Способ измерения скорости судна доплеровским лагом

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Решаемая техническая проблема - увеличение надежности и точности работы доплеровского лага без значительного увеличения цены и габаритов аппаратуры. Достигаемый технический результат - повышение точности и помехоустойчивости измерения скорости судна в условиях качки на волнении. Указанный технический результат достигается путем применения одного из трех технических решений либо их совокупности. Первое техническое решение состоит в формировании при приеме дополнительно к ХН в направлении излучения (относительно нормали к плоскости антенны) двумерного веера ХН, в совокупности перекрывающих сектор телесных углов, в котором возможен приход эхосигнала, отраженного от дна. Второе техническое решение заключается в том, что зондирующие сигналы излучаются в моменты, когда угол крена либо угол дифферента судна равен нулю. Третье техническое решение заключается в том, что зондирующие сигналы излучаются в произвольные моменты времени, однако углы излучения (относительно нормали к зеркалу воды) запоминаются, и веер ХН при приеме формируется вокруг направления излучения относительно вертикали. 2 з.п. ф-лы, 9 ил.

 

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения скорости судна доплеровским методом.

Одним из условий безопасного кораблевождения является постоянный контроль абсолютной (относительно дна) скорости судна.

Измерение абсолютной скорости судна обеспечивается с помощью доплеровского лага (ДЛ) [1-7]. И хотя на надводных кораблях и судах вместо ДЛ все чаще используется спутниковая навигационная система, на подводных лодках и подводных аппаратах (обитаемых и необитаемых) ДЛ продолжает оставаться основным средством измерения абсолютной скорости.

Для повышения точности измерения скорости судна широко применяется схема «Янус» формирования одновременно двух симметричных направленных в разные стороны характеристик направленности приемно-излучающей антенны (фиг. 1). На фиг. 1 приняты следующие обозначения:

V - скорость судна,

ψизл - угол между направлением вертикально вниз и направлением излучения.

Схема «Янус» обеспечивает [1]:

- устранение нелинейной зависимости скорости судна от доплеровской частоты;

- существенное уменьшение (в определенных пределах) погрешности измерения скорости, обусловленной изменением пространственной ориентации лучей при качке и статических наклонах судна (до 3-4°) без привлечения внешней информации;

- компенсацию погрешности, вызванной изменением угла прихода луча при смещении судна за время распространения сигнала;

- уменьшение влияния рефракционных искажений сигнала;

- увеличение в два раза скоростной чувствительности лага (по сравнению с односторонней схемой);

- снижение влияния вертикальной составляющей скорости судна на точность измерения горизонтальных составляющих и др.

Как правило, на практике одновременно используются две схемы «Янус» во взаимно перпендикулярных направлениях, что позволяет повысить точность измерения двух проекций скорости судна.

Одним из факторов, снижающих качество работы доплеровского лага (а именно помехоустойчивость и точность измерения скорости), является качка судна на волнении [1, 2]. Качка судна может приводить к потере акустического контакта с дном моря. Причиной потери контакта является изменение угловой ориентации антенны за время распространения акустического сигнала до грунта и обратно. Вследствие этого характеристика направленности (ХН) антенны на приеме не перекрывает озвученный участок морского дна (фиг. 2 и 3). На фиг. 2 и 3 показано излучение и прием отраженного сигнала однолучевыми характеристиками направленности при существенной бортовой качке.

Для борьбы с негативным влиянием качки в известных работах предлагается три способа [1, 2]:

1) механическая стабилизация антенны;

2) электронная стабилизация антенны при излучении и приеме;

3) расширение ХН при приеме.

Недостатком первых двух способов является необходимость введения в состав ДЛ датчиков текущих значений бортовой и килевой качки, а также существенное усложнение конструкции ДЛ, особенно при реализации первого способа.

Недостатком третьего способа является снижение точности измерения скорости судна, поскольку ширина ХН является одним из факторов, определяющих точность измерения скорости ДЛ [1].

В качестве прототипа выбран описанный в работе [1] и поясненный на фиг. 4 и 5 способ измерения скорости судна доплеровским лагом, включающий [фиг. 6]: излучение под наклоном ψизл к вертикали тонального зондирующего сигнала (ЗС) длительностью ТТС; формирование характеристики направленности для приема сигнала с направления излучения относительно нормали к плоскости антенны; вычисление спектра сигнала, поступающего с выхода сформированной ХН, на интервале длительности ТТС с перекрытием не менее чем на 50% относительно предыдущего интервала той же длительности; выполнение процедуры обнаружения эхосигнала в вычисленном спектре. В случае обнаружения эхосигнала (ЭС) определение его частоты и с ее использованием вычисление скорости судна по формуле [1]:

где

fЗC - частота ЗС, Гц;

fЭС - частота эхосигнала (ЭС), Гц;

V - скорость судна, м/с;

ψизл - угол между направлением излучения ЗС и направлением вертикально вниз, град (как правило, ψизл = 30°);

C - скорость звука в воде, м/с.

Процедуры, реализуемые в блоках 3 и 4 фиг. 6, повторяются на интервале времени

где Hmax - максимальная глубина под килем, м.

На фиг. 4, 5 показан прием отраженного сигнала веером ХН при существенной бортовой качке. Фиг. 6 - блок-схема прототипа.

Решаемая техническая проблема - повышение эксплуатационных характеристик доплеровского лага.

Достигаемый с использованием изобретения технический результат - повышение надежности измерения скорости судна в условиях качки на волнении.

Указанный технический результат достигается путем применения трех технических решений.

Первое техническое решение (фиг. 4, 5 и 7) состоит в формировании при приеме дополнительно к ХН в направлении (относительно нормали к плоскости антенны) излучения ЗС двумерного веера ХН, в совокупности перекрывающих сектор телесных углов, в котором возможен приход эхосигнала, отраженного от дна. Размеры этого сектора: ±2ψ кил/max в диаметральной плоскости судна и ±2ψ борт/max в плоскости шпангоута, где ψ кил/max, ψ борт/max - максимально возможные величины углов килевой и бортовой качки соответственно, град. Следовательно, число ХН, которые необходимо дополнительно сформировать, равно

где Δϕкил, Δϕборт - ширина ХН антенны при приеме в диаметральной плоскости и в плоскости шпангоута соответственно, град;

[x] - операция вычисления минимального целого числа, превосходящего х.

На фиг. 7 показана блок-схема заявляемого способа по п. 1 формулы изобретения. На фиг. 8 - блок-схема заявляемого способа по п. 2 формулы изобретения. На фиг. 9 - блок-схема заявляемого способа по п. 3 формулы изобретения.

Достоинством первого технического решения является повышение надежности измерения скорости судна в условиях качки, а недостатком - усложнение конструкции ДЛ за счет формирования веера ХН при приеме.

Второе техническое решение (фиг. 8) заключается в том, что тональные зондирующие сигналы излучаются в моменты, когда угол крена либо угол дифферента равен нулю. Это дает возможность уменьшить в 2 раза число ХН, необходимых для компенсации качки по первому техническому решению. То есть при излучении в момент, когда угол крена равен нулю

при излучении в момент, когда угол дифферента равен нулю

Достоинством второго технического решения по сравнению с первым техническим решением является упрощение конструкции ДЛ за счет уменьшения количества формируемых ХН при приеме, а недостатками - необходимость дополнительно использовать сигналы от датчиков крена и дифферента, а также увеличение времени измерения скорости судна ввиду ожидания моментов времени, когда судно окажется на ровном киле, т.е. когда угол крена либо угол дифферента станет равным нулю.

Третье техническое решение (фиг. 9) заключается в том, что тональные зондирующие сигналы излучаются в произвольные моменты времени, однако углы излучения (относительно вертикали) запоминаются, и веер ХН при приеме формируется вокруг направления излучения.

Достоинством третьего технического решения по сравнению с первым техническим решением является меньшее количество ХН, формируемых при приеме:

где - скорость изменения угла дифферента и крена соответственно, град/с;

τзс - длительность тонального зондирующего сигнала, с.

Недостатками третьего технического решения являются необходимость дополнительно использовать сигналы от датчиков крена и дифферента, а также усложнение конструкции ДЛ за счет необходимости адаптивного формирования ХН при приеме.

Описанные технические решения могут применяться как по отдельности, так и совместно.

Таким образом, повышение надежности измерения скорости судна на качке достигается за счет формирования веера приемных ХН, благодаря которому отраженный от дна ЭС гарантированно будет принят антенной. Физическая реализуемость заявляемого метода подтверждена математическим моделированием.

Источники информации:

1. Виноградов К.А., Кошкарев В.Н., Осюхин Б.А., Хребтов А.А. Абсолютные и относительные лаги // Л.: Судостроение, 1990.

2. Хребтов А.А., Виноградов К.А., Кошкарев В.Н. и др. Судовые измерители скорости // Л.: Судостроение, 1978.

3. Гидроакустические навигационные средства. Под ред. В.В. Богородского. // Л.: Судостроение, 1983. 262 с.

4. Богородский В.В. Гидроакустическая техника исследования и освоения океана // Л.: Гидрометиздат, 1984.

5. Виноградов К.А., Новиков И.А., Гидроакустические навигационные системы и средства // Научно-технический журнал «Навигация и гидрография», 1999, №7.

6. Патент РФ №2439613. Гидроакустический доплеровский лаг с алгоритмом многоальтернативной фильтрации эхосигнала, основанным на использовании банка фильтров Калмана.

7. А.П. Мартынюк, Е.В. Казакова. Уточнение характеристик направленности фазированных антенных решеток доплеровских лагов // Гiдроакустичний журнал (Проблеми, методи та засоби дослiджень Свiтового океану), 2009, №6, с. 60-67.

1. Способ измерения скорости судна доплеровским лагом, включающий излучение под наклоном ко дну тонального зондирующего сигнала, формирование характеристики направленности для приема сигнала с направления излучения относительно нормали к плоскости антенны, обнаружение отраженного от дна эхосигнала на выходе сформированной характеристики направленности, определение частоты обнаруженного эхосигнала, с использованием которой вычисление скорости судна, отличающийся тем, что при приеме сигнала дополнительно к характеристике направленности в направлении излучения зондирующего сигнала относительно нормали к плоскости антенны формируется двумерный веер характеристик направленности, также относительно нормали к плоскости антенны, перекрывающий сектор телесных углов, в котором в условиях бортовой и килевой качек на волнении возможен приход эхосигнала, отраженного от дна.

2. Способ по п. 1, отличающийся тем, что тональные зондирующие сигналы излучаются в моменты, когда угол крена либо угол дифферента равен нулю.

3. Способ по п. 1, отличающийся тем, что двумерный веер характеристик направленности при приеме формируется вокруг направления излучения зондирующего сигнала относительно вертикали.



 

Похожие патенты:

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Решаемая техническая проблема - уменьшение погрешности измерения собственной скорости судна и увеличение предельной глубины работы лага без увеличения цены и габаритов аппаратуры.

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Достигаемый технический результат - повышение надежности обнаружения эхосигналов, отраженных от морского дна, при наличии во входном сигнале, кроме эхосигналов, отраженных от дна, также эхосигналов, отраженных от водных звукорассеивающих слоев.

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн.

Изобретение относится к медицинской технике, а именно к ультразвуковым системам диагностической визуализации. Система формирует отображения спектральной допплерографии потока для анатомических местоположений, выбранных из изображения от цветового картирования потока и содержит зонд с массивом ультразвуковых преобразователей, формирователь лучей, который управляет направлениями, в которых лучи передаются зондом, допплеровский процессор, дисплей, на котором одновременно отображаются изображения цветового допплеровского картирования потока и спектральной допплерографии, пользовательский элемент управления, процессор положения и угла отклонения цветовой рамки, реагирующий на допплеровские сигналы для автоматического изменения положения цветовой рамки в изображении цветового допплеровского картирования потока относительно потока в кровеносном сосуде, когда пользователь манипулирует элементом управления, осуществляя перемещение из одного указанного положения в другое.

Изобретение относится к области морской навигации и судовождения по ведущему кабелю, а также к подводным навигационным системам с гидроакустическими маяками-ответчиками, и может быть использовано для разработки технических средств навигационного обеспечения, связи и управления надводных и подводных объектов навигации в стесненных условиях плавания, преимущественно в арктических и прилегающих к ним акваториях, в частности на Северном морском пути (СМП).

Использование: изобретение относится к области гидроакустики и может быть использовано для измерения параметров положения объекта, обнаруженного на дне с использованием гидролокатора ближнего действия.

Использование: изобретение относится к области гидроакустики и может быть использовано для измерения высоты объекта над уровнем дна. Сущность: гидроакустический способ определения пространственных характеристик объекта, содержащий излучение зондирующего сигнала в момент времени t, приема эхосигнала tэхо, определяется дистанция D до объекта по величине временной задержки и известной скорости распространения звука С, после излучения измеряют уровень объемной реверберации U0, определяют порог обнаружения Uпор., измеряют tнач время начала эхосигнала, при котором впервые амплитуда эхосигнала Аоб превысила порог Аоб>Uпор и определяют дистанцию D0=0,5 С tнач, измеряют момент времени последней амплитуды эхосигнала tпос, при котором минимальная амплитуда эхосигнала от объекта Аоб>Uпор, определяют момент времени начала тени tтени, при котором выполняется условие U0≥Атен и tтени>tпос, определяют момент времени окончания тени tкон.т, при котором Uпор>Аоб≥U0, определяют дистанцию до момента окончания тени Dтени=0,5 С tкон.т, определяют глубину от гидролокатора до дна Hдна, а высоту объекта определяют по формуле .

Изобретение относится к области гидроакустики и может быть использовано для построения систем классификации обнаруженных объектов гидролокатором освещения ближней обстановки.

Использование: изобретение относится к области гидроакустики и может быть использовано при разработки гидроакустической аппаратуры, предназначенной для освещения подводной обстановки.

Изобретение относится к области гидроакустики и может быть использовано для измерения глубины погружения приводняющегося объекта с использованием гидролокатора ближнего действия, установленного на движущемся носителе, относительно горизонта движения носителя.

Настоящее изобретение относится к области гидролокации и направлено на повышение эффективности определения основных параметров обнаруженной цели. Использование совместной обработки принятого эхосигнала по вертикальным и горизонтальным каналам позволит автоматически определять глубину погружения цели по одному циклу излучения прием на фоне поверхностной и донной реверберации и не только по неподвижным объектам. Способ, содержащий излучение зондирующего сигнала, прием эхосигнала от объекта, дистанции Д до объекта, измерение направления на цель в вертикальной плоскости, определение глубины погружения по формуле Н=Д Sin (α), где Д - измеренная дистанция до цели, α - угол между направлением движения носителя и направлением на цель, в вертикальной плоскости измеряют глубину погружения носителя гидролокатора Нгл, излучают зондирующий сигнал, принимают эхосигнал вертикальной линейной антенной, принимают эхосигнал горизонтальной линейной антенной, производят определение помехи и выбор порога по первому циклу приема входной информации всех характеристик направленности, определяют общий канал с коэффициентом корреляции больше 0,5 и по нему определяют угловое положение цели по вертикали и горизонтали КУв, дистанцию Дмакс и глубину погружения цели Нпог относительно поверхности с учетом глубины погружения гидролокатора Нпог=Нгл+Дмакс SinKУв. 1 ил.
Наверх