Однопотоковое отслеживание фазы в ходе оценивания канала в системе беспроводной связи mimo с очень высокой пропускной способностью

Изобретение относится к технике беспроводной связи и может быть использовано при оценивании канала в системе беспроводной связи. В системе с множественными входами и множественными выходами, функция демодуляции приемной цепи беспроводного узла улучшена так, чтобы включать в себя отслеживание фазы. Вместо осуществления отслеживания фазы на протяжении символов данных, что сопряжено с большими трудностями в беспроводных сетях с очень высокой пропускной способностью, для отслеживания фазы используются длинные обучающие поля (LTF) VHT, внедренные в преамбулу кадра. Передающая цепь устройства беспроводной связи содержит схему для распределения преамбулы и полезных данных из составленного потока данных передачи во множество параллельных пространственных потоков, при этом набор идентичной информации отображается в преамбулу в каждом из множества параллельных пространственных потоков для оценки набора канальных характеристик и фазовой ошибки при приеме; и схему для передачи множества параллельных пространственных потоков, используя множество передатчиков. Технический результат – повышение точности оценки канала связи. 4 н. и 18 з.п. ф-лы, 8 ил.

 

Область техники

[1] Это изобретение в целом относится к системам связи. В частности, оно позволяет усовершенствовать передачу информации в системах беспроводной связи за счет отслеживания фазы с использованием пилот-сигналов, внедренных в преамбулу передаваемых кадров.

Уровень техники

[2] Рост использования интернета ведет к все более высоким требованиям к ширине полосы во всех подразделениях сети. Рост также имеется в области беспроводных локальных сетей (LAN). Потребности в беспроводных LAN демонстрируют феноменальный рост. Эти потребности диктуются пользователями, подключающими компьютеры-ноутбуки к сетям, в том числе на работе или в местах сбора мобильных устройств. Рост также выходит за пределы ПК. Потребительские приложения, например, потоковая передача музыки, интернет-телефония, игры и передача домашнего видео также требуют наращивания ширины полосы.

[3] Эти растущие требования к беспроводной LAN стали причиной обширной работы по разработке стандартов в данной области техники. Было разработано несколько стандартов беспроводной связи, например, стандарт Института инженеров по электротехнике и электронике (IEEE) 802.11. IEEE 802.11 обозначает набор стандартов радиоинтерфейса беспроводной локальной сети (WLAN) для ближней связи в пределах от десятков метров до нескольких сотен метров. Одним таким стандартом WLAN является 802.11b. Этот стандарт указывает исходные скорости передачи данных до 11 Мбит/с с использованием таких методов модуляции, как манипуляция дополнительным кодом (CCK) и/или расширения по спектру прямой последовательностью (DSSS). Стандарт 802.11a, установленный одновременно с 802.11b, использует более эффективный способ передачи, именуемый мультиплексированием с ортогональным частотным разделением (OFDM). Стандарт 802.11a поддерживает скорости передачи данных до 54 Мбит/с, но вследствие несовместимой полосы радиочастот 5 ГГц, по сравнению с 2,4 ГГц для 802.11b, этот стандарт не получил широкого распространения. В середине 2003 г. IEEE утвердил 802.11g, где модуляция OFDM применяется к полосе 2,4 ГГц. Клиентское оборудование WLAN, в большинстве своем, поддерживает как 802.11a, так и 802.11g.

[4] Следующим шагом в разработке стандартов стал 802.11n. Стандарт 802.11n обеспечивает различные необязательные режимы, предписывающие разные максимальные скорости. Стандарт позволяет производителям подстраивать возможности оборудования к различным ценовым категориям и различным рабочим характеристикам. Стандарт 802.11n предусматривает исходные скорости передачи данных до 600 Мбит/с, тогда как устройство, работающее на скорости 300 Мбит/с также может соответствовать техническим требованиям 802.11n.

[5] Стандарт 802.11n улучшает реализацию OFDM за счет использования более высокой максимальной скорости кодирования и увеличенной ширины полосы частот. Это повышает исходную скорость с 54 Мбит/с до 65 Мбит/с. Кроме того, одним из широко известных компонентов стандарта является «много входов/много выходов» или MIMO. MIMO основан на явлении радиосвязи, называемом многолучевым распространением. Многолучевое распространение включает в себя отражение передаваемой информации от дверей, стен и других объектов. Эта информация достигает приемной антенны много раз по разным траекториям и в немного разные моменты времени.

[6] Многолучевое распространение ухудшает рабочие характеристики беспроводной связи, если оно не управляется. Технология MIMO, принятая в стандарте 802.11n, позволяет с пользой применять многолучевое распространение посредством мультиплексирования с пространственным разделением (SDMA). Передающее устройство WLAN разбивает поток данных на множественные части, называемые пространственными потоками. Каждый пространственный поток передается через отдельные антенны на соответствующие антенны на приемнике. 802.11n поддерживает до 4 пространственных потоков. В то время как удвоение и учетверение пространственного потока приводит к увеличению исходных скоростей передачи данных, стоимость и мощность также имеют тенденцию к возрастанию вследствие того, что для каждой пары антенн требуется увеличенная обработка. Система MIMO характеризуется количеством передающих антенн на количество приемных антенн. Система MIMO 4x4, например, имеет четыре антенны в передатчике и 4 антенны в приемнике.

[7] Рабочие характеристики MIMO можно улучшить за счет формирования диаграммы направленности и разнесения. Формирование диаграммы направленности направляет радиосигнал на целевую антенну. Это увеличивает дальность и рабочие характеристики за счет ограничения помехи. Разнесение использует множественные антенны путем объединения выходов набора антенн или выбора наилучшего поднабора более обширного набора антенн, которые необходимы для приема определенного количества пространственных потоков. Избыточные антенны можно использовать для упомянутого объединения множественных принятых потоков в один поток, при работе на большей дальности. К аналогичным компромиссам можно приходить для увеличения исходных скоростей передачи данных, при фиксированной дальности.

[8] Стандарт 802.11n, в итоге, позволяет усовершенствовать беспроводную LAN (WLAN) за счет более высоких характеристик OFDM, мультиплексирования с пространственным разделением посредством MIMO, разнесения, способов энергосбережения, удвоения канала с 20 МГц до 40 МГц, агрегации служебных сигналов на уровне MAC, и уменьшенного межкадрового промежутка.

[9] В будущем стандарты, именуемые 802.11 для очень высокой пропускной способности (VHT) в полосе 5 ГГц, планируется довести до РЧ-полос 160 МГц и скоростей передачи данных 6,933 Гбит/с. Более эффективные схемы обработки сигнала реализуются для снижения шума и повышения отношения сигнал-шум. Традиционно, пилот-сигналы в символах данных использовались для осуществления отслеживания фазы на протяжении символов данных, но для 802.11n и более поздних версий, оно становится вычислительно затратным и трудноосуществимым в ходе оценивания канала MIMO. Пилот-сигналы, заданные в 802.11n для длинных обучающих полей (LTF) изменяются от потока к потоку, что не позволяет использовать их для точного отслеживания фазы.

[10] Для несущей частоты 5 ГГц, 2 миллионные дрейфа дают частотный дрейф 100 кГц. Этот частотный дрейф, в 4 символах, дает изменение фазы 5 градусов. Для восьми символов оно удваивается, достигая 10 градусов. В OFDM, поскольку сигнал переносится в фазе, фазовый дрейф приводит к снижению отношения сигнал-шум. Это явление приводит к ухудшению рабочих характеристик и пропускной способности беспроводной сети.

Сущность изобретения

[11] Варианты осуществления настоящего изобретения относятся к отслеживанию фазы с использованием пилот-сигналов в преамбуле кадра для системы беспроводной связи MIMO.

[12] В одном варианте осуществления аналогично пилот-сигналам в символах данных, пилот-сигналы в VHT-LTF можно задавать для отслеживания фазы. В отличие от тоновых сигналов данных, матрица обучающих отображающих последовательностей охвата MIMO (обычно называемая матрицей P) не применяется к пилот-сигналам в ходе оценивания канала на основе пилот-сигналов. Вместо этого однопотоковые пилот-сигналы отображаются во все пространственно-временные потоки (STS). В этом варианте осуществления пилот-сигналы в первом VHT-LTF используются для первоначального одномерного оценивания канала. Пилот-сигналы в других оставшихся VHT-LTF используются для оценивания вращения фазы на основе пилот-сигналов и первоначального одномерного оценивания канала. Выведенная и объединенная информация используется для оценивания канала MIMO для тоновых сигналов данных.

[13] В одном варианте осуществления настоящего изобретения раскрыты способ и устройство для использования обучающих полей в заголовке передаваемого кадра для оценивания, после приема, канала и фазовых ошибок. Затем эта информация применяется к тоновым сигналам данных для повышения пропускной способности и рабочих характеристик.

Краткое описание чертежей

[14] Прилагаемые чертежи включены в состав и образуют часть этого описания изобретения. Чертежи иллюстрируют варианты осуществления. Совместно с описанием чертежи служат для пояснения принципов вариантов осуществления.

[15] Фиг. 1 - блок-схема, демонстрирующая типичную беспроводную сеть LAN, применяемую в домах и на малых предприятиях.

[16] Фиг. 2 - блок-схема, иллюстрирующая узел беспроводной передачи и приема и его компоненты, осуществляющие связь через M передающих и N приемных антенн.

[17] Фиг. 3 - примерная структура кадра для кадра протокола конвергенции физического уровня (PLCP), используемого в беспроводной связи.

[18] Фиг. 4 - блок-схема межузловой беспроводной связи более высокого уровня с использованием матрицы оценки канала для характеризации приема на каждом узле на основании передаваемой информации от другого узла.

[19] Фиг. 5 - аппаратная блок-схема блоков отслеживание фазы и коррекции, подключенных к компоненту быстрого преобразования Фурье (FFT) при приеме, согласно вариантам осуществления настоящего изобретения.

[20] Фиг. 6 - иллюстрация взаимосвязанных пилот-сигналов и тоновых сигналов данных в символах OFDM, согласно вариантам осуществления настоящего изобретения.

[21] Фиг. 7 - диаграмма временной последовательности обработки сигналов в различных аппаратных блоках, участвующих в выделении информации фазовой ошибки из пилот-сигналов и использующих информацию n для коррекции вращения фазы в тоновых сигналах данных, согласно вариантам осуществления настоящего изобретения.

[22] Фиг. 8 - блок-схема операций, представляющая отслеживание фазы с использованием пилот-сигналов в VHT-LTF преамбулы, оценивание фазовых ошибок и его использование при коррекции тоновых сигналов данных до оценивания канала, согласно вариантам осуществления настоящего изобретения.

Подробное описание

[23] Некоторые части нижеследующих подробных описаний представлены в отношении процедур, логических блоков, обработки и других символических представлений операций над битами данных в памяти компьютера. Эти описания и представления являются средствами, используемыми специалистами в области обработки данных для наиболее эффективного сообщения существа своей работы другим специалистам. В настоящей заявке процедура, логический блок, процесс и т.п. рассматривается как самосогласованная последовательность этапов или инструкций, приводящих к желаемому результату. Этапы требуют физических манипуляций с физическими величинами. Обычно, хотя и не обязательно, эти величины принимают форму электрических или магнитных сигналов, которые можно хранить, переносить, комбинировать, сравнивать, и которые допускают иные манипуляции в компьютерной системе.

[24] Однако следует иметь в виду, что все эти и аналогичные термины должны быть связаны с соответствующими физическими величинами и являются лишь удобными обозначениями, применяемыми к этим величинам. Если в нижеследующем рассмотрении напрямую не указано обратное, очевидно, что на протяжении настоящей заявки, рассмотрение, где употребляются такие термины, как “обращение”, “прием”, “отправка”, “использование”, “выбор”, “определение”, “нормализация”, “умножение”, “усреднение”, “отслеживание”, “сравнение”, “применение”, “обновление”, “измерение”, “извлечение” и т.п., относится к действиям и процессам компьютерной системы или аналогичного электронного вычислительного устройства, которое обрабатывает и преобразует данные, представленные в виде физических (электронных) величин в регистрах и блоках памяти компьютерной системы, в другие данные, аналогично представленные в виде физических величин в блоках памяти или регистрах компьютерной системы или других подобных устройствах хранения, передачи или отображения информации.

[25] Описанные здесь варианты осуществления можно рассматривать в общем контексте машинноисполняемых инструкций, хранящихся на том или ином компьютерном носителе, например, программных модулей, исполняемых одним или более компьютерами или другими устройствами. В целом программные модули включают в себя процедуры, программы, объекты, компоненты, структуры данных и т.д., которые осуществляют конкретные задания или реализуют определенные абстрактные типы данных. Функциональные возможности программных модулей могут быть, по желанию, объединены или распределены в различных вариантах осуществления.

[26] В порядке примера, но не ограничения, компьютерные носители могут содержать компьютерные носители данных и среды связи. Компьютерные носители данных включают в себя энергозависимые и энергонезависимые, сменные и стационарные носители, реализованные согласно любому способу или технологии для хранения информации, например, машиночитаемых инструкций, структур данных, программных модулей или других данных. Компьютерные носители данных включает в себя, но без ограничения, оперативную память (ОЗУ), постоянную память (ПЗУ), электрически стираемое программируемое ПЗУ (ЭСППЗУ), флэш-память или другую технологию памяти, компакт-диск с возможностью только чтения (CD-ROM), цифровые универсальные диски (DVD) или другое оптическое запоминающее устройство, магнитные кассеты, магнитную ленту, запоминающее устройство на основе магнитного диска или другие магнитные запоминающие устройства, или любой другой носитель, который можно использовать для хранения необходимой информации.

[27] Среды связи могут реализовать машиночитаемые инструкции, структуры данных, программные модули или другие данные в виде модулированного сигнала данных, например несущей волны или другого транспортного механизма, и включают в себя любые среды доставки информации. Термин “модулированный сигнал данных” означает сигнал, одна или более из характеристик которого установлена или изменена таким образом, чтобы кодировать информацию в сигнале. В порядке примера, но не ограничения, среды связи включают в себя проводные среды передачи данных, например, проводную сеть, или прямое проводное соединение, и беспроводные среды передачи данных, например, акустические, радиочастотные (РЧ), инфракрасные и другие беспроводные среды передачи данных. Комбинации любых вышеописанных устройств также подлежат включению в объем определения машиночитаемых носителей.

[28] На фиг. 1 позиция 100 обозначает блок-схему типичной беспроводной сети LAN 105, развернутой в доме или на предприятии. Несколько пользователей представлены, в том числе, станциями 130. Станции способны принимать и передавать данные с и на базовую станцию 120. Беспроводная точка доступа (AP) является одним вариантом осуществления базовой станции. Базовая станция 120 осуществляет связь с маршрутизатором 115 по проводам или без проводов. Маршрутизатор 115 располагает информацией сетевых возможностей связи для сети и принимает и ретранслирует пакеты на основании адресов источника и пункта назначения. Маршрутизатор имеет множество портов для соединений и один порт восходящей линии связи для подключения к остальному интернету через кабельный модем 110 в целом по проводу 160. Кабельный модем подключается к всемирному интернету через терминальную систему для кабельных модемов (CMTS), находящуюся в центральном офисе поставщика услуг. Это изобретение, в основном относится к беспроводной связи 140 между станцией 130 и базовой станцией 120. Новый стандарт 802.11 VHT предусматривает надежную беспроводную передачу данных с исходными скоростями до 6,933 Гбит/с посредством радиосвязи.

[29] На фиг. 2 показана блок-схема комплекса 250 узлов беспроводной передачи и приема. Поток S “подлежащий передаче” подготавливается на основании данных полезной нагрузки и кодируется преамбулой и другой информацией до подачи на блок 205 кодера и модулятора. Комплекс узлов состоит из M антенн 220 в направлении передачи и N антенн 260 на приемнике для формирования системы MIMO M на N. Комплекс узлов, действуя в режиме MIMO, может использовать в одном варианте осуществления мультиплексирование с пространственным разделением (SDMA) для осуществления связи с несколькими приемниками. SDMA позволяет одновременно передавать множественные потоки на разные приемники для совместного пользования одним и тем же частотным спектром. В любом потоке существуют пакеты данных, содержащие как данные полезной нагрузки, так и преамбулу.

[30] Одновременная передача множественных потоков приводит к увеличению ширины полосы. Для достижения одновременности, каждый поток данных подвергается пространственному предварительному кодированию и затем передается через разные передающие антенны. Это пространственное предварительное кодирование и обработка производится блоком 210. В результате получается последовательность кодовых символов, которые отображаются в группу сигналов для создания последовательности символов модуляции.

[31] Система MIMO может поддерживать несколько схем модуляции, в том числе, мультиплексирования с ортогональным частотным разделением. OFDM является методом расширения спектра. Она распределяет данные по нескольким поднесущим, разнесенным по определенным частотам. Разнесение является ортогональным и позволяет приемнику восстанавливать данные. Этот метод модуляции может применяться с использованием любого стандарта беспроводной связи, включая 802.11ac VHT. Модулятор 205 OFDM разделяет символы модуляции на несколько параллельных потоков. Обратное FFT осуществляется на каждом наборе поднесущих для создания символов OFDM во временной области. Символы OFDM распределяются по участкам полезной нагрузки множественных пакетов данных. Преамбула переносится совместно с полезной нагрузкой в каждом пакете данных. Преамбула содержит несколько символов, которые разделяются на параллельные потоки аналогично данным. Преамбула присоединяется к данным полезной нагрузки до пространственной обработки. Разные пространственные потоки передаются через множество антенн с использованием РЧ приемопередатчиков 225.

[32] Передаваемая информация принимается на множестве антенн 260. Она поступает на приемопередатчики 206 для восстановления информации, модулированной на РЧ несущих. Восстановленная информация поступает на пространственный процессор 270 приема. Данные, переносимые в любых пространственных потоках, восстанавливаются. Процессор преамбул использует преамбулу для предоставления информации синхронизации на демодулятор OFDM и другой последующей обработки. Демодулятор 275 OFDM преобразует поток из временной области в частотную область с использованием быстрого преобразования Фурье (FFT). Частотная область включает в себя поток для каждой поднесущей. Блок 285 оценивания канала принимает поток и оценивает канальный отклик. В составе преамбулы присутствуют пилот-сигналы, сдвинутые по фазе вследствие передачи по беспроводному каналу. Это происходит вследствие относительных остаточных смещений частоты между блоками ФАПЧ при приеме и передаче. Сдвиг в целом является линейным сдвигом. Другой сдвиг фазы происходит вследствие фазового шума.

[33] Фиг. 3 представляет двустороннюю межузловую связь между станцией A 300 и станцией B 350. Беспроводной канал между A и B математически моделируется матрицей HAB канального отклика, тогда как канал в другом направлении моделируется матрицей HBA. Посредством надлежащего квитирования установления связи и, возможно, калибровки, обе станции вычисляют матрицы KA и KB коррекции для обеспечения надежной беспроводной передачи с высокой пропускной способностью.

[34] Как часть демодуляции, пилот-сигналы в преамбуле подвергают специальной обработке. На Фиг. 4 показано примерное представление возможного кадра 400 протокола конвергенции физического уровня (PLCP). Кадр состоит из данных полезной нагрузки, упакованных как символы OFDM, а также информации преамбулы. В состав информации преамбулы входят обучающие последовательности, подразделяемые на тип “L” для традиционных систем и тип “VHT” для вновь заданных обучающих последовательностей, специфичных для разрабатываемых в настоящее время стандартов. Одно такое обучающее поле называется VHT-LTF (длинное обучающее поле для очень высокой пропускной способности) 410. В системе MIMO M на N, преамбула будет иметь N VHT-LTF. Эти символы, наподобие символов данных, включают в себя смесь известных обучающих последовательностей в позиции пилот-сигналов (заранее заданных данных) и тоновых сигналов данных. Как описано выше, процессор передачи OFDM предварительно исследует преамбулу перед данными пакета как часть формирования символов, “подлежащих модуляции”.

[35] В стандартах беспроводной связи до 802.11n, пилот-сигналы в LTF заранее задаются для множественных пространственно-временных потоков, но изменяются между потоками LTF (STS), которые изменяются между LTF для 1, 2 и т.д. до L, где L - количество STS. Такое изменение во временной и пространственной области исключает возможность использования пилот-сигналов в LTF для оценивания фазы и коррекции. Согласно одному варианту осуществления изобретения, предполагается, что пилот-сигналы, внедренные в VHT-LTF, одинаковы для пространственно-временных потоков. Согласно примерному варианту осуществления, матрица P (матрица обучающих последовательностей охвата MIMO) заменяется матрицей R (матрицей принятого сигнала), причем все строки матрицы R идентичны 1-й строке матрицы P. Во избежание непреднамеренного формирования диаграммы направленности передачи, задержка циклического сдвига (CSD) для каждого потока все же применяется ко всем потокам после отображения R пилот-сигналов VHT-LTF до применения задержки циклического сдвига для каждого потока. Изобретение использует это постоянство для прогнозирования одномерного оценивания канала из первого VHT-LTF. Другие VHT-LTF используются для осуществления оценивания фаз, и выведенная информация сразу же применяется для коррекции фазы принятого LTF на тоновых сигналах данных. В итоге, все VHT-LTF оказываются скорректированными по фазе. Информация фазовой ошибки полностью объединяется для получения и применяется к тоновым сигналам данных в символах данных для коррекции. Эта информация также используется в качестве одного набора информации для оценивания канала и определения матрицы HAB/HBA на тоновых сигналах данных.

[36] На фиг. 2, на принимающей стороне, это представлено в виде добавленного блока между демодулятором 275 OFDM и пространственным процессором 270 приема, называемым здесь блоком 280 отслеживания фазы. После приема информации от приемопередатчиков 265 принимающей стороны через пространственный процессор 270 приема блок 280 отслеживания фазы совместно с демодулятором 275, осуществляют оценивание 285 канала, результат которой подается на блок 295 последующей обработки приема.

[37] Аппаратные компоненты блока 500 отслеживания фазы показаны на фиг. 5. Принятый поток 550 временной области преобразуется в частотную область процессором 502 быстрого преобразования Фурье. Информация пилот-сигналов, подвергнутая последующей обработке, поступает на блок 501 отслеживания фазы. Блок отслеживания фазы отключается в течение первого VHT-LTF и включается пока не принят последний VHT-LTF. При осуществлении оценивания канала без использования матрицы P (матрицы покрывающих последовательностей обучения) информация фазовой коррекции генерируется и объединяется с использованием пилот-сигналов в VHT-LTF.

[38] Оцененные фазы, переносимые на 552, умножаются 505 на поток 552 тоновых сигналов данных для подачи на блок 504 оценивания канала. Информация о данных оценивания канала генерируется на 555 для переноса для последующей обработки приема. Вследствие добавленной фазовой коррекции на символах данных оценивание канала является более точным и менее подверженным ошибке. Такая информация оценивания, при использовании на этом узле и множестве других узлов посредством квитирования установления связи и калибровки, улучшает рабочие характеристики беспроводной сети в целом.

[39] Фиг. 6 иллюстрирует смешивание пилот-сигналов 601 и тоновых сигналов 602 данных в символах OFDM. Информация оценивания фазы применяется сразу ко всем тоновым сигналам данных для коррекции.

[40] Предполагается, что система OFDM является L-мерной и предусматривает длинные обучающие поля с 1 по L. На протяжении первого VHT-LTF, внедренные пилот-сигналы используются для оценивания пилот-канала в одномерном (однопотоковом) режиме.

Математически, после быстрого преобразования Фурье, принятый сигнал в частотной области моделируется в виде:

(уравнение 1)

В уравнении 1, k - индекс тона в конкретном символе OFDM, l - индекс символа OFDM. Система MIMO имеет размерность M на N, в том смысле, что передатчик имеет M антенн и приемник имеет N антенн, где соответствующие индексы обозначаются как m и n соответственно. Индекс m принимает значения от 1 до M, и индекс n принимает значения от 1 до N.

Для m-го передатчика и n-го приемника, канальный отклик математически представляется как hn,m(k) для тона k. s(k) это обучающая последовательность канал на k-ом тоновом сигнале данных, где θl - вращение фазы для l-го символа. pm,l это обучающая последовательностей охвата MIMO на m-ой передающей антенне и l-ом символе OFDM. P, заданная как P=[pm,l], представляет собой всю обучающую последовательностей охвата MIMO.

[41] В итоге rn,l(k) представляет принятые выборки n-ой приемной антенне на k-ом тоне l-го символа OFDM. Соответственно, Rl(k)=[r1,l(k) r2,l(k) Δ rN,l(k)] представляет собой весь вектор принятого сигнала.

[42] В одном варианте осуществления настоящего изобретения для отслеживания фазы на протяжении VHT-LTF обучающая последовательностей охвата MIMO Pm,l не используется на пилот-сигналах. Соответственно, на основании уравнения 1, принятые пилот-сигналы после FFT можно моделировать в виде:

(уравнение 2)

где индекс k обозначает индекс пилот-сигналов. Вследствие отсутствия P, только одномерный канал оценивается на пилот-сигналах.

(уравнение 3)

Этап 1: на первом VHT-LTF, для каждого пилот-сигнала k, одномерный канал H(k) оценивается как:

(уравнение 4)

Этап 2: для VHT-LTF 1 в 1, вращение фазы оценивается на основании каждого из пилот-сигналов как:

(уравнение 5)

Этап 3: для тоновых сигналов данных для VHT-LTF 1 в 1, уравнение 5 используется для коррекции фазы принятых (RX) тоновых сигналов данных как:

(уравнение 6)

[43] По существу, k-й вектор тонового сигнала данных корректируется с использованием оценки фазы из пилот-сигналов. Эти этапы заканчиваются с 1-ым VHT-LTF.

[44] В одном варианте осуществления настоящего изобретения для баланса тоновых сигналов данных оценка канала MIMO вычисляется с использованием матрицы P и матрицы фазовой коррекции для каждой антенны от 1 до M в каждую антенну от 1 до N согласно уравнению:

(уравнение 7)

где

оценка канала MIMO на k-ом тоновом сигнале данных

матрица принятого сигнала с фазовой коррекцией на k-ом тоновом сигнале данных.

[45] В одном варианте осуществления настоящего изобретения матрица оценки канала является функцией вектора приема для k-го тона и соответствующей фазовой коррекции, применяемой с информацией, выведенной из пилот-сигналов в VHT-LTF. Благодаря этой коррекции и использованию выведенной таким образом оценки канала, отношение сигнал-шум приема демонстрирует тенденцию к повышению вследствие ликвидации линейных и нелинейных фазовых ошибок.

[46] Фиг. 7 иллюстрирует временную последовательность обработки сигнала, предусмотренную при отслеживании фазы и коррекции на основании VHT-LTF. В одном варианте осуществления настоящего изобретения на протяжении первого VHT-LTF 701, блок 704 отслеживания фазы участвует в одномерном оценивании канала, фазовая коррекция отключена, и блок 706 оценивания канала MIMO находится в фазе 707 буферизации. На протяжении VHT-LTF 708 со второго 702 по L-1, блок отслеживания фазы оценивает фазу, и фазовая коррекция для тоновых сигналов данных включена. Блок 706 оценивания канала остается в режиме буферизации. На протяжении L-го VHT-LTF 703, оценивание фазы заканчивается, фазовая коррекция 705 для тоновых сигналов данных продолжается, и оценивание канала MIMO включается в конце 709.

[47] Фиг. 8 охватывает вышеописанные этапы в отношении блок-схемы 800 операций. В одном варианте осуществления настоящего изобретения принятый поток, выводимый из радиочастотных приемопередатчиков после приема от антенны, поступает на пространственные процессоры приема. После обработки на пространственных процессорах, поток поступает на блок отслеживания фазы и блок демодулятора OFDM, где осуществляется обработка 801 преамбулы. Если блок 802 принятия решения определяет первое VHT-LTF, для каждого из своих пилот-сигналов, одномерный канал приема оценивается без использования матрицы P, поскольку матрица покрывающих последовательностей для пилот-сигналов имеет идентичные значения 804. Если блок 802 принятия решения определяет не первое VHT-LTF, блоки 803 и 805 осуществляют оценивание для пилот-сигналов и фазовую коррекцию для тоновых сигналов данных, что продолжается через блок 808 принятия решения до последнего VHT-LTF.

[48] Для символов данных оценивание канала осуществляется 809 до последнего символа данных в кадре через блок 807 принятия решения, после чего оценивание канала отключается 806, и обработка преамбулы начинается для следующего кадра путем возврата к 801. Конечным результатом этапов является более точная матрица оценки канала для размерности m на n, которая используется блоком последующей обработки приема и для квитирования установления связи с другими узлами.

[0049] В вышеприведенном описании изобретения варианты осуществления были описаны со ссылкой на многочисленные конкретные детали, которые могут варьироваться от реализации к реализации. Таким образом, единственным и исключительным указанием объема изобретения и намерений заявителя в отношении изобретения является формула изобретения, которая вытекает из этой заявки, в конкретной форме, в которой оформлена формула изобретения, включая любые последующие редакции. Следовательно, никакие ограничения, элементы, свойства, признаки, преимущества или атрибуты, явно не указанные в формуле изобретения, никоим образом не должны ограничивать объем формулы изобретения. Соответственно, описание изобретения и чертежи следует рассматривать в иллюстративном, а не в ограничительном смысле.

1. Передающая цепь устройства беспроводной связи, содержащая:

схему для распределения преамбулы и полезных данных из составленного потока данных передачи во множество параллельных пространственных потоков, при этом набор идентичной информации отображается в преамбулу в каждом из множества параллельных пространственных потоков для оценки набора канальных характеристик и фазовой ошибки при приеме; и

схему для передачи множества параллельных пространственных потоков, используя множество передатчиков.

2. Передающая цепь по п. 1, в которой набор идентичной информации содержит один поток пилотных тональных сигналов.

3. Передающая цепь по п. 1, в которой преамбула включает в себя множество длинных обучающих полей для очень высокой пропускной способности (VHT-LTF) и в которой набор идентичной информации отображается на поля VHT-LTF.

4. Передающая цепь по п. 3, в которой набор идентичной информации содержит пилотные тональные сигналы полей VHT-LTF.

5. Передающая цепь по п. 3, в которой преамбула включает в себя N полей VHT-LTF, при этом N представляет собой число приемников, выполненных с возможностью приема множества параллельных пространственных потоков.

6. Передающая цепь по п. 1, дополнительно содержащая схему для применения задержки циклического сдвига для каждого потока к каждому из множества параллельных пространственных потоков.

7. Передающая цепь по п. 1, в которой набор канальных характеристик включает в себя отклик одномерного канала.

8. Способ передачи с отслеживанием фазы для системы беспроводной связи, причем способ содержит:

составление потока данных передачи;

распределение преамбулы и полезных данных из составленного потока данных передачи во множество параллельных пространственных потоков, при этом распределение содержит отображение набора идентичной информации в преамбулу в каждом из множества параллельных пространственных потоков для оценки набора канальных характеристик и фазовой ошибки при приеме; и

передачу множества параллельных пространственных потоков, используя множество передатчиков.

9. Способ по п. 8, в котором набор идентичной информации содержит один поток пилотных тональных сигналов.

10. Способ по п. 8, в котором преамбула включает в себя множество длинных обучающих полей для очень высокой пропускной способности (VHT-LTF), при этом набор идентичной информации отображается на поля VHT-LTF.

11. Способ по п. 10, в котором набор идентичной информации содержит пилотные тональные сигналы полей VHT-LTF.

12. Способ по п. 10, в котором преамбула включает в себя N полей VHT-LTF, при этом N представляет собой число радиочастотных приемников, выполненных с возможностью приема множества параллельных пространственных потоков.

13. Способ по п. 8, в котором дополнительно применяется задержка циклического сдвига для каждого потока к каждому из множества параллельных пространственных потоков.

14. Способ по п. 8, в котором набор канальных характеристик включает в себя отклик одномерного канала.

15. Система беспроводной связи, содержащая:

передающую цепь, которая включает в себя:

схему, сконфигурированную для распределения преамбулы и полезных данных из составленного потока данных передачи во множество параллельных пространственных потоков и сконфигурированную для отображения идентичного набора пилотных тональных сигналов на обучающие поля каждого из множества параллельных пространственных потоков; и

схему, сконфигурированную для передачи множества параллельных пространственных потоков, используя множество передатчиков.

16. Система беспроводной связи по п. 15, в которой обучающие поля содержат длинные обучающие поля для очень высокой пропускной способности (VHT-LTF).

17. Система беспроводной связи по п. 15, в которой передающая цепь дополнительно содержит схему, сконфигурированную для применения задержки циклического сдвига для каждого потока к каждому из множества параллельных пространственных потоков.

18. Система беспроводной связи по п. 15, дополнительно содержащая:

принимающую цепь, которая включает в себя:

схему, сконфигурированную для оценки откликов одномерного канала на основании идентичных наборов пилотных тональных сигналов в обучающих полях упомянутого множества параллельных пространственных потоков; и

схему, сконфигурированную для оценки первого вращения фазы в ответ на оцененные отклики одномерного канала.

19. Способ передачи с отслеживанием фазы для системы беспроводной связи, причем способ содержит:

составление потока данных передачи;

распределение преамбулы и полезных данных из составленного потока данных передачи во множество параллельных пространственных потоков;

отображение идентичного набора пилотных тональных сигналов на обучающие поля каждого из множества параллельных пространственных потоков; и

передачу множества параллельных пространственных потоков, используя множество передатчиков.

20. Способ по п. 19, в котором обучающие поля содержат длинные обучающие поля для очень высокой пропускной способности (VHT-LTF).

21. Способ по п. 19, дополнительно содержащий применение задержки циклического сдвига для каждого потока к каждому из множества параллельных пространственных потоков.

22. Способ по п. 19, дополнительно содержащий:

прием множества передаваемых параллельных пространственных потоков;

оценку откликов одномерного канала на основании идентичных наборов пилотных тональных сигналов в обучающих полях принятого множества параллельных пространственных потоков; и

оценку первого вращения фазы в ответ на оцененные отклики одномерного канала.



 

Похожие патенты:

Изобретение относится к беспроводной связи. Технический результат заключается в том, что как локализованный, так и распределенный PDCCH могут гибко поддерживаться для разных передач ePDCCH.

Изобретение относится к способу передачи данных между терминалом и шлюзом. Технический результат заключается в уменьшении дополнительных издержек, вызванных заголовками при передаче кадров Ethernet между терминалом и шлюзом.

Изобретение относится к беспроводной системе связи и предназначено для предотвращения ухудшения качества приема управляющей информации даже в случае применения системы передачи SU-MIMO.

Изобретение относится к беспроводной связи и более конкретно к многопользовательской системе с множеством входов и множеством выходов. Система беспроводной связи включает в себя базовую станцию, способную осуществлять связь с множеством абонентских станций, базовая станция может передавать управляющую информацию и данные абонентским станциям, также может идентифицировать набор шаблонов RS, которые должны быть использованы для осуществления связи с абонентской станцией, присваивать поднабор номеров антенных портов в рамках набора шаблонов RS абонентским станциям, может указать присвоенные состояния в формате Управляющей Информации Нисходящей линии связи (DCI), передаваемом по Физическому Каналу управления Нисходящей линии связи (PDCCH), базовая станция передает данные, используя поднабор антенных портов, соответствующих поднабору номеров антенных портов, а также может преобразовывать опорные сигналы, соответствующие поднабору антенных портов, в соответствии по меньшей мере с одним шаблоном RS в рамках набора шаблонов RS.

Изобретение относится к средствам обработки данных. Технический результат заключается в расширении арсенала средств обработки данных изображений.

Изобретение относится к регистрации абонентского терминала сети персональной спутниковой связи. Технический результат - сокращение энергетических потерь при регистрации терминала сети персональной спутниковой связи и экономия ресурсов служебного канала бортового ретрансляционного комплекса низкоорбитального спутника-ретранслятора.

Изобретение относится к системе передачи и приемнику сигнала стандарта спутникового формата цифрового телевидения (DVB-S2). Технический результат заключается в обеспечении разделения высокоскоростного цифрового потока типа транспортного потока MPEG (MPEG-TS) на несколько потоков для передачи через спутник по множеству частотных каналов.

Изобретение относится к радиосвязи. Техническим результатом является выделение ресурсов абонентам сети WLAN.

Изобретение относится к технике беспроводной связи, использующей технологию релейной передачи, что способствует обеспечению законного перехвата (LI) посредством сообщения в объект LI, связанный с сотовой сетью, аутентифицированных идентичностей удаленных UE (таких, как удаленные UE, соединенные через услуги непосредственной близости), и идентификационной информации, которая может обеспечить контроль объектом LI трафика (и/или управляющей статистики, относящейся к трафику), связанного с удаленными UE.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении пропускной способности.

Изобретение относится к беспроводной связи. Технический результат заключается в том, что как локализованный, так и распределенный PDCCH могут гибко поддерживаться для разных передач ePDCCH.

Изобретение относится к беспроводной системе связи и предназначено для предотвращения ухудшения качества приема управляющей информации даже в случае применения системы передачи SU-MIMO.

Изобретение относится к беспроводной системе связи и предназначено для предотвращения ухудшения качества приема управляющей информации даже в случае применения системы передачи SU-MIMO.

Изобретение относится к беспроводной связи и более конкретно к многопользовательской системе с множеством входов и множеством выходов. Система беспроводной связи включает в себя базовую станцию, способную осуществлять связь с множеством абонентских станций, базовая станция может передавать управляющую информацию и данные абонентским станциям, также может идентифицировать набор шаблонов RS, которые должны быть использованы для осуществления связи с абонентской станцией, присваивать поднабор номеров антенных портов в рамках набора шаблонов RS абонентским станциям, может указать присвоенные состояния в формате Управляющей Информации Нисходящей линии связи (DCI), передаваемом по Физическому Каналу управления Нисходящей линии связи (PDCCH), базовая станция передает данные, используя поднабор антенных портов, соответствующих поднабору номеров антенных портов, а также может преобразовывать опорные сигналы, соответствующие поднабору антенных портов, в соответствии по меньшей мере с одним шаблоном RS в рамках набора шаблонов RS.

Изобретение относится к беспроводной связи и более конкретно к многопользовательской системе с множеством входов и множеством выходов. Система беспроводной связи включает в себя базовую станцию, способную осуществлять связь с множеством абонентских станций, базовая станция может передавать управляющую информацию и данные абонентским станциям, также может идентифицировать набор шаблонов RS, которые должны быть использованы для осуществления связи с абонентской станцией, присваивать поднабор номеров антенных портов в рамках набора шаблонов RS абонентским станциям, может указать присвоенные состояния в формате Управляющей Информации Нисходящей линии связи (DCI), передаваемом по Физическому Каналу управления Нисходящей линии связи (PDCCH), базовая станция передает данные, используя поднабор антенных портов, соответствующих поднабору номеров антенных портов, а также может преобразовывать опорные сигналы, соответствующие поднабору антенных портов, в соответствии по меньшей мере с одним шаблоном RS в рамках набора шаблонов RS.

Изобретение относится к средствам обработки данных. Технический результат заключается в расширении арсенала средств обработки данных изображений.

Изобретение относится к радиосвязи. Техническим результатом является выделение ресурсов абонентам сети WLAN.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении надежности связи.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении надежности связи.

Изобретение относится к технике беспроводной связи и может быть использовано для передачи и приема данных. Технический результат – улучшение характеристик оценки канала передачи e-PDCCH двух потоков данных.

Изобретение относится к способам и устройствам для многопользовательской связи в восходящей линии связи в беспроводной сети. Технический результат изобретения заключается в улучшении протокола для передач по восходящей линии связи из нескольких терминалов. Способ беспроводной связи включает в себя прием первого беспроводного сообщения из первой станции, по меньшей мере, частично одновременно с приемом второго беспроводного сообщения из второй станции, формирование первого сообщения подтверждения приема в ответ на прием первого беспроводного сообщения, формирование второго сообщения подтверждения приема в ответ на прием второго беспроводного сообщения и передачу первого сообщения подтверждения приема в первую станцию, по меньшей мере, частично одновременно с передачей второго сообщения подтверждения приема во вторую станцию. 4 н. и 25 з.п. ф-лы, 13 ил.

Изобретение относится к технике беспроводной связи и может быть использовано при оценивании канала в системе беспроводной связи. В системе с множественными входами и множественными выходами, функция демодуляции приемной цепи беспроводного узла улучшена так, чтобы включать в себя отслеживание фазы. Вместо осуществления отслеживания фазы на протяжении символов данных, что сопряжено с большими трудностями в беспроводных сетях с очень высокой пропускной способностью, для отслеживания фазы используются длинные обучающие поля VHT, внедренные в преамбулу кадра. Передающая цепь устройства беспроводной связи содержит схему для распределения преамбулы и полезных данных из составленного потока данных передачи во множество параллельных пространственных потоков, при этом набор идентичной информации отображается в преамбулу в каждом из множества параллельных пространственных потоков для оценки набора канальных характеристик и фазовой ошибки при приеме; и схему для передачи множества параллельных пространственных потоков, используя множество передатчиков. Технический результат – повышение точности оценки канала связи. 4 н. и 18 з.п. ф-лы, 8 ил.

Наверх