Полый катод



Полый катод
Полый катод
H05H1/54 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2662795:

Федеральное государственное унитарное предприятие "Опытное конструкторское бюро "Факел" ФГУП "ОКБ "Факел" (RU)

Изобретение относится к области плазменной техники, а именно к полым катодам, работающим на газообразных рабочих телах, и может быть использовано в электрореактивных двигателях для нейтрализации ионного потока, а также в технологических источниках плазмы, предназначенных для ионно-плазменной обработки поверхностей различных материалов в вакууме, а также в качестве автономно функционирующего источника плазмы. Технический результат - расширение области применения. В полом катоде, содержащем полую капсулу 1, внутри которой размещен эмиттер 2, входной канал рабочего тела 3, выходное отверстие 4 и пусковой электрод 5, со стороны выхода на пусковой электрод установлен консольный экран 6, который простирается к эмиттеру и образует относительно полой капсулы осевой зазор 7. Пусковой электрод 5 и консольный экран 6а выполнены цельно Консольный экран предпочтительней изготовлять из тугоплавких металлов или сплавов на их основе. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к плазменной технике, в частности к полым катодам, работающим на газообразных рабочих телах, и может быть использовано как в составе электрореактивных двигателей для нейтрализации (или компенсации объемного заряда ионов) ускоренного ионного потока плазмы, так и в составе технологических источников плазмы, применяемых для ионно-плазменной обработки поверхностей различных материалов в условиях вакуума, а также в качестве автономно функционирующего источника плазмы [Патент РФ №2219683, кл. 7 Н05Н 1/24, 1/54, F03H 1/00].

Малые космические аппараты (КА) располагают небольшой бортовой мощностью, поэтому и все применяемое на них оборудование, включая компоненты ЭРД, должны при минимальной потребляемой мощности обеспечивать необходимые параметры и характеристики. Кроме этого, и запасы рабочего тела для работы ЭРД на борту малого КА также ограничены. Поэтому применяемые на малых КА ЭРД, включая полый катод, должны быть надежными, эффективными и сверхэкономичными, что и предопределяет необходимость создания и разработки малорасходного полого катода.

Наиболее широкое применение в технике нашли катоды двух разновидностей. Катоды накального типа, в которых разогрев эмиттера до рабочей температуры эмиссии осуществляется при помощи специального нагревателя [Н.В. Белан, В.П. Ким, А.И. Оранский, В.Б. Тихонов. Стационарные плазменные двигатели // Харьков: Харьк. авиац. ин-т, 1989, стр. 140]. Катоды без специального нагревателя для разогрева эмиттера называются безнакальными [Патент РФ №2031472, кл. 6 H01J 37/077, F03H 1/00, Н05Н 1/54, J.A. Burkhart, G.R. Seikel, J. Spacecraft and Rockets, v. 9, №7, 1972], в них разогрев эмиттера до рабочей температуры происходит за счет начальной тепловой энергии, выделяющейся в момент запуска при подаче высоковольтного пускового импульса, например 800-1000 В и выше, при помощи пускового электрода и последующим переходом к функционированию его в авторежиме термоэмиссии электронов. В обеих схемах электрической цепью «катод» является непосредственно эмиттер совместно с поддерживающими его и сопрягаемыми с ним деталями.

Известен полый катод, содержащий полую капсулу с торцевыми стенками и проходными отверстиями рабочего тела входа и выхода, внутри которой размещен эмиттер и пусковой электрод [Патент РФ №2030016, кл. 7 H01J 37/077, F03H 1/00].

Недостатком такого известного полого катода является узкая область его применения из-за неработоспособности в режимах с малым расходом рабочего тела.

Известен полый катод, принятый за прототип, содержащий полую капсулу с торцевыми стенками, внутри которой размещен эмиттер, который внешней цилиндрической поверхностью сопряжен с внутренней поверхностью полой капсулы, входной канал рабочего тела, выходное отверстие и пусковой электрод [Патент РФ №2012946, кл. 7 Н01J 37/077, F03H 1/00].

И такому известному полому катоду присущи недостатки аналога, обусловленные ограничениями работоспособности по допускаемому минимальному расходу рабочего тела. Функционирование такого известного полого катода в составе ЭРД малой мощности происходит с затруднениями, состоящими в ненадежности запусков и дополнительными затратами мощности при стационарной работе для обеспечения стабильности.

Основная причина заключается в том, что массовый расход газа в собственном канале эмиттера влияет на протяженность активной зоны эмиссии электронов следующим образом: при повышенных расходах активная зона сжимается со смещением к выходу эмиттера, тогда как при уменьшении расхода активная зона расширяется, уходя от выходного торца эмиттера вглубь канала. Таким образом, при малых расходах рабочего газа эффективность эмиссии активной зоны снижается по причине более затрудненного проникновения разряда вглубь канала эмиттера (в особенности к границе начала активной зоны) и, тем самым, равномерно-распределенной теплопередачи энергии разряда всей активной зоне, необходимой для обеспечения и поддержания рабочей температуры всей протяженной активной зоны, что дополнительно усугубляется и тепловыми потерями обратно в конструкцию [Оранский А.И., Долгов А.С., Таран А.А. Газоразрядные полые высокоэмиссионные катоды. Том 1. Основы проектирования. Национальный аэрокосмический институт им. Н.Е. Жуковского, 2011 г.]. Таким образом, относительно малые расходы рабочего газа принципиально усложняют работу полого катода.

При создании изобретения решалась задача по расширению области применения полого катода.

Указанный технический результат достигается тем, что в полом катоде, содержащим полую капсулу, внутри которой размещен эмиттер, входной канал рабочего тела, выходное отверстие и пусковой электрод, согласно изобретению, со стороны выхода на пусковой электрод установлен консольный экран, который простирается к эмиттеру и образует относительно полой капсулы осевой зазор. Пусковой электрод и консольный экран могут быть сделаны цельно. Консольный экран предпочтительней изготовлять из тугоплавких металлов или сплавов на их основе.

Установка на пусковом электроде дополнительного консольного экрана позволяет решить задачу по расширению области применения полого катода, в частности, для режимов работы при сверхмалых расходах газа, путем, с одной стороны, уменьшения пробойного промежутка между электрической цепью «катод» и пусковым электродом, а, с другой стороны, локального обеспечения в рабочей зоне электрического пробоя повышенной плотности газа за счет сепаратных функций консольного полого экрана, который собой ограничивает зону выхода газа и электронов минимального объема, препятствуя при этом рассеиванию части рабочего тела по всему внутреннему объему конструкции. Формирование в рабочей зоне перед эмиттером локальной области повышенной плотности рабочего газа повышает вероятность и способствует улучшению условий для электрического пробоя [М.Д. Гуревич, М.Д. Гуревич. Электровакуумные приборы. М.: Военное издательство Министерства обороны Союза ССР, 1960, с. 330-338].

Изготовление пускового электрода и консольного экрана в виде единой цельной конструкции позволит избежать избыточного электрического контактного сопротивления, снизить потери и обеспечить на данном участке целостность электрической цепи.

Изготовление консольного экрана из тугоплавких металлов или сплавов на их основе позволяет решить задачу повышения надежности и стойкости в условиях действия высоких температур и ионной бомбардировки струи ЭРД.

Таким образом, полый катод, изготовленный согласно изобретению, в котором пусковой электрод дополнительно снабжен консольным экраном, свободный край которого расположен перед полой капсулой с эмиттером с осевым зазором, уменьшив тем самым пробойный промежуток в рабочей зоне, позволяет добиться надежного запуска и стабильной работы на режимах сверхмалых расходов (менее 0,1 мг/с), расширив тем самым его функциональные возможности.

Изобретение иллюстрируется чертежами.

На фиг. 1 представлен продольный разрез полого катода, на котором также условно показан источник электрического питания и схема его подключения к токопроводящим элементам полого катода.

На фиг. 2 показан выносной элемент А, на котором представлен вариант цельной конструкции пускового электрода с консольным экраном.

Полый катод содержит полую капсулу 1, внутри которой расположен эмиттер 2, входной канал подвода рабочего тела 3, выходное отверстие 4 для выхода эмитируемых электронов в окружающее пространство и пусковой электрод 5. На пусковом электроде установлен консольный экран 6, который обращен к эмиттеру 2, так что между свободным концом консольного экрана 6 и полой капсулой 1 образован осевой зазор 7. Источник электрического питания подключается к элементам полого катода следующим образом: токоподводящая линия подачи импульса запуска (клемма "+" источника электрического питания) присоединяется к токопроводящим элементам пускового электрода 5, а другой токоподвод (клемма "-" источника электрического питания) осуществляется к токопроводящим элементам полой капсулы 1 с эмиттером 2. При другом варианте конструкции пусковой электрод 5 и консольный экран 6а могут быть сделаны в виде частей одной цельной детали.

Полый катод работает следующим образом.

Рабочее тело (например, газообразный ксенон), поступающее в полый катод, ионизируется при электрическом разряде в газовой среде при подаче напряжения по токоподводящей линии подачи пускового импульса (клемма "+" источника электрического питания) через пусковой электрод 5 к консольному экрану 6, при этом клемма "-" источника электрического питания присоединена к токопроводящим элементам полой капсулы 1 с эмиттером 2, который в разогретом состоянии при рабочей температуре порядка 1500°С-1700°C, является источником электронов. Подача рабочего газа в полый катод осуществляется по входному каналу 3, герметично соединенному с полостью полой капсулы 1. Далее газ попадает во внутреннюю полость полой капсулы 1, в которой располагается эмиттер 2. За счет выделяющейся энергии стартового электрического разряда в осевом зазоре 7 в момент запуска эмиттер 2 разогревается, преимущественно со стороны выходного отверстия 4, до рабочей температуры, вызывающей эмиссию электронов. В стационарном режиме работы ЭРД уровень эмиссии электронов из полого катода должен быть достаточным для поддержания электрического разряда между рабочей полостью эмиттера 2 и анодом ЭРД (на рисунке не показан). В таких условиях и происходит первичная инициализация плазмы. После запуска полый катод переходит в стационарный режим с функционированием в автоматическом режиме, при котором необходимый уровень температуры эмиттера 2 поддерживается за счет энергии, поступающей от установившегося плазменного разряда.

Промышленная реализуемость предложенного изобретения подтверждена испытаниями опытных образцов полого катода при наземной отработке как автономно, так и в составе ЭРД, при которой были получены следующие положительные результаты:

- результаты испытаний продемонстрировали надежность запусков с улучшенной динамикой выхода на стационарный режим работы;

- напряжение в цепи «катод-земля» Uк-з (разность потенциалов в сконцентрированном сгустке плазмы между эмиттером полого катода и областью контакта сгустка плазмы с плазменной струей, истекающей из ЭРД, это параметр, характеризующий затраты мощности на транспортировку электронов от катода до плазменной струи и анода ЭРД), при работе в составе ЭРД относительно низкое (фактическая величина Uк-з составляет 13-17 В) и стабильное при стационарной работе.

1. Полый катод, содержащий полую капсулу, внутри которой размещен эмиттер, входной канал рабочего тела, выходное отверстие и пусковой электрод, отличающийся тем, что со стороны выхода на пусковой электрод установлен консольный экран, который простирается к эмиттеру и образует относительно полой капсулы осевой зазор.

2. Полый катод по п. 1, отличающийся тем, что пусковой электрод и консольный экран сделаны цельно.

3. Полый катод по п. 1, отличающийся тем, что консольный экран изготовлен из тугоплавких металлов или сплавов на их основе.



 

Похожие патенты:

Изобретение относится к средствам жидкостного охлаждения плазменной горелки. В заявленном изобретении предусмотрено использование электрода, включающего тело, имеющее продольную ось, которая задает первый конец, второй конец и среднюю часть.

Изобретение относится к способу применения трубки для охладителя в плазменной горелке с жидкостным охлаждением. Способ включает установку трубки для охладителя и первого электрода в плазменную горелку, а также воздействие при помощи первого потока охладителя на поверхность для воздействия, имеющуюся на трубке для охладителя, для смещения этой трубки относительно первого электрода.

Изобретение относится к соплу для плазменной горелки с жидкостным охлаждением. Сопло включает теплопроводное тело, имеющее дальний конец, ближний конец и проходящую через них продольную ось.

Изобретение относится к плазменной технике, в частности к способам и устройствам с управляемой плазмой, и может быть использовано для решения технических задач при разработке оптических систем наблюдения, а также при испытаниях конструкционных и теплозащитных материалов.

Изобретение относится к средствам определения плотности ионного тока на контактирующую с плазмой стенку. В заявленном способе путем регистрации пространственного распределения в плазме электрических параметров подвижного одиночного плоского зонда Ленгмюра с последующей обработкой результатов измерений, которые согласно предложению проводят имитатором пристеночного зонда Ленгмюра, а в качестве его электрических параметров регистрируют полные зондовые вольт-амперные характеристики.

Изобретение относится к области плазменно-дуговой обработки. Способ обеспечения увеличенного срока службы электрода в плазменно-дуговой горелке содержит термоциклирование электрода, имеющего корпус с первым концом и вторым концом и имеющего удлиненный эмиттер, установленный внутри полости в поверхности первого конца корпуса электрода, во время эксплуатации плазменно-дуговой горелки посредством эмитирования плазменной дуги из эмиттера и охлаждения эмиттера.

Изобретение относится к плазменному прерывателю тока и может быть использовано, например, при создании мощных импульсных источников питания для сильноточных ускорителей заряженных частиц, плазменных диодов.

Изобретение относится к плазменным ускорителям с замкнутым дрейфом электронов и протяженной зоной ускорения, применяемым в качестве стационарных плазменных двигателей в составе электроракетных двигательных установок.

Изобретение относится к области плазменной технологии, в частности к способам стабильного возбуждения газового разряда при высоком и низком давлении, используемым для получения излучения в газоразрядных лазерах, плазмотронах .

Изобретение относится к плазменному прибору с разрядной трубкой, включающему сменную разрядную трубку и портативный корпус, в который может устанавливаться трубка.

Изобретение относится к устройству с плазменным источником электронов. Применение устройства с плазменным источником электронов для формирования трехмерного изделия путем последовательного плавления частей по меньшей мере одного слоя порошковой основы, нанесенной на рабочий стол, части которого соответствуют последовательным сечениям трехмерного изделия, причем устройство с плазменным источником электронов содержит: разрядную камеру с катодом, в которой сгенерирована плазма, выходное отверстие, которое выполнено в разрядной камере с катодом и из которого электроны из плазмы извлечены ускоряющим полем, образованным между разрядной камерой с катодом и анодом, по меньшей мере одно устройство удержания плазмы, и переключающее средство для переключения по меньшей мере одного устройства удержания плазмы между первым значением, обеспечивающим возможность извлечения электронов из плазмы, и вторым значением, запрещающим извлечение электронов из плазмы.

Изобретение обеспечивает генерацию плотной объемной импульсной плазмы и может быть использовано для интенсификации процессов взаимодействия частиц в объеме и одновременного ограничения температуры поверхности изделий, нагреваемых ионным потоком из плазмы.

Изобретение относится к области физики газового разряда и может быть применено при разработке новых устройств сильноточной электроники, позволяющих получать ленточные пучки ускоренных электронов и мощные наносекундные импульсы тока, в плазменной технологии, электронно-лучевой технологии, экспериментальной физике, в физике газового разряда, в физике и технике газовых лазеров, при разработке коммутаторов, импульсных источников тока наносекундной длительности, импульсных источников оптического излучения с высокой яркостью, большой излучающей поверхностью и высоким КПД, плазмохимической технологии, экспериментальной физике.

Изобретение относится к области электротехники и может быть использовано в устройстве генерирования электронного луча. Техническим результатом является обеспечение возможности генерирования узкого электронного луча с малым диаметром в фокусе и высокой плотности мощности при одновременно простой конструкции и конфигурации устройства.

Изобретение относится к области оптической спектроскопии и может быть применено при разработке новых методов нестационарной оптической спектроскопии, позволяющих исследовать свойства неоднородной плазмы в области аномальной дисперсии.

Изобретение относится к способам регистрации аномальной дисперсии неоднородного протяженного плазменного столба и может быть использовано в спектроскопии в неоднородных газовых и плазменных средах, в лазерной спектроскопии и в спектральном анализе газообразных веществ.

Изобретение относится к микроэлектронике и может быть использовано при производстве интегральных микросхем на активных и пассивных подложках и элементов дифракционной оптики на криволинейных поверхностях.

Изобретение относится к области электрореактивных двигателей, а именно к классу плазменных ускорителей (холловских, ионных), использующих в своем составе катоды. .

Изобретение относится к плазменной технике, а именно к катодам-компенсаторам, работающим на газообразных рабочих телах, и может быть использовано в электрореактивных двигателях для нейтрализации ионного пучка, а также в технологических источниках плазмы, предназначенных для ионно-плазменной обработки поверхностей материалов.

Изобретение относится к области плазменной техники и может быть применено при разработке электронно-лучевых устройств и использовано в электронно-лучевой технологии, экспериментальной физике, плазмохимической технологии.

Изобретение относится к цепям питания электроракетного двигателя. Цепь (400, 700, 800) содержит первый источник (402) питания, подающий первый ток на нагрузку (470) в течение первого периода времени («ПВ»); второй источник (416) питания, подающий второй ток на указанную нагрузку в течение второго ПВ; однонаправленный токовый клапан («ОТК»), включенный последовательно с первым источником питания; детектор (420, 702, 802) тока, включенный последовательно с (ОТК) (422); и выключатель (424), включенный параллельно последовательной цепи указанных детектора тока и ОТК, чтобы шунтировать ОТК во второй ПВ.

Изобретение относится к области плазменной техники, а именно к полым катодам, работающим на газообразных рабочих телах, и может быть использовано в электрореактивных двигателях для нейтрализации ионного потока, а также в технологических источниках плазмы, предназначенных для ионно-плазменной обработки поверхностей различных материалов в вакууме, а также в качестве автономно функционирующего источника плазмы. Технический результат - расширение области применения. В полом катоде, содержащем полую капсулу 1, внутри которой размещен эмиттер 2, входной канал рабочего тела 3, выходное отверстие 4 и пусковой электрод 5, со стороны выхода на пусковой электрод установлен консольный экран 6, который простирается к эмиттеру и образует относительно полой капсулы осевой зазор 7. Пусковой электрод 5 и консольный экран 6а выполнены цельно Консольный экран предпочтительней изготовлять из тугоплавких металлов или сплавов на их основе. 2 з.п. ф-лы, 2 ил.

Наверх