

9. Способ по п. 1, где катализатор представляет собой соединение общей формулы (I) или (II):

или

где:

q представляет собой целое число от 1 до 4;

Y независимо представляет собой R или R`; где R или R`имеют значения, определенные в п. 1,

или их смесь;

при условии что соединения общей формулы (I)и (II) содержат, по меньшей мере, две алкилокси и две арилокси группы.

10. Способ по любому из пп. 1-8, где катализатор представляет собой соединение, выбранное из:

11. Способ по п. 9, где катализатор представляет собой диизопропокси-дифеноксититан.

12. Способ по п. 9, где катализатор представляет собой диизопропокси-ди(п-третбутил)феноксититан.

13. Способ по любому из пп. 1-8, где карбоновая кислота представляет собой насыщенную или ненасыщенную моно- или полиосновную карбоновую кислоту линейного, разветвленного или циклического строения.

14. Способ по п. 12, где карбоновая кислота представляет собой ароматическую или алифатическую карбоновую кислоту.

15. Способ по п. 13, где карбоновая кислота содержит от 3 до 18 атомов углерода.

16. Способ по п. 14, где карбоновая кислота представляет собой 2-этилгексановую, терефталевую, изофталевую, фталевую, бензойную, акриловую, метакриловую, стеариновую, адипиновую, янтарную, себациновую, кротоновуюя, коричную, линолевую, олеиновую, линоленовую, малеиновую, фумаровую, пальмитиновую, лауриновую, пальмитолеиновую кислоту.

17. Способ любому из пп. 1-8, где спирт представляет собой моно- и полиспирты линейного или разветвленного строения, необязательно содержащие один или более гетероатомов, выбранных из О, S или N.

18. Способ по п. 17, где спирт содержит от 1 до 18 атомов углерода.

19. Способ по п. 18, где спирт содержит от 2 до 8 атомов углерода.

20. Способ по п. 19, где спирт представляет собой н-бутанол, втор-бутанол, изо-бутанол, н-амиловый спирт, втор-амиловый спирт, изо-амиловый спирт, н-октанол, 2-этилгексанол, моноэтиленгликоль, диэтиленгликоль, триэтиленгликоль, тетраэтиленгликоль.

21. Способ по любому из пп. 1-8, где этерификацию проводят при мольном соотношении карбоксильных групп к гидроксильным группам от 5:1 до 1:5, при этом в избытке берут реагент, образующий азеотропную смесь с водой.

22. Способ по п. 20, где этерификацию проводят при мольном соотношении карбоксильных групп к гидроксильным группам от 2:1 до 1:2.

23. Способ по п. 21, где этерификацию проводят при мольном соотношении карбоксильных групп к гидроксильным группам от 1,3:1 до 1:1,3.

24. Способ по любому из пп. 1-8, где этерификацию проводят при температуре от 100 до 300°С и давлении, обеспечивающем при заданной температуре кипение реакционной смеси.

25. Способ по п. 24, где этерификацию проводят при температуре от 160 до 250°С.

26. Способ по п. 25, где этерификацию проводят при температуре от 175 до 220°С.

27. Способ по любому из пп. 1-8, где этерификацию проводят с отгонкой водного азеотропа до прекращения выделения воды.

28. Способ по любому из пп. 1-8, где катализатор используют в количестве от 50 до 5000 массовых миллионных долей на единицу массы реакционной смеси.

29. Способ по п. 28, где катализатор используют в количестве от 200 до 1000 массовых миллионных долей на единицу массы реакционной смеси.

30. Способ по п. 29, где катализатор используют в количестве от 500 до 700 массовых миллионных долей на единицу массы реакционной смеси.

31. Способ по любому из пп. 1-8, где сложный эфир представляет собой ди(2-этилгексил)фталат.

32. Способ по любому из пп. 1-8, где сложный эфир представляет собой ди(2-этилгексил)терефталат.

33. Способ по любому из пп. 1-8, где сложный эфир представляет собой ди(2-этилгексил)акрилат.

34. Способ по по любому из пп. 1-8, где сложный эфир представляет собой бис-(2-этилгексаноат)триэтиленгликоль.



 

Похожие патенты:

Настоящее изобретение касается способа получения сложного диэфира терефталевой кислоты посредством взаимодействия терефталевой кислоты по меньшей мере с одним спиртом, причем a) терефталевую кислоту суспендируют в спирте в диспергирующем сосуде с получением предварительной суспензии, b) предварительную суспензию из диспергирующего сосуда направляют в реактор и подвергают взаимодействию в присутствии катализатора этерификации с получением реакционной суспензии, c) поток реакционной суспензии выводят из реактора, направляют через расположенный вне реактора теплообменник и нагревают, а нагретую реакционную суспензию возвращают в реактор, и d) реакционную воду в виде водно-спиртового азеотропа отводят дистилляцией вместе с выпаром, выпар по меньшей мере частично конденсируют, конденсат разделяют на водную фазу и органическую фазу и органическую фазу по меньшей мере частично возвращают в реактор.

Настоящее изобретение касается способа получения сложных эфиров карбоновых кислот, при котором в реакционной системе, состоящей из одного или нескольких реакторов, подвергают взаимодействию реакционную смесь, которая содержит по меньшей мере одну карбоновую кислоту и/или по меньшей мере один ангидрид карбоновой кислоты и по меньшей мере один спирт R1-OH и/или по меньшей мере один спирт R2-[О-X]n-OH, где R1 выбран среди неразветвленных и разветвленных алкильных остатков с 5-13 атомами углерода и циклоалкильных остатков с 5-6 атомами углерода, причем циклоалкильные остатки являются незамещенными или могут быть замещенными по меньшей мере одним алкильным остатком с 1-10 атомами углерода, R2 выбран среди неразветвленных алкильных остатков с 1-13 атомами углерода и разветвленных алкильных остатков с 3-13 атомами углерода, X означает неразветвленную алкиленовую группу с 2-5 атомами углерода или разветвленную алкиленовую группу с 3-5 атомами углерода, и n имеет значение 1, 2 или 3, при условии, что взаимодействие осуществляют в присутствии по меньшей мере одного катализатора, выбранного среди метансульфоновой кислоты и толуолсульфоновой кислоты, причем метансульфоновая кислота имеет содержание сульфата не более 50 частей на млн, и причем толуолсульфоновая кислота имеет содержание сульфата менее чем 0,3%, при подаче в реакционную систему инертного при условиях реакции газа, при температуре реакционной смеси от 125 до 240°С и при отделении перегонкой по меньшей мере части образовавшейся в процессе реакции воды в форме азеотропной смеси с используемым спиртом R1-OH и/или R2-[O-X]n-OH, причем отогнанный спирт R1-OH и/или R2-[O-X]n-OH по меньшей мере частично возвращают в реакционную систему.

Изобретение относится к органической химии, конкретно к способу получения сложных эфиров дикарбоновых кислот, и может быть использовано для получения сложных эфиров дикарбоновых кислот из различного сырья.

Изобретение относится к производству сложноэфирных пластификаторов, используемых при производстве поливинилхлоридных пластических масс. Способ получения пластификатора диоктилтерефталата включает этерификацию терефталевой кислоты 2-этилгексанолом в присутствии катализатора алкоксида титана с дальнейшей отгонкой растворителя, где в качестве сырья используют техническую терефталевую кислоту, являющуюся полупродуктом производства очищенной терефталевой кислоты, при этом реакционная масса, содержащая суспензию технической терефталевой кислоты и 2-этилгексанола в массовом соотношении 1:1,7÷2,8 кипятится при температуре 180÷200°С с одновременной отгонкой азеотропной смеси 2-этилгексанола и воды до полного прекращения выделения воды и затем проводится отгонка растворителя при температуре 100÷195°С и вакууме 16÷20 мм рт.ст.
Изобретение относится к способу регенерации полезных компонентов из окрашенного полиэфирного волокна. .
Изобретение относится к производству поливинилхлоридных пластических масс, а именно к пластифицирующим добавкам. .

Изобретение относится к усовершенствованному способу, по которому смесь карболовая кислота/диол, подходящую в качестве исходного вещества для производства сложного полиэфира, получают из обесцвеченного раствора карбоновой кислоты без выделения по существу твердой сухой карбоновой кислоты.

Изобретение относится к способу получения сложного эфира, который включает проведение реакции этерификации в присутствии катализатора, который представляет собой продукт реакции ортоэфира или конденсированного ортоэфира титана или циркония и спирта, содержащего, по меньшей мере, две гидроксильные группы 2-оксикарбоновой кислоты и основания.

Изобретение относится к области органической химии, а именно к способу получения сложных эфиров, которые применяются в качестве пластификаторов различных полимеров.

Настоящее изобретение относится к способу непрерывного получения метилметакрилата, включающему стадии A) получения метакролеина из пропаналя и формальдегида в присутствии аминных солей, B) выделения жидкого неочищенного метакролеина посредством перегонки в первой перегонной колонне и последующего отделения от водной фазы, C) перегонки неочищенного метакролеина, полученного на стадии B), во второй перегонной колонне в присутствии метанола, D) последующей окислительной этерификации метакролеина, полученного на стадии C), с метанолом и кислородом в присутствии содержащего благородный металл гетерогенного катализатора окисления, содержащего металлы и/или оксиды металлов, в реакторе и E) перегонки продукта, полученного на стадии D), в перегонной колонне и рециркуляции продукта перегонки, содержащего метакролеин и метанол, в реактор стадии D), где перегонные колонны стадий C) и E) представляют собой одну единую перегонную колонну, и метанол на стадии C) извлекают из реактора стадии D) и подают вместе с продуктом, полученным со стадии D), во вторую перегонную колонну, и дополнительное количество метанола необязательно добавляют во вторую перегонную колонну на стадии E).

Настоящее изобретение относится к способу получения метилметакрилата из метакролеина при непрерывной реакции окислительной этерификации с кислородом и метанолом, который осуществляют в жидкой фазе при давлении от 2 до 100 бар с гетерогенным катализатором, содержащим золотосодержащие наночастицы на носителе, характеризующиеся размером частиц менее 20 нм, где жидкую фазу непрерывно извлекают из реактора, и после извлечения рН доводят до рН от 5 до 9 посредством добавления основного раствора вне реактора, и в пределах по меньшей мере 50% извлеченной жидкой фазы, характеризующейся рН от 5 до 9, направляют обратно в реактор.

Настоящее изобретение относится к способу дегидратирования содержащего воду источника формальдегида, который включает приведение в контакт источника формальдегида с цеолитной мембраной способом, эффективным для выделения, по меньшей мере, части воды из источника формальдегида.

Изобретение относится к способу получения α, β этилен-ненасыщенной карбоновой кислоты или ее сложного эфира, включающему стадии приведения в контакт формальдегида или его пригодного для использования источника с карбоновой кислотой или ее сложным эфиром в присутствии катализатора и, необязательно, в присутствии спирта, где катализатор содержит кристаллы фосфата бария, имеющие форму листьев или пластинок, подобных листьям или пластинкам, или их пригодный для использования источник способный образовывать in situ кристаллы в условиях реакции.

Изобретение относится к утилизации кубовых остатков производства метилметакрилата, в процессе которой дополнительно извлекается целевой продукт. Сущность изобретения: способ утилизации кубовых остатков производства метилметакрилата, содержащих метилметакрилат, метакриловую кислоту, метил-α-оксиизобутират, заключающийся в том, что утилизацию осуществляют ректификацией в две стадии, при этом первую стадию проводят в ректификационной колонне с эффективностью 3-4 теоретические тарелки, в вакууме 0,8-0,85 атм при температуре куба колонны 60-106°C, верха колонны 58-74°C и флегмовом числе 0.5-1.0, а вторую стадию проводят в ректификационной колонне с эффективностью 4-5 теоретических тарелок, в куб которой загружают фракцию, полученную на первой стадии, и ректифицируют в вакууме 0,8-0,85 атм при температуре куба колонны 60-86°C, верха колонны 58-59°C и флегмовом числе 1 в начале разгонки с постепенным увеличением его до 3 в конце разгонки.

Изобретение относится к новым модификаторам реологии типа HASE, ассоциативный мономер которых функционализирован гидрофобной группой на основе оксо-спиртов. Мономер формулы (I): R-(AO)m-(BO)n-R′, где m и n являются целыми числами меньше 150, по меньшей мере одно из которых не является нулем, А и В обозначают алкильные группы, отличающиеся друг от друга и содержащие от 2 до 4 атомов углерода, при этом группа АО предпочтительно обозначает этиленоксид и группа ВО предпочтительно обозначает пропиленоксид, R обозначает полимеризуемую ненасыщенную группу, предпочтительно метакрилат, R′ отличается тем, что состоит по меньшей мере из одной группы формулы (II): СН3-(СН2)p-СН[(СН2)rCH3]-(СН2)q-, где p и q обозначают целые числа, по меньшей мере одно из которых не равно нулю, где 5<p+q<13, r является целым числом, равным 0.

Изобретение относится к способу получения α, β этилен-ненасыщенных карбоновых кислот или сложных эфиров, содержащему этапы, где вызывают контакт формальдегида или его подходящего источника с карбоновой кислотой или сложным эфиром формулы R3-CH2-COOR4, где R4 обозначает водород или алкильную группу, a R3 обозначает водород, алкильную или арильную группу, в присутствии катализатора и возможно в присутствии спирта, где данный катализатор содержит азотированный оксид металла, имеющий, по меньшей мере, два типа катионов металлов М1 и М2, где М1 выбирают из металлов или металлоидов группы 3, 4, 13 (также называемой IIIA) или 14 (также называемой IVA) Периодической таблицы, и М2 выбирают из металлов металлоидов или фосфора группы 5 или 15 (также называемой VA) Периодической таблицы.

Настоящее изобретение относится к катализатору для взаимодействия формальдегида или его подходящего источника с карбоновой кислотой или сложным эфиром для получения карбоновой кислоты или сложного эфира с этиленовой ненасыщенностью, предпочтительно карбоновых кислот или сложного эфира с этиленовой ненасыщенностью в α,β-положении, где катализатор включает оксид металла, имеющий, по меньшей мере, два типа катионов металла, М1 и М2, где М1 представляет собой, по меньшей мере, один металл, выбранный из группы 3 или 4 в 4-6 периодах периодической таблицы, группы 13 в 3-5 периодах периодической таблицы, или остающихся элементов в лантаноидной группе, а именно скандия, иттрия, лантаноидных элементов, титана, циркония, гафния, алюминия, галлия, индия, и М2 представляет собой, по меньшей мере, один металл, выбранный из группы 5 в 5 или 6 периодах периодической таблицы или группы 15 в 4 или 5 периодах периодической таблицы, а именно ниобия, тантала, мышьяка и сурьмы, в котором отношение М1:M2 находится в диапазоне от 5:1 до 1:5 и в котором соединение катализатора на основе оксида металла по изобретению не включает другие типы металлов выше уровня 0,1 мол.

Изобретение относится к процессам переработки углеводородных газов с получением жидких химических продуктов с высокой добавленной стоимостью. Способ переработки природных и попутных нефтяных газов, а также углеводородных нефтяных газов с повышенным содержанием тяжелых гомологов метана и низким метановым числом, с получением метилпропионата и метилметакрилата, заключается в двухступенчатом селективном прямом гомогенном окислении углеводородного газа и последующем каталитическим карбонилировании смеси с получением метилпропионата, конденсации части полученного метилпропионата с формальдегидом для получения метилметакрилата, причем на одной ступени окисления углеводородного газа, проводимой при температуре 700-800°C и давлении 1-30 бар, получают газовую смесь, содержащую этилен и СО, а на другой ступени, проводимой при давлении 30-80 бар и начальной температуре 350-420°C, получают метанол и СО, причем либо сначала углеводородный газ окисляют на ступени, проводимой при температуре 700-800°C, с получением этилена, а затем окисляют на ступени, проводимой при начальной температуре 350-420°C, либо сначала углеводородный газ окисляют на ступени, проводимой при начальной температуре 350-420°C, с последующей конденсацией полученного метанола, формальдегида и воды, а затем окисляют полученную газовую смесь на ступени, проводимой при температуре 700-800°C, с последующим добавлением метанола первой ступени; затем полученную в результате двухступенчатого окисления смесь обрабатывают при повышенных давлениях и температурах в присутствии катализатора карбонилирования для взаимодействия этилена, метанола и СО и получают углеводородный газ с повышенным метановым числом и жидкие продукты, из которых выделяют метилпропионат, часть которого дополнительно обрабатывают формальдегидом.

Изобретение относится к соединению структурной формулы I, которое может быть использовано для предотвращения, лечения или уменьшения интенсивности симптомов заболевания или состояния, восприимчивого к стимуляции окислительного взрыва нейтрофилов, восприимчивого к стимуляции высвобождения IL-8 кератиноцитов или восприимчивого к индуцированию некроза.

Изобретение относится к усовершенствованному способу получения алкилсалициловых кислот, включающему взаимодействие салициловой кислоты с олефином, содержащим, по меньшей мере, четыре атома углерода, при повышенной температуре в присутствии алкилсульфоновой кислоты в качестве катализатора.

Настоящее изобретение относится к способу получения сложных эфиров карбоновых кислот, который включает этерификацию карбоновой кислоты спиртом в присутствии титаносодержащего катализатора, выбранного из соединений общей формулы ТinxxOy, где n представляет собой целое число от 1 до 4; y представляет собой целое число от 0 до 6; х могут быть одинаковыми и различными и представляют собой целое число от 2 до 8; R представляет собой прямой или разветвленный С1-С18алкил, С3-С18циклоалкил, R представляет собой арил, необязательно содержащий электронодонорный заместитель; или их смеси, при условии, что если n1, то х2, а y0, и если n >1 соединения содержат, по меньшей мере, две алкокси и две арилокси группы. Технический результат - снижение количества используемого катализатора и времени проведения процесса при увеличении степени конверсии исходных реагентов и увеличении выхода целевого продукта. 33 з.п. ф-лы, 5 ил., 2 табл., 11 пр.

Наверх