Система и способ рекуперации отработанного тепла

Изобретение относится к энергетике. Предложена новая система, работающая по циклу Ранкина, выполненная с возможностью преобразования отработанного тепла в механическую и/или электрическую энергию. Система в соответствии с настоящим изобретением содержит новую конфигурацию компонентов традиционной системы, работающей по циклу Ранкина: трубопроводов, воздуховодов, нагревателей, детандеров, теплообменников, конденсаторов и насосов. Система, работающая по циклу Ранкина, выполнена таким образом, что изначальный поток с отработанным теплом используется для испарения первого потока рабочей текучей среды, а результирующий обедненный теплом поток с отработанным теплом используется для содействия в получении второго потока испаренной рабочей текучей среды. Предложенная система, работающая по циклу Ранкина, выполнена с возможностью использования диоксида углерода в сверхкритическом состоянии в качестве рабочей жидкости. Изобретение позволяет обеспечить более эффективную рекуперацию энергии от источника отработанного тепла. 3 н. и 22 з.п. ф-лы, 7 ил., 1 табл.

 

ПРЕДПОСЫЛКИ

[0001] Настоящее изобретение относится к системам и способам для рекуперации энергии из отработанного тепла, производимого в человеческой деятельности, которые потребляют топливо. В частности, изобретение относится к рекуперации тепловой энергии от недоиспользованных источников отработанного тепла, таких как выхлопные газы турбин.

[0002] Деятельность человека, связанная со сжиганием топлива, в течение веков была основной характеристикой как в развитии человеческой цивилизации, так и в ее продолжении. Эффективность, с которой топливо может быть преобразовано в энергию, все еще остается не решенной проблемой; однако, поскольку большая часть энергии, получаемая при сгорании топлива, не может создавать полезную работу и теряется как отработанная энергия, например, отработанное тепло.

[0003] Циклы Ранкина и другие циклы регенерации тепла инновационно использовались для рекуперации по меньшей мере части энергии, присутствующей в отработанном тепле, вырабатываемом при сгорании топлива, и на сегодняшний день был достигнут значительный прогресс. Тем не менее, несмотря на достижения в прошлом, необходимы дальнейшие усовершенствования систем и способов рекуперации отработанного тепла с циклом Ранкина.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0004] В одном варианте выполнения настоящее изобретение относится к системе, работающей по циклу Ранкина, содержащей: (а) нагреватель, выполненный с возможностью передачи тепла от первого потока с отработанным теплом к первому потоку рабочей текучей среды для получения первого потока испаренной рабочей текучей среды и второго потока с отработанным теплом; (б) первый детандер, выполненный с возможностью приема первого потока испаренной рабочей текучей среды для получения механической энергии и расширенного первого потока испаренной рабочей текучей среды; (с) первый теплообменник, выполненный с возможностью передачи тепла от первого расширенного потока испаренной рабочей текучей среды и второго потока с отработанным теплом первому потоку конденсированной рабочей текучей среды для получения второго потока испаренной рабочей текучей среды; (d) второй детандер, выполненный с возможностью приема второго потока испаренной рабочей текучей среды для получения механической энергии и расширенного второго потока испаренной рабочей текучей среды; и (е) второй теплообменник, выполненный с возможностью передачи тепла от расширенного второго потока испаренной рабочей текучей среды второму потоку конденсированной рабочей текучей среды, чтобы получить поток рабочей текучей среды, имеющий большую энтальпию, чем второй поток конденсированной рабочей текучей среды.

[0005] В альтернативном варианте выполнения настоящее изобретение относится к системе, работающей по циклу Ранкина, содержащей: (а) нагреватель, выполненный с возможностью передачи тепла от первого потока с отработанным теплом к первому потоку рабочей текучей среды для получения первого потока испаренной рабочей текучей среды и второго потока с отработанным теплом; (б) первый детандер, выполненный с возможностью приема первого потока испаренной рабочей текучей среды для получения механической энергии и расширенного первого потока испаренной рабочей текучей среды; (с) первый теплообменник, выполненный с возможностью передачи тепла от первого расширенного потока испаренной рабочей текучей среды и второго потока с отработанным теплом первому потоку конденсированной рабочей текучей среды для получения второго потока испаренной рабочей текучей среды, первого обедненного теплом потока с отработанным теплом и первого обедненного теплом потока рабочей текучей среды; (d) второй детандер, выполненный с возможностью приема второго потока испаренной рабочей текучей среды для получения механической энергии и расширенного второго потока испаренной рабочей текучей среды; (е) второй теплообменник, выполненный с возможностью передачи тепла от расширенного второго потока испаренной рабочей текучей среды второму потоку конденсированной рабочей текучей среды, чтобы получить поток рабочей текучей среды, имеющий большую энтальпию, чем второй поток конденсированной рабочей текучей среды, и второй обедненный теплом поток рабочей текучей среды; (f) узел объединения потоков рабочей текучей среды, выполненный с возможностью объединения первого обедненного теплом потока рабочей текучей среды со вторым обедненным теплом потоком рабочей текучей среды для получения объединенного обедненного теплом потока рабочей текучей среды; (g) конденсатор, выполненный с возможностью получения объединенного обедненного теплом рабочей текучей среды и получения первого объединенного потока конденсированной рабочей текучей среды; (h) насос для рабочей текучей среды, выполненный с возможностью сжатия первого объединенного потока конденсированной рабочей текучей среды, и (i) по меньшей мере один разветвитель потока рабочей текучей среды, выполненный с возможностью разделения второго объединенного потока конденсированной рабочей текучей среды на по меньшей мере два потока конденсированной рабочей текучей среды.

[0006] В еще одном варианте выполнения настоящее изобретение относится к способу рекуперации тепловой энергии с использованием системы, работающей по циклу Ранкина, включающему: (а) передачу тепла от первого потока с отработанным теплом первому потоку рабочей текучей среды для получения, тем самым, первого потока испаренной рабочей текучей среды и второго потока с отработанным теплом; (b) расширение первого потока испаренной рабочей текучей среды для получения, тем самым, механической энергии и расширенного первого потока испаренной рабочей текучей среды; (с) передачу тепла от расширенного первого потока испаренной рабочей текучей среды и второго потока с отработанным теплом первому потоку конденсированной рабочей текучей среды для получения, тем самым, второго потока испаренной рабочей текучей среды, обедненного теплом потока с отработанным теплом и первого обедненного теплом потока рабочей текучей среды; (d) расширение второго потока испаренной рабочей текучей среды для получения, тем самым, механической энергии и расширенного второго потока испаренной рабочей текучей среды; (е) передачу тепла от расширенного второго потока испаренной рабочей текучей среды второму потоку конденсированной рабочей текучей среды, чтобы получить, тем самым, поток рабочей текучей среды, имеющий большую энтальпию, чем второй поток конденсированной рабочей текучей среды, и второй обедненный теплом поток рабочей текучей среды.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0007] Различные признаки, аспекты и преимущества настоящего изобретения станут более понятными из нижеследующего подробного описания со ссылкой на прилагаемые чертежи, на которых одинаковые символы обозначают одинаковые элементы на всех чертежах. Если не указано иное, то представленные здесь чертежи предназначены для иллюстрации основных существенных признаков изобретения. Эти существенные признаки изобретения, как полагают, применимы в различных системах, содержащих один или несколько вариантов выполнения настоящего изобретения. Таким образом, чертежи не включает все обычные признаки, известные средним специалистам в данной области техники, которые могут потребоваться для практической реализации изобретения.

[0008] Фиг. 1 изображает первый вариант выполнения изобретения;

[0009] Фиг. 2 изображает собой второй вариант выполнения изобретения;

[0010] Фиг. 3 изображает третий вариант выполнения изобретения;

[0011] Фиг. 4 изображает четвертый вариант выполнения изобретения;

[0012] Фиг. 5 изображает пятый вариант выполнения изобретения;

[0013] Фиг. 6 изображает шестой вариант выполнения изобретения; и

[0014] Фиг. 7 изображает альтернативную систему с циклом Ранкина.

ПОДРОБНОЕ ОПИСАНИЕ

[0015] В последующем описании и формуле изобретения, которые следуют далее, ссылки будут сделаны на ряд терминов, которые должны быть определены как имеющие следующие значения.

[0016] Формы единственного числа включают ссылки на множественное число, если из контекста явным образом не следует иное.

[0017] «Необязательный» или «необязательно» означает, что впоследствии описанное событие или обстоятельство может произойти, а может и не произойти, и что описание включает случаи, когда событие происходит, и случаи, когда этого не происходит.

[0018] Приближенный язык, используемый в описании и в формуле изобретения, может быть применен для модификации любого количественное представления, которое может варьироваться, не приводя к изменению своей основной функции, с которой она связана. Соответственно, значение, модифицированное термином или терминами, такими как «приблизительно» и «по существу», не должно быть ограничено точным указанным значением. По меньшей мере в некоторых случаях приближенный язык может соответствовать точности прибора для измерения значение. Здесь и далее в описании и в формуле изобретения, ограничения диапазона могут быть объединены и/или переставлены, причем такие диапазоны определены и включают все поддиапазоны, содержащиеся в них, если из контекста или языка явным образом не следует иное.

[0019] В настоящем описании выражение «выполнен с возможностью» описывает физическое расположение двух или большего количества элементов системы с циклом Ранкина, необходимых для достижения конкретного результата. Таким образом, выражение «выполнен с возможностью» может быть использовано взаимозаменяемо с выражением «расположен таким образом, что», при этом специалисты в данной области техники, прочитав это описание, оценят различные расположения элементов системы с циклом Ранкина, с учетом характера указанного достигаемого результата. Выражение «выполненный с возможностью размещения» со ссылкой на рабочую текучую среду системы с циклом Ранкина, означает, что система с циклом Ранкина изготовлена из элементов, которые при объединении могут безопасным образом вмещать рабочую текучую среду в процессе работы.

[0020] Как уже отмечалось ранее, в одном варианте выполнения настоящее изобретение обеспечивает систему с циклом Ранкина, используемую для получения энергии от источников отработанного тепла, например теплового потока, содержащего поток выхлопного газа из турбины сгорания. Система с циклом Ранкина преобразует по меньшей мере часть тепловой энергии, имеющейся в источнике отработанного тепла, в механическую энергию, которая может быть использована различными способами. Например, механическая энергия, произведенная из отработанного тепла, может быть использована для приведения в действие генератора, генератора переменного тока или другого подходящего устройства, способного преобразовывать механическую энергию в электрическую энергию. В одном или нескольких вариантах выполнения система с циклом Ранкина, обеспечиваемая настоящим изобретением, содержит несколько устройств, выполненных с возможностью преобразования механической энергии, вырабатываемой системой с циклом Ранкина, в электрическую энергию, например, систему с циклом Ранкина, содержащую два или большее количество генераторов, или систему с циклом Ранкина, содержащую генератор и генератор переменного тока. В альтернативном варианте выполнения система, работающая по циклу Ранкина, предложенная в настоящем изобретении, преобразует скрытую теплоту, содержащуюся в рабочей текучей среде, в механическую энергию, и использует по меньшей мере часть производимой механической энергии для питания элементов системы, например, насоса, используемого для сжатия рабочей текучей среды.

[0021] В одном или нескольких вариантах выполнения система, работающая по циклу Ранкина, предложенная в настоящем изобретении, содержит нагреватель, выполненный с возможностью передачи тепла от первого потока с отработанным теплом первому потоку рабочей текучей среды с получением первого потока испаренной рабочей текучей среды и второго потока с отработанным теплом. Поток с отработанным теплом может представлять собой любой газ, жидкость, псевдоожиженные твердые частицы или многофазную текучую среду, содержащие отработанное тепло, из которых тепло может быть рекуперировано. Как используется в настоящем документе, термин «нагреватель» описывает устройство, которое приводит источник отработанного тепла, такой как поток с отработанным теплом, в тепловой контакт с рабочей текучей средой системы с циклом Ранкина, так что тепло передается от источника отработанного тепла рабочей текучей среде без приведения источника отработанного тепла в непосредственный контакт с рабочей текучей средой, т.е. источник отработанного тепла не смешивается с рабочей текучей средой. Такие нагреватели являются коммерчески доступными и известны специалистам в данной области техники. Например, нагреватель может представлять собой канал, через который может поступать поток с отработанным теплом, как, например, раскрыто в заявке на патент США N220110120129 А1, поданной 24 ноября 2009 года, и которая включена в настоящий документ во всей своей полноте в качестве ссылки. Рабочая текучая среда может быть приведена в тепловой контакт с потоком, содержащим отработанное тепло, с помощью трубки, расположенной внутри канала, и обеспечивающей проток, через который пропускается рабочая текучая среда без непосредственного контакта с потоком с отработанным теплом. Протекающая рабочая текучая среда поступает в трубку внутри канала при первой температуре рабочей текучей среды, получает тепло от потока с отработанным теплом, протекающего через канал, и выходит из трубки в канале при второй температуре рабочей текучей среды, которая выше, чем первая рабочая температура текучей среды. Поток с отработанным теплом входит в канал при первой температуре и, передав по меньшей мере часть своей тепловой энергии рабочей текучей среде, выходит при второй температуре, которая ниже, чем первая температура потока с отработанным теплом.

[0022] В настоящем описании термин «нагреватель» предназначен для устройств, которые выполнены с возможностью передачи тепла от источника отработанного тепла, такого как поток с отработанным теплом, к рабочей текучей среде, а не предназначены для теплообмена между первым потоком рабочей текучей среды и вторым потоком рабочей текучей среды. Нагреватели в настоящем документе отличаются от теплообменников, которые выполнены с возможностью осуществления теплообмена между первым потоком рабочей текучей среды и вторым потоком рабочей текучей среды. Это различие показано на Фиг. 5 настоящей заявки, на котором нагреватели 32 и 33 передают тепло от потока с отработанным теплом, соответственно, потоков 16 и 18 с отработанным теплом к, соответственно, потокам 20 и 27 рабочей текучей среды. Специалистам в данной области техники будет понятно, что пронумерованные как 36 и 37 элементы системы, показанные на Фиг. 5, и пронумерованный как 38 элемент системы, показанный на Фиг. 6, выполнены с возможностью теплообмена между первым потоком рабочей текучей среды и вторым потоком рабочей текучей среды и квалифицируются как теплообменники, в соответствии с определением в настоящем документе, а не рассматриваются как «нагреватели», в соответствии с определением в настоящем документе, и это при том, что теплообменник 36 выполнен с возможностью передачи тепла и как от потока 19 с отработанным теплом (Фиг. 5 и Фиг. 6), так и от расширенного первого потока 22 испаренной рабочей текучей среды первому потоку 24 конденсированной рабочей текучей среды.

[0023] Подходящие нагреватели, которые могут быть использованы в соответствии с одним или несколькими вариантами выполнения изобретения, включают канальные нагреватели, как уже отмечалось, нагреватели с псевдоожиженным слоем, кожухотрубные нагреватели, пластинчатые нагреватели, ребристые пластинчатые нагреватели и ребристые трубчатые нагреватели.

[0024] Подходящие теплообменники, которые могут быть использованы в соответствии с одним или несколькими вариантами выполнения изобретения, включают кожухотрубные теплообменники, печатные теплообменники, ребристые пластинчатые теплообменники и формованные пластинчатые теплообменники. В одном или нескольких вариантах выполнения настоящего изобретения система с циклом Ранкина содержит по меньшей мере один печатный теплообменник.

[0025] Рабочая текучая среда, используемая в соответствии с одним или несколькими вариантами выполнения изобретения, может представлять собой любую рабочую текучую среду, пригодную для использования в системе с циклом Ранкина, например, диоксид углерода. Дополнительные подходящие рабочие текучие среды включают воду, азот, углеводороды, такие как циклопентан, органические галогенные соединения и стабильные неорганические текучие среды, таких как SF6. В одном варианте выполнения в качестве рабочей текучей среды используют диоксид углерода, который в одном или нескольких местах в системе с циклом Ранкина может находиться в сверхкритическом состоянии.

[0026] Несмотря на то, что система с циклом Ранкина представляет собой по существу замкнутый контур, в котором рабочая текучая среда по-разному нагревается, расширяется, конденсируется и сжимается, полезно рассматривать рабочую текучую среду как составленную из различных потоков рабочей текучей среды в качестве средства определения общей конфигурации системы по циклу Ранкина. Таким образом, первый поток рабочей текучей среды поступает в нагреватель, где он собирает отработанное тепло от источника отработанного тепла и превращается из первого потока рабочей текучей среды в первый поток испаренной рабочей текучей среды.

[0027] Выражение «испаренная рабочая текучая среда» при применении к рабочей текучей среде с высокой летучестью, такой как диоксид углерода, который имеет температуру кипения -56°C при 518 кПа, просто означает рабочую текучую среду в газообразном состоянии, которая горячее, чем она была до прохождения через нагреватель или теплообменник. Из этого следует, что термин «испаренный», используемый в настоящем документе, не обязательно означать преобразование рабочей текучей среды из жидкого состояния в газообразное состояние. Поток испаренной рабочей текучей среды может находиться в сверхкритическом состоянии, когда производится путем пропускания через нагреватель и/или теплообменник системы с циклом Ранкина, предусмотренным настоящим изобретением.

[0028] Подобным же образом, термин «конденсированный», когда применяется к рабочей текучей среды, не должны означать рабочую текучую среду в жидком состоянии. В контексте рабочей текучей среды, такой как диоксид углерода, конденсированная рабочая текучая среда просто означает поток рабочей текучей среды, который был пропущен через конденсатор, иногда называемым в настоящем документе как конденсатор рабочей текучей среды. Таким образом, термин «конденсированная рабочая текучая среда» может, в некоторых вариантах выполнения, на самом деле относиться к рабочей текучей среды в газообразном состоянии или в сверхкритическом состоянии. Подходящие конденсирующие или охлаждающие устройства, которые могут быть использованы в соответствии с одним или несколькими вариантами выполнения изобретения, включают ребристые трубчатые конденсаторы и ребристые пластинчатые конденсаторы / охладители. В одном или нескольких вариантах выполнения настоящее изобретение предоставляет систему с циклом Ранкина, содержащую единственный конденсатор рабочей текучей среды. В альтернативном наборе вариантов выполнения, настоящее изобретение предоставляет систему с циклом Ранкина, содержащую несколько конденсаторов рабочей текучей среды.

[0029] Термин «расширенный», применительно к рабочей текучей среде, описывает состояние потока рабочей текучей среды после его прохождение через детандер. Как будет понятно специалистам в данной области техники, некоторая часть энергии, содержащейся в испаренной рабочей текучей среде, проходящей через детандер, преобразуется в механическую энергию. Подходящие расширители, которые могут быть использованы в соответствии с одним или несколькими вариантами выполнения изобретения, включают расширители аксиального и радиального типа.

[0030] В одном или нескольких вариантах выполнения система с циклом Ранкина, предусмотренная настоящим изобретением, дополнительно содержит устройство, выполненное для преобразования механической энергии в электрическую энергию, такое как генератор или генератор переменного тока, который может приводиться в действие с помощью механической энергии, полученной в детандере. В одном или нескольких альтернативных вариантах выполнения система с циклом Ранкина содержит несколько устройств, выполненных с возможностью преобразования механической энергии, произведенной в детандере, в электроэнергию. Для соединения детандеров с генераторами / генераторами переменного тока могут быть использованы редукторы. Кроме того, для регулирования электрического тока, созданного генераторами / генераторами переменного тока, могут быть использованы трансформаторы и преобразователи.

[0031] Обратимся теперь к чертежам, которые представляют существенные признаки систем с циклом Ранкина, выполненных в соответствии с настоящим изобретением. Различные линии потока указывают направление потоков, содержащих отработанное тепло, и потоков рабочей текучей среды через различные элементы системы с циклом Ранкина. Как будет понятно специалистам в данной области техники, отработанное тепло, содержащие потоки и потоки рабочей текучей среды, надлежащим образом ограничены в системе с циклом Ранкина. Так, например, каждая из линий, указывающая направление протекания потока рабочей текучей среды, представляет собой канал, встроенный в систему с циклом Ранкина. Аналогичным образом, крупные стрелки, указывающие протекание потока с отработанным теплом, предназначены для обозначения потоков, текущих в соответствующих каналах (не показаны). В системах с циклом Ранкина, выполненных с возможностью использования в качестве рабочей текучей среды диоксида углерода, каналы и оборудования могут быть выбраны такими, чтобы безопасным образом использовать сверхкритический диоксид углерода с помощью элементов системы с циклом Ранкина, известных в данной области техники.

[0032] На Фиг. 1 представлены ключевые элементы системы 10, работающей по циклу Ранкина, предложенной в настоящем изобретении. В изображенном варианте выполнения первый поток 20 рабочей текучей среды вводят в нагреватель 32, где он входит в тепловой контакт с первым потоком 16, содержащим отработанное тепло. Первый поток 20 получает тепло от более горячего потока 16 с отработанным теплом и преобразуется при прохождении через нагреватель в первый поток 21 испаренной рабочей текучей среды, который затем поступает в первый детандер 34. Первый поток 16 с отработанным теплом, аналогичным образом преобразуется во второй поток 17 с отработанным теплом, с меньшей энергией. По меньшей мере часть энергии, содержащейся в первом потоке 21, преобразуется в механическую энергию в детандере. Расширенный первый поток 22 испаренной рабочей текучей среды, который выходит из первого детандера, и второй поток 17 с отработанным теплом, затем по-отдельности (без физического смешивания вместе) поступают в первый теплообменник 36, где остаточное тепло как от расширенного первого потока 22 испаренной рабочей текучей среды, так и от второго потока 17 с отработанным теплом передается первому потоку 24 конденсированной рабочей текучей среды, полученной в другом месте системы 10. Расширенный первый поток 22 и второй поток 17 с отработанным теплом превращаются в теплообменнике 36, соответственно, в первый обедненный теплом поток 57 рабочей текучей среды и во второй обедненный теплом поток 18 с отработанным теплом.

[0033] Как показано на Фиг. 1, первый поток 24 конденсированной рабочей текучей среды, приняв тепло от второго потока 17 с отработанным теплом и расширенного первого потока 22 испаренной рабочей текучей среды, преобразуется в теплообменнике 36 во второй поток 25 испаренной рабочей текучей среды. В одном или нескольких вариантах выполнения второй поток 25 испаренной рабочей текучей среды характеризуется более низкой температурой, чем первый поток 21 испаренной рабочей текучей среды. Второй поток 25 затем поступает во второй детандер 35 для получения механической энергии и превращается в расширенный второй поток 26 испаренной рабочей текучей среды. Второй теплообменник 37 выполнен с возможностью приема расширенного второго потока 26, где остаточное тепло, содержащееся в расширенном втором потоке 26, передается второму потоку 28 конденсированной рабочей текучей среды, полученной в другом месте системы с циклом Ранкина. Второй поток 28 преобразуется в поток 29 рабочей текучей среды, имеющий большую энтальпию, чем второй поток 28. Расширенный второй поток 26 испаренной рабочей текучей среды преобразуется во втором теплообменнике 37 во второй обедненный теплом поток 56 рабочей текучей среды. В одном или нескольких вариантах выполнения настоящего изобретения первый поток 24 и второй поток 28 конденсированной рабочей текучей среды получают из общего потока конденсированной рабочей текучей среды, произведенного в системе 10.

[0034] На Фиг. 2 показана предложенная система 10 с циклом Ранкина, которая выполнена как на Фиг. 1, но с добавлением генератора 42, выполненного с возможностью использования механической энергии, производимой одним или обоими детандерами 34 и 35.

[0035] На Фиг. 3 показана предложенная система 10, как показано на Фиг. 1 и Фиг. 2, но с добавлением генератора 42, механически соединенного с обоими детандерами 34 и 35 с помощью общего приводного вала 46. Кроме того, система, изображенная на Фиг. 3, содержит канальный нагреватель 44, выполненный с возможностью повышения температуры второго потока 17 отработанного газа. Таким образом, второй поток 17 преобразуется в канальном нагревателе 44 в более горячий второй поток 19 отработанного газа, иногда называемого в настоящем документе как термически улучшенный второй поток 19 отработанного газа. Наличие канального нагревателя обеспечивает дополнительную гибкость при использования системы с циклом Ранкина. Например, канальный нагреватель обеспечивает возможность повышения температуры потока до тех пор, пока она не станет равна температуре второго потока, с которым он объединяется ниже по потоку от нагревателя. Регулировка температуры потока, таким образом, сводит к минимуму потери энергии из-за объединения двух или большего количества потоков, имеющих разные температуры.

[0036] Фиг. 4 представляет собой систему 10, выполненную с соответствии с настоящим изобретением, как показано на Фиг. 1, и дополнительно иллюстрирующий объединение обедненных теплом потоков 57 и 56 в объединенный обедненный теплом поток 58, который преобразуется в первый и второй потоки 24 и 28 конденсированной рабочей текучей среды. Таким образом, потоки 57 и 56 объединяются в узле 49 объединения потоков рабочей текучей среды, чтобы обеспечить объединенный поток 58 рабочей текучей среды, который, под действием конденсатора / охладителя 60 преобразуется в первый объединенный поток 61 конденсированной рабочей текучей среды, который сжимается насосом 62 для рабочей текучей среды, чтобы получить второй объединенный поток 64 конденсированной рабочей текучей среды. Поток 64 рабочей текучей среды затем подается в разветвитель 48 потока рабочей текучей среды, который преобразует поток 64 в первый поток 24 и второй поток 28 конденсированной рабочей текучей среды.

[0037] Фиг. 5 представляет собой систему 10, выполненную в соответствии с настоящим изобретением. Система содержит элементы, общие с вариантами выполнения, показанными на Фиг. 3 и 4, но дополнительно содержит второй нагреватель 33, который используется для отбора дополнительного тепла, не захваченного тепловым контактом между термически улучшенным вторым потоком 19 с отработанным теплом и первым потоком 24 конденсированной рабочей текучей среды в первом теплообменнике 36. В изображенном варианте выполнения первый поток 20 рабочей среды (который является тем же самым потоком, что и поток 29 рабочей текучей среды, поскольку нет никакого промежуточного активного преобразования) термически контактируют с первым потоком 16 отработанного газа в нагревателе 32, чтобы получить первый поток 21 испаренной рабочей текучей среды и второй поток 17 отработанного газа. Канальный нагреватель 44 преобразует второй поток 17 отработанного газа в термически улучшенный второй поток 19 отработанного газа перед его подачей в первый теплообменник 36. Первый поток 21 испаренной рабочей текучей среды расширяется в первом детандере 34, который соединен с общим приводным валом 46 как со вторым детандером 35, так и с генератором 42. Как и в вариантах выполнения, показанных на Фиг. 3 и 4, расширенный поток 22 вводят в первый теплообменник 36, где он отдает тепло первому потоку 24 конденсированной рабочей текучей среды, чтобы получить второй поток 25 испаренной рабочей текучей среды и первый обедненный теплом поток 57 рабочей текучей среды. В изображенном варианте выполнения первый поток 24 и второй поток 28 конденсированной рабочей текучей среды получают из потока 64 конденсированной рабочей текучей среды следующим образом. Поток 64 подают в первый разветвитель 48, который преобразует поток 64 в поток 28 и промежуточный поток 70 конденсированной рабочей текучей среды, иногда называемый в настоящем документе третьим потоком 70 конденсированной рабочей текучей среды, который впоследствии разделяется во втором разветвителе 48 на поток 24 и четвертый поток 72 конденсированной рабочей текучей среды. Поток 72 поступает во второй нагреватель 33, где он получает тепло от обедненного теплом второго потока 18 с отработанным теплом и преобразуется в третий поток 73 испаренной рабочей текучей среды. Обедненный теплом поток 18 дополнительно охлаждают путем его пропускания через нагреватель 33, и выпускают из нагревателя как еще больше обеденный теплом поток 18а. Второй поток 25 испаренной рабочей текучей среды и третий поток 73 испаренной текучей среды объединяют в узле 49 объединения потоков рабочей текучей среды для получения объединенного потока 74 испаренной рабочей текучей среды, который затем вводят во второй детандер 35.

[0038] Как показано на Фиг. 5, расширенный второй поток 26 испаренной рабочей текучей среды вводят во второй теплообменник 37, где он передает тепло второму потоку 28 конденсированной рабочей текучей среды, сам будучи произведенным из объединенного потока 64 конденсированной рабочей текучей среды в разветвителе 48. В изображенном варианте выполнения второй поток 28 конденсированной рабочей текучей среды преобразуют в поток 29, который больше активно не преобразуют до его поступления в нагреватель 32 в качестве первого потока 20 рабочей текучей среды. Как используется в настоящем документе, термин «активно преобразуется» относится к тому, что поток с отработанным теплом или поток рабочей текучей среды подвергают этапу процесса, на котором его разделяют на два или большее количество потоков, объединенных с одним или несколькими потоками, нагретыми, испаренными, расширенными, конденсированными, сжатыми, охлажденными, или подвергнутыми некоторым комбинациям из двух или нескольких из указанных выше операций преобразования.

[0039] Фиг. 6 представляет собой систему, выполненную в соответствии с настоящим изобретением, как изображено на Фиг. 5, но дополнительно содержащую третий теплообменник 38, который используется для захвата остаточного тепла, присутствующего в первом обедненном теплом потоке 57 рабочей текучей среды. В изображенном варианте выполнения обедненный теплом поток 57 подают в клапан 80, который может быть приведен в действие, чтобы обеспечивать возможность прохождения всего потока 57 рабочей текучей среды, части потока 57 рабочей текучей среды или предотвращать прохождение потока 57 рабочей текучей среды через третий теплообменник 38. Второй клапан 82 может приводиться в действие, чтобы обеспечивать возможность прохождения только еще больше обедненного теплом потока 57а рабочей текучей среды, чтобы обеспечивать возможность прохождения комбинации потоков 57 и 57а, или обеспечивать возможность прохождения только потока 57. Для удобства, поток рабочей текучей среды на выходе из клапана 82, но выше по потоку от узла 49 объединения потоков рабочей текучей среды упоминается как поток 57/57а.

[0040] Различные элементы системы хорошо известны специалистам, например, разветвители потока рабочей текучей среды, узлы объединения потоков рабочей текучей среды, насосы для рабочей текучей среды и конденсаторы рабочей текучей среды, при этом все они являются коммерчески доступными.

[0041] В дополнение к созданию системы с циклом Ранкина, настоящее изобретение относится к способу рекуперации тепловой энергии с использованием системы с циклом Ранкина. Один или несколько вариантов выполнения способа проиллюстрированы на Фиг. 1-6. Таким образом, в одном варианте выполнения способ включает (а) передачу тепла от первого потока 16 с отработанным теплом первому потоку 20 рабочей текучей среды, чтобы получить, тем самым, первый поток 21 испаренной рабочей текучей среды и второй поток 17 с отработанным теплом; (b) расширение первого потока испаренной рабочей текучей среды для получения, тем самым, механической энергии и расширенного первого потока 22 испаренной рабочей текучей среды; (с) передачу тепла от расширенного первого потока 22 испаренной рабочей текучей среды и второго потока 17 с отработанным теплом первому потоку 24 конденсированной рабочей текучей среды для получения, тем самым, второго потока 25 испаренной рабочей текучей среды, обедненного теплом второго потока 18 с отработанным теплом и первого обедненного теплом потока 57 рабочей текучей среды; (d) расширение второго потока 25 испаренной рабочей текучей среды, чтобы получить, тем самым, механическую энергию и расширенный второй поток 26 испаренной рабочей текучей среды; и (е) передачу тепла от расширенного второго потока 26 испаренной рабочей текучей среды второму потоку 28 конденсированной рабочей текучей среды для получения, таким образом, первого потока 29 рабочей текучей среды, имеющего большую энтальпию, чем второй поток 28 конденсированной рабочей текучей среды, и второго обедненного теплом потока 56 рабочей текучей среды.

[0042] В одном или нескольких вариантах выполнения предложенный способ дополнительно включает этап (f): объединения первого обедненного теплом потока 57 рабочей текучей среды со вторым обедненным теплом потоком 56 рабочей текучей среды с получением объединенного обедненного теплом потока 58 рабочей текучей среды.

[0043] В одном или нескольких вариантах выполнения способ, выполненный в соответствии с настоящим изобретением, дополнительно включает этап (g): конденсации объединенного обедненного теплом потока 58 рабочей текучей среды с получением первого объединенного обедненного теплом потока 61 конденсированной рабочей текучей среды.

[0044] В одном или нескольких вариантах выполнения способ, выполненный в соответствии с настоящим изобретением, дополнительно включает этап (h): сжатия первого объединенного обедненного теплом потока 61 конденсированной рабочей текучей среды с получением, таким образом, второго объединенного обедненного теплом потока 64 конденсированной рабочей текучей среды.

[0045] В одном или нескольких вариантах выполнения способ, выполненный в соответствии с настоящим изобретением, дополнительно включает этап (i): разделения второго объединенного обедненного теплом потока 64 конденсированной рабочей текучей среды с получением, таким образом, по меньшей мере трех потоков конденсированной рабочей текучей среды.

[0046] В одном или нескольких вариантах выполнения способ, выполненный в соответствии с настоящим изобретением, использует диоксид углерода в качестве рабочей текучей среды, причем диоксид углерода находится в сверхкритическом состоянии в течение по меньшей мере части по меньшей мере одного этапа способа.

[0047] В одном или нескольких вариантах выполнения способы и системы, выполненные в соответствии с настоящим изобретением, могут быть использованы для захвата и использования тепла от теплового потока с отработанным теплом, который является потоком отработанных газов, производимым турбиной внутреннего сгорания.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

[0048] Работающая по циклу Ранкина система лабораторного масштаба была построена и испытана в целях демонстрации как работоспособности такой системы на диоксиде углерода в сверхкритическом состоянии, так и проверки характеристик отдельных элементов этой системы, предложенных производителями, например, эффективности печатных теплообменников. Экспериментальная система с циклом Ранкина была выполнена как показано на Фиг. 4, за исключением того, что первый детандер 34 и второй детандер 35 были заменены расширительными клапанами, а поток 61 был разделен и отправлен в первый насос для рабочей текучей среды и второй насос для рабочей текучей среды, чтобы получить, соответственно, первый поток 24 конденсированной рабочей текучей среды и второй поток 28 конденсированной рабочей текучей среды. Кроме того, система с циклом Ранкина не используют первый поток 16 с отработанным теплом, и полагается, вместо этого, на электрические нагревательные элементы для нагрева первого потока 20 рабочей текучей среды. Рабочая текучая среда представляла собой диоксид углерода. Возрастающая эффективность передачи тепла либо от второго потока 17 с отработанным теплом либо от термически улучшенного второго потока 19 с отработанным теплом первому теплообменнику 36 может быть аппроксимирована добавлением нагревательных элементов в теплообменник 36. Экспериментальная система обеспечивает базу для дополнительных исследований в области компьютерного моделирования, как описано ниже. В частности, данные, полученные в эксперименте, могли быть использованы для подтверждения и/или улучшения предсказанной производительности вариантов выполнения настоящего изобретения.

[0049] Были использованы две модели программного обеспечения для прогнозирования эффективности систем с циклом Ранкина, выполненных в соответствии с настоящим изобретением. Первая из этих моделей программного обеспечения «EES» (Engineering Equation Solver), доступная от компании F-Chart Software (Мэдисон, штат Висконсин, США), представляет собой вычислительную систему на основе уравнения, которая обеспечивает возможность интеллектуальной оптимизации условий эксплуатации системы с циклом Ранкина, о чем свидетельствует точки состояния системы для лучшей производительности. Дальнейшие идеи о том, как лучше работать с системой с циклом Ранкина, были получены с использованием программы Aspen HYSYS, системой моделирования комплексных процессов доступной от компании AspenTech.

[0050] Система с циклом Ранкина, выполненная в соответствии с настоящим изобретением, как изображено на Фиг. 4, была охарактеризована (Пример 1) с помощью модели программного обеспечения EES, используя уравнение состояния Spann-Wagner для диоксида углерода. Система с циклом Ранкина в Примере 1 сравнивалась с тремя другими системами с циклом Ранкина. Первая (Сравнительный Пример 1) представляет собой простую систему с циклом Ранкина, содержащую один единственный детандер и один теплообменник, но масштабированная соответствующим образом, так чтобы могло быть выполнено правомерное сравнение с Примером 1 и Сравнительными Примерами 2 и 3. Второе сравнение (Сравнительный Пример 2) было сделано с системой, выполненной как изображено на Фиг. 7. Первое главное отличие между системой в Примере 1 и системой в Сравнительном Примере 2 заключается в том, что в Примере 2 второй объединенный поток 64 рабочей текучей среды подавался во второй теплообменник 37, а затем поток 29 рабочей текучей среды, выходящий из второго теплообменника 37, преобразовывался разветвителем 48 потока рабочей текучей среды в первый поток 20 рабочей текучей среды и первый поток 24 конденсированной рабочей текучей среды. Третье сравнение (Сравнительный Пример 3) было выполнено как на Фиг. 4, с тем исключением, что никакого второго потока с отработанным теплом не было направлено к первому теплообменнику 36. Данные, представленные в Таблице 1, иллюстрируют преимущества системы с циклом Ранкина, выполненной в соответствии с настоящим изобретением, относительно альтернативных конфигураций системы с циклом Ранкина.

[0051] Системы с циклом Ранкина Примера 1 и Сравнительных Примеров 1-3 были смоделированы в соответствии с набором шестнадцати различных стационарных состояний, причем каждое стационарное состояние характеризуется низкой температурой рабочей текучей среды CO2, которая изменяется от приблизительно 10°С в первом стационарном состоянии до приблизительно 50°С в шестнадцатом стационарном состоянии. Предполагаемая эффективность систем с циклом Ранкина зависит от температуры окружающей среды, которая также была и минимально допустимой температурой для потока с отработанным теплом, когда он выходил из систему с температурой приблизительно 130°С. Этот нижний температурный предел соответствует типичным принципам конструкций для рекуперации отработанного тепла от выхлопных потоков двигателей внутреннего сгорания, таких как газовые турбины, чтобы предотвратить конденсацию коррозионного кислого газа в выхлопном канал. Выходная мощность модельных систем с циклом Ранкина также может быть оценена с помощью экспериментально измеренных точек состояния с помощью системы с циклом Ранкина лабораторного масштаба, в качестве входных данных для компьютерного симулятора. Выходная мощность каждой из исследуемых систем с циклом Ранкина монотонно падала, когда самая низкая температура рабочей текучей среды CO2 системы увеличивалась.

[0052] Данные представлены в Таблице 1 ниже, которая сравнивает выходную мощность системы с циклом Ранкина, выполненной в соответствии с настоящим изобретением (Пример 1), с обычной системой с циклом Ранкина (Сравнительный Пример 1) и двумя альтернативно выполненными системами с циклом Ранкина аналогичной сложности (Сравнительные Примеры 2-3).

Пример 1 выполнен как показано на Фиг. 4; Сравнительный пример 1 = базовая конфигурация цикла Ранкина, Сравнительный Пример 2 выполнен как показано на Фиг. 7, "Пример 1, Преимущества по отношению к Сравнительному Примеру 2.

[0053] Данные, представленные в Таблице 1, показывают значительное улучшение выходной мощности системы с циклом Ранкина, выполненной в соответствии с настоящим изобретением, относительно базовой, стандартной конфигурации цикла Ранкина (Сравнительный Пример 1) и альтернативно выполненных систем с циклом Ранкина аналогичной сложности (Сравнительные Примеры 2-3).

[0054] Вышеприведенные примеры являются только иллюстративными, служащими для иллюстрации лишь некоторых из признаков изобретения. Прилагаемая формула изобретения предназначена для настолько широкой охраны изобретения, насколько это было задумано и проиллюстрировано в настоящем документе, причем приведенные примеры являются иллюстративными выбранных вариантов выполнения из многообразия всех возможных вариантов выполнения. Соответственно, намерение заявителей заключается в том, что прилагаемая формула изобретения не должна быть ограничена выбором примеров, используемых для иллюстрации признаков настоящего изобретения. Как используется в формуле изобретения, слово «содержит» и его грамматические варианты логически также подразумевают и включают фразы в изменяемой и различной степени, таких как, например, но не ограниченные ими: «состоящий по существу из» и «состоящий из». Где это необходимо, указаны диапазоны, причем эти диапазоны включают все поддиапазоны между ними. Следует ожидать, что изменения в этих диапазонах будут очевидны обычным специалистам в данной области техники, где это не является публично доступным, причем эти изменения, где это возможно, истолкованы как охваченные прилагаемой формулой изобретения. Предполагается также, что прогресс в области науки и техники сделает эквиваленты и замены также возможными, что сейчас не предусмотрено по причине неточности языка, при этом эти изменения также должны быть истолкованы, где это возможно, как охваченные прилагаемой формулой изобретения.

1. Система, работающая по циклу Ранкина, содержащая:

(a) нагреватель, выполненный с возможностью передачи тепла от первого потока с отработанным теплом первому потоку рабочей текучей среды с получением первого потока испаренной рабочей текучей среды и второго потока с отработанным теплом;

(b) первый детандер, выполненный с возможностью приема первого потока испаренной рабочей текучей среды с получением механической энергии и расширенного первого потока испаренной рабочей текучей среды;

(c) первый теплообменник, выполненный с возможностью передачи тепла от расширенного первого потока испаренной рабочей текучей среды и второго потока с отработанным теплом первому потоку конденсированной рабочей текучей среды с получением второго потока испаренной рабочей текучей среды;

(d) второй детандер, выполненный с возможностью приема второго потока испаренной рабочей текучей среды с получением механической энергии и расширенного второго потока испаренной рабочей текучей среды; и

(e) второй теплообменник, выполненный с возможностью передачи тепла от расширенного второго потока испаренной рабочей текучей среды второму потоку конденсированной рабочей текучей среды, с получением потока рабочей текучей среды, имеющего большую энтальпию, чем второй поток конденсированной рабочей текучей среды.

2. Система по п. 1, дополнительно содержащая генератор.

3. Система по п. 2, в которой генератор механически соединен с первым детандером.

4. Система по п. 2, в которой генератор механически соединен со вторым детандером.

5. Система по п. 1, дополнительно содержащая генератор, механически соединенный с первым детандером и вторым детандером.

6. Система по п. 5, в которой первый детандер и второй детандер имеют общий приводной вал.

7. Система по п. 1, выполненная с возможностью использования одной рабочей текучей среды.

8. Система по п. 7, в которой рабочей текучей средой является диоксид углерода.

9. Система по п. 1, выполненная с возможностью использования диоксида углерода в сверхкритическом состоянии.

10. Система по п. 1, дополнительно содержащая по меньшей мере один канальный нагреватель, выполненный с возможностью нагревания второго потока с отработанным теплом.

11. Система по п. 1, выполненная с возможностью получения первого и второго потоков конденсированной рабочей текучей среды из общего потока конденсированной рабочей текучей среды.

12. Система по п. 1, дополнительно содержащая конденсатор рабочей текучей среды.

13. Система по п. 12, содержащая единственный конденсатор рабочей текучей среды.

14. Система по п. 1, дополнительно содержащая третий теплообменник.

15. Система, работающая по циклу Ранкина, содержащая:

(a) нагреватель, выполненный с возможностью передачи тепла от первого потока с отработанным теплом первому потоку рабочей текучей среды с получением первого потока испаренной рабочей текучей среды и второго потока с отработанным теплом;

(b) первый детандер, выполненный с возможностью приема первого потока испаренной рабочей текучей среды с получением механической энергии и расширенного первого потока испаренной рабочей текучей среды;

(c) первый теплообменник, выполненный с возможностью передачи тепла от расширенного первого потока испаренной рабочей текучей среды и второго потока с отработанным теплом первому потоку конденсированной рабочей текучей среды с получением второго потока испаренной рабочей текучей среды, обедненного теплом потока с отработанным теплом и первого обедненного теплом потока рабочей текучей среды;

(d) второй детандер, выполненный с возможностью приема второго потока испаренной рабочей текучей среды с получением механической энергии и расширенного второго потока испаренной рабочей текучей среды;

(e) второй теплообменник, выполненный с возможностью передачи тепла от расширенного второго потока испаренной рабочей текучей среды второму потоку конденсированной рабочей текучей среды, с получением потока рабочей текучей среды, имеющего большую энтальпию, чем второй поток конденсированной рабочей текучей среды, и второго обедненного теплом потока рабочей текучей среды;

(f) узел объединения потоков рабочей текучей среды, выполненный с возможностью объединения первого обедненного теплом потока рабочей текучей среды со вторым обедненным теплом потоком рабочей текучей среды с получением объединенного обедненного теплом потока рабочей текучей среды;

(g) конденсатор, выполненный с возможностью приема объединенного обедненного теплом потока рабочей текучей среды с получением первого объединенного потока конденсированной рабочей текучей среды;

(h) насос для рабочей текучей среды, выполненный с возможностью сжатия первого объединенного потока конденсированной рабочей текучей среды и получения тем самым второго объединенного потока конденсированной рабочей текучей среды; и

(i) по меньшей мере один разветвитель потока рабочей текучей среды, выполненный с возможностью разделения второго объединенного потока конденсированной рабочей текучей среды на по меньшей мере два потока конденсированной рабочей текучей среды.

16. Система по п. 15, в которой разделитель потока рабочей текучей среды обеспечивает первый и второй потоки конденсированной рабочей текучей среды.

17. Система по п. 15, в которой по меньшей мере один из двух потоков конденсированной рабочей текучей среды разделяется дальше перед введением в теплообменник.

18. Система по п. 15, дополнительно содержащая канальный нагреватель, выполненный с возможностью нагрева второго потока с отработанным теплом.

19. Система по п. 18, дополнительно содержащая третий теплообменник.

20. Способ рекуперации тепловой энергии с использованием системы, работающей по циклу Ранкина, включающий:

(а) передачу тепла от первого потока с отработанным теплом первому потоку рабочей текучей среды для получения тем самым первого потока испаренной рабочей текучей среды и второго потока с отработанным теплом;

(b) расширение первого потока испаренной рабочей текучей среды для получения тем самым механической энергии и расширенного первого потока испаренной рабочей текучей среды;

(c) передачу тепла от расширенного первого потока испаренной рабочей текучей среды и второго потока с отработанным теплом первому потоку конденсированной рабочей текучей среды для получения тем самым второго потока испаренной рабочей текучей среды, обедненного теплом потока с отработанным теплом и первого обедненного теплом потока рабочей текучей среды;

(d) расширение второго потока испаренной рабочей текучей среды для получения тем самым механической энергии и расширенного второго потока испаренной рабочей текучей среды; и

(e) передачу тепла от второго расширенного потока испаренной рабочей текучей среды второму потоку конденсированной рабочей текучей среды для получения тем самым потока рабочей текучей среды, имеющего большую энтальпию, чем второй поток конденсированной рабочей текучей среды, и второго обедненного теплом потока рабочей текучей среды.

21. Способ по п. 20, в котором (f) объединяют первый обедненный теплом поток рабочей текучей среды со вторым обедненным теплом потоком рабочей текучей среды для получения тем самым объединенного обедненного теплом потока рабочей текучей среды.

22. Способ по п. 21, в котором (g) конденсируют объединенный обедненный теплом поток рабочей текучей среды для получения тем самым первого объединенного потока конденсированной рабочей текучей среды.

23. Способ по п. 22, в котором (h) сжимают первый объединенный поток конденсированной рабочей текучей среды для получения тем самым второго объединенного потока конденсированной рабочей текучей среды.

24. Способ по п. 23, в котором (i) разделяют второй объединенный поток конденсированной рабочей текучей среды для получения тем самым по меньшей мере двух потоков конденсированной рабочей текучей среды.

25. Способ по п. 20, в котором рабочая текучая среда является диоксидом углерода в сверхкритическом состоянии в течение по меньшей мере части по меньшей мере одного этапа способа.



 

Похожие патенты:

Изобретение относится к энергетике. Система, работающая по циклу Ранкина, выполнена с возможностью преобразования отработанного тепла в механическую и/или электрическую энергию.

Изобретение относится к энергетике. Система, работающая по циклу Ранкина, выполнена с возможностью преобразования отработанного тепла в механическую и/или электрическую энергию.

Изобретение относится к энергетике. Способ преобразования энергии с регенерацией энергоносителей в циклическом процессе теплового двигателя осуществляют в первом энергетическом контуре циркуляции: газогенератор - турбина - реактор гидрирования - сепаратор - газогенератор, в котором углеводородное топливо и кислород или обогащенный кислородом воздух подают в газогенератор, топливо изотермически газифицируют в автотермическом или термическом процессе с образованием смеси водорода и оксидов углерода, и во втором энергетическом контуре циркуляции: паровые котлы - пароперегреватели - паровые турбины - конденсаторы - паровые котлы.

Изобретение относится к области тепловой энергетики, в частности к системам выработки электроэнергии на основе использования твердого топлива, преимущественно бурых и каменных углей.

Изобретение относится к теплоэнергетике, а также может быть использовано в нефтяной, газовой и химической промышленности. .

Изобретение относится к энергетике. Предложена новая система, работающая по циклу Ранкина, выполненная с возможностью преобразования отработанного тепла в механическую иили электрическую энергию. Система в соответствии с настоящим изобретением содержит новую конфигурацию компонентов традиционной системы, работающей по циклу Ранкина: трубопроводов, воздуховодов, нагревателей, детандеров, теплообменников, конденсаторов и насосов. Система, работающая по циклу Ранкина, выполнена таким образом, что изначальный поток с отработанным теплом используется для испарения первого потока рабочей текучей среды, а результирующий обедненный теплом поток с отработанным теплом используется для содействия в получении второго потока испаренной рабочей текучей среды. Предложенная система, работающая по циклу Ранкина, выполнена с возможностью использования диоксида углерода в сверхкритическом состоянии в качестве рабочей жидкости. Изобретение позволяет обеспечить более эффективную рекуперацию энергии от источника отработанного тепла. 3 н. и 22 з.п. ф-лы, 7 ил., 1 табл.

Наверх