Устройство для измерения коэффициентов отражения и излучения материалов и покрытий



Устройство для измерения коэффициентов отражения и излучения материалов и покрытий
Устройство для измерения коэффициентов отражения и излучения материалов и покрытий
Устройство для измерения коэффициентов отражения и излучения материалов и покрытий
Устройство для измерения коэффициентов отражения и излучения материалов и покрытий
Устройство для измерения коэффициентов отражения и излучения материалов и покрытий
Устройство для измерения коэффициентов отражения и излучения материалов и покрытий
Устройство для измерения коэффициентов отражения и излучения материалов и покрытий

Владельцы патента RU 2663301:

Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "Роскосмос" (RU)

Изобретение относится к оптической измерительной технике. Устройство для измерения коэффициентов отражения и излучения материалов и покрытий состоит: из зеркального эллипсоида с отверстием, выполненным под углом 5-20° к его оси, предназначенным для ввода излучения на образец, плоскость которого проходит через нижний фокус эллипсоида; небольшой интегрирующей сферы с пироэлектрическим приемником излучения, чувствительная поверхность которого расположена на поверхности сферы; и экрана, предназначенного для устранения прямого попадания излучения, отраженного от поверхности образца на фотоприемник. В качестве источника излучения, модулятора и зеркала содержит компактный, модулируемый электрическим током малоинерционный инфракрасный излучатель, частота модуляции которого синхронизована с частотой выборки АЦП регистрирующего устройства. Техническим результатом изобретения является линейная зависимость сигнала регистрации пироэлектрического приемника от мощности отраженного от образца излучения, которая не зависит от индикатрисы отражения образца, обеспечивая равенство условий для образцов с зеркальным и диффузным характером отражения. 4 з.п. ф-лы, 6 ил.

 

Изобретение относится к измерительной технике для определения оптических характеристик поверхности материалов и изделий, точнее для измерения коэффициентов их теплового (инфракрасного) излучения и отражения, может использоваться в приборостроении, космической промышленности, энергетическом машиностроении в научных исследованиях в области физики. Известны терморадиометры типа ТИС, ТРМ-И, УИЛЛИ, которые определяют коэффициент теплового излучения (отражения) с использованием зеркального эллипсоида («Оптические свойства лакокрасочных покрытий» / Гуревич М.М., Ицко И.Ф., Середенко М.М., Спб.: Профессия, 210-220 с.). В приборах этого типа источник излучения, включающий нагреватель (2) и резистор (3), и тепловой приемник излучения (4) размещены в области верхнего фокуса эллипсоида (1), а измеряемая поверхность образца (5) проходит через нижний фокус эллипсоида (фиг. 1). При этом упавшее на образец излучение частично поглощается и частично отражается. Фактически терморадиометр измеряет коэффициент отражения при температуре источника излучения, близкой к температуре образца. Согласно закону Кирхгофа для непрозрачных тел коэффициент излучения ε связан с коэффициентом отражения образца ρ простой формулой:

Спектральный диапазон работы прибора составляет 4-40 мкм, а максимум чувствительности приходится на длину волны около 12 мкм.

Главным недостатками данного технического решения является регистрация приемником собственного излучения образца вместе с отраженным от него излучением. Это приводит к тому, что собственное излучение образца, вызванное разогревом его поверхности при падении зондирующего излучения, вносит значительный вклад в регистрируемый сигнал от образца. Для образцов материалов с низкой теплопроводностью в результате разогрева их поверхности возникают большие дополнительные ошибки определения коэффициента излучения в соответствии с формулой (1). Другим недостатком данного технического решения является существенное влияние индикатрисы отражения образца на величину регистрируемого сигнала, обусловленное малыми размерами теплового приемника излучения (4) - болометра, что приводит к значительным расхождениям при измерениях образцов с диффузным и зеркальным характером отражения.

Наиболее близким к заявленному техническому решению является патент США US 005659397 A «Метод и устройство для измерения зеркальных и диффузных оптических характеристик от поверхностей объектов», опубл. 29.08.1997. В данном техническом решении модулированное излучение вводится в эллипсоид (1) через отверстие под углом 15° к его оси (фиг. 2). Т.к. отраженное от поверхности образца (5) излучение, в отличие от его собственного излучения, является модулированным, то использование схемы синхронного детектирования устраняет влияние собственного излучения образца на результаты измерений его коэффициента отражения, к тому же пироэлектрический приемник (10), в отличие от болометра, реагирует только на изменения теплового потока. С другой стороны, большая чувствительная площадка пироэлектрического приемника, проходящая через верхний фокус эллипсоида, почти полностью перекрывает сечение эллипсоида плоскостью, перпендикулярной его оси, что снижает влияние индикатрисы отражения образца на величину регистрируемого сигнала.

Недостатками данного технического решения являются: остающееся расхождение при измерениях образцов с диффузным и зеркальным характером отражения, которое может быть устранено только использованием пироэлектрического приемника с коэффициентом поглощения, равным 1, вне зависимости от угла падения; нелинейная зависимость регистрируемого сигнала от мощности отраженного от образца потока излучения, связанная с отражением от металлических элементов конструкции приемника; необходимость использования дорогостоящего пироэлектрического приемника (10) с большой площадью чувствительной поверхности, фокусирующего зеркала (8) и механического модулятора-прерывателя излучения (7), которые увеличивают габариты изделия и его стоимость.

Задачами, на решение которых направлено заявляемое изобретение, являются увеличение точности измерений оптических характеристик образцов с зеркальным и диффузным характером отражения, повышение надежности измерений, а также снижение габаритов и стоимости устройства для измерения коэффициентов отражения и излучения материалов и покрытий (терморадиометра).

Поставленные задачи решаются за счет того, что устройство для измерения коэффициентов отражения и излучения материалов и покрытий (фиг. 3), содержащее зеркальный эллипсоид (1) с отверстием, выполненным под углом 5-20° к его оси и предназначенным для ввода излучения на образец, плоскость которого проходит через нижний фокус эллипсоида, отличается тем, что:

1) дополнительно содержит малогабаритную интегрирующую сферу (11) с пироэлектрическим приемником излучения (10), чувствительная поверхность которого расположена на поверхности сферы и экраном (9), предназначенным для устранения прямого попадания излучения, отраженного от поверхности образца на фотоприемник;

2) в качестве источника излучения, модулятора и фокусирующего зеркала содержит компактный, модулируемый электрическим током малоинерционный инфракрасный излучатель EMIRS200 (12), частота модуляции которого синхронизована с частотой выборки АЦП регистрирующего устройства.

Измерительная камера устройства (фиг. 4) конструктивно может быть выполнена из трех частей: первая - нижняя половина эллипсоида (13); вторая - верхняя половина эллипсоида вместе с нижней половиной интегрирующей сферы (14); третья - верхняя половина интегрирующей сферы (15).

Эллипсоид с зеркальной поверхностью может быть изготовлен из никеля с использованием механической полировки, интегрирующая сфера с диффузно отражающей поверхностью может быть изготовлена из никеля с использованием пескоструйной обработки поверхности, причем зеркальная поверхность эллипсоида и диффузно рассеивающая поверхность интегрирующей сферы могут быть покрыты тонким слоем золота, обеспечивающим увеличение их коэффициентов отражения.

Экран, может быть изготовлен из тонкого листового металла и расположен под углом, обеспечивающим максимальное прохождение излучения, входящего из эллипсоида в сферу.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, являются: линейная зависимость сигнала регистрации пироэлектрического приемника от мощности отраженного от образца излучения, которая не зависит от индикатрисы отражения образца, обеспечивая равенство условий для образцов с зеркальным и диффузным характером отражения.

Преимуществами предлагаемого устройства являются: повышение точности, надежности измерений коэффициента отражения (излучения); отсутствие необходимости использования дорогостоящего пироэлектрического приемника с большой чувствительной площадкой, что, в свою очередь, ведет к снижению габаритов устройства и его стоимости.

Сущность изобретения поясняется чертежами, на которых изображено:

фиг. 1 - оптическая схема аналога - схема измерений коэффициента излучения в терморадиометре ТРМ «И» с использованием зеркального эллипсоида: 1 - зеркальный эллипсоид; 2 - нагреватель; 3 - резистор; 4 - тепловой приемник излучения (болометр); 5 - измеряемая поверхность образца;

фиг. 2 - оптическая схема прототипа - патент США US 005659397 A «Метод и устройство для измерения зеркальных и диффузных оптических характеристик от поверхностей объектов»: 1 - зеркальный эллипсоид; 5 - измеряемая поверхность образца; 6 - источник излучения; 7 - модулятор -прерыватель; 8 - фокусирующее зеркало; 9 - экран; 10 - приемник пироэлектрический;

фиг. 3 - оптическая схема устройства для измерения коэффициентов отражения и излучения материалов и покрытий: 1 - зеркальный эллипсоид; 5 - измеряемая поверхность образца; 9 - экран; 10 - приемник пироэлектрический (ПП-06); 11 - интегрирующая сфера; 12 - модулируемый инфракрасный излучатель EMIRS200;

фиг. 4 - конструкция измерительной камеры устройства (3D-вид), состоящая из трех частей: 13 - нижняя половина эллипсоида; 14 - верхняя половина эллипсоида и нижняя половина сферы; 15 - верхняя половина сферы;

фиг. 5 - функциональная схема электронных блоков: 10 - пироэлектрический приемник; 12 - модулируемый инфракрасный излучатель; 16 - датчик температуры; 17 - усилитель тока источника излучения; 18 - усилители сигнала измерительного канала; 19 - АЦП датчика температуры; 20 - ЦАП, задающий ток через излучатель; 21 - АЦП измерительного канала; 22 - клавиши управления; 23 - микропроцессор; 24 - ОЗУ; 25 - ЖКИ;

фиг. 6 - внешний вид прибора для измерения коэффициентов отражения и излучения (3D-модель): 26 - измерительная камера; 27 - корпус; 28 - TFT-дисплей; 29 - источник питания; 30 - кнопка "Пуск".

В основу работы устройства положен метод измерения интегрального коэффициента отражения от исследуемой поверхности непрозрачных образцов материалов и покрытий с использованием собирающего зеркального эллипсоида и интегрирующей сферы.

Работает устройство (фиг. 3) следующим образом. Излучение инфракрасного излучателя EMIRS200 (12), модулированное частотой 9,375 Гц, через отверстие в зеркальном эллипсоиде (1) падает на поверхность образца (5) под углом 12° к нормали от его поверхности. Отражаясь от поверхности образца во всех направлениях, излучение собирается зеркальным эллипсоидом вблизи верхнего фокуса зеркального эллипсоида, проходя в интегрирующую сферу (11) через отверстие. При этом экран (9) устраняет прямое попадание излучения на поверхность чувствительной площадки пироэлектрического приемника (10), который регистрирует усредненную освещенность на поверхности интегрирующей сферы.

Конструкция измерительной камеры устройства (фиг. 4), состоит из трех частей, которые имеют направляющие проточки во фланцах для соединения в одну измерительную камеру с использованием стягивающих винтов.

В основу метода регистрации модулированных сигналов, поступающих с пироэлектрического приемника (10), положен метод синхронного детектирования (фиг. 5). Суть метода состоит в синхронизации частоты выборки АЦП (21) преобразования сигналов, поступающих с пироэлектрического приемника, и частоты модуляции источника излучения (12). Для этой цели используется высокостабильный кварцевый генератор, который кратно основной частоте задает частоту модуляции 9,375 Гц и частоту выборки АЦП преобразования с коэффициентом умножения 64. Значения, полученные в результате цифровых сверток сигнала с синхронными опорными гармоническими функциями, являются данными для определения коэффициентов отражения и нормального излучения измеряемого образца. Необходимая температура излучателя может устанавливаться в пределах от 50 до 300°С путем установки тока, протекающего через малоинерционный инфракрасный излучатель (12) с использованием ЦАП (20) и усилителя тока (17), при этом спектральный диапазон работы прибора составляет 3-40 мкм.

Коэффициент отражения измеряемого образца определяется методом сравнения с эталоном по следующей формуле:

где Rэт - коэффициент отражения эталонного образца,

Nоб - сигнал, возникающий на пироэлектрическом приемнике при отражении от измеряемого образца,

Nф - сигнал, возникающий на пироэлектрическом приемнике, определяемый уровнем фона,

Nэт - сигнал, возникающий на пироэлектрическом приемнике при отражении от эталонного образца.

Опытный образец устройства (терморадиометра), получившего обозначение «ТРМ-3», прошел испытания в целях утверждения типа средств измерений во ФГУП «ВНИИОФИ», передан комплект документации в Единый центр Госстандарта для его включения в госреестр средств измерений. Прибор компактен, имеет современный дизайн, автономное питание, успешно используется для проведения измерений коэффициента излучения на образцах материалов и покрытий для изделий космической отрасли. Внешний вид прибора в виде 3D-модели представлен на фиг. 6.

1. Устройство для измерения коэффициентов отражения и излучения материалов и покрытий, содержащее зеркальный эллипсоид с отверстием, выполненным под углом 5-20° к его оси и предназначенным для ввода излучения на образец, плоскость которого проходит через нижний фокус эллипсоида, отличается тем, что:

дополнительно содержит небольшую интегрирующую сферу с пироэлектрическим приемником излучения, чувствительная поверхность которого расположена на поверхности сферы, и экран, предназначенный для устранения прямого попадания излучения, отраженного от поверхности образца на фотоприемник;

в качестве источника излучения, модулятора и зеркала содержит компактный, модулируемый электрическим током малоинерционный инфракрасный излучатель, частота модуляции которого синхронизована с частотой выборки АЦП регистрирующего устройства.

2. Устройство по п. 1, отличающееся тем, что зеркальный эллипсоид и интегрирующая сфера конструктивно выполнены из трех частей: первая - нижняя половина эллипсоида; вторая - верхняя половина эллипсоида вместе с нижней половиной интегрирующей сферы; третья - верхняя половина интегрирующей сферы.

3. Устройство по п. 1, отличающееся тем, что эллипсоид с зеркальной поверхностью изготовлен из никеля с использованием механической полировки, интегрирующая сфера с диффузно отражающей поверхностью может быть изготовлена из никеля с использованием пескоструйной обработки поверхности, причем зеркальная поверхность эллипсоида и диффузно рассеивающая поверхность интегрирующей сферы могут быть покрыты тонким слоем золота, обеспечивающим увеличение их коэффициентов отражения.

4. Устройство по п. 1, отличающееся тем, что экран изготовлен из тонкого листового металла и размещен под некоторым углом, обеспечивающим максимальное прохождение излучения, входящего из эллипсоида в сферу.



 

Похожие патенты:

Изобретение относится к оптическим приборам. Оптический прибор для формирования оптического изображения, предназначенного для наблюдения, содержит оптическую систему для формирования оптического изображения объекта, видимого наблюдателю на выходном зрачке на плоскости наблюдения, и дифракционный элемент, расположенный в плоскости изображения оптической системы и выполненный с возможностью формирования набора выходных зрачков, которые визуально воспринимаются наблюдателем как единый увеличенный выходной зрачок.

Изобретение относится к области оптического приборостроения и касается алмазной дифракционной решетки для видимого диапазона. Дифракционная решетка содержит алмазную подложку с внедренной в ее поверхность дифракционной периодической микроструктурой.

Изобретение относится к области технологий волоконно-оптической связи. Устройство контроля лазерной длины волны содержит два оптических приёмника и фильтр.

Изобретение относится к способу изготовления дифракционной решетки, предназначенной для применения в спектральном приборе. Способ включает в себя следующие этапы: находят рисунок штрихов дифракционной решетки в соответствии с законом изменения расстояния между этими штрихами, найденным согласно схеме спектрального прибора.

Способ включает в себя формирование заданной периодической микроструктуры на поверхности полированного алмаза с помощью имплантации ионами бора с энергией 10-100 кэВ, дозой облучения 1⋅1015-1.0⋅1020 ион/см2 через поверхностную маску.

Изобретение относится к оптическому переключателю и системе формирования изображений, позволяющим формировать изображения высокого разрешения, на которых отсутствует «эффект решетки».

Изобретение относится к оптической технике. Оптический модулятор, каждый пиксель которого содержит перекрывающие площадь пикселя неподвижный плоский поляризатор и параллельный ему подвижный плоский поляризатор.

Изобретение может быть использовано в устройствах, обладающих высокой разрешающей способностью, для спектрального анализа, модуляции и монохроматизации света. Интерференционный светофильтр содержит две подложки с зеркальным покрытием с регулированием положения подложек при помощи основного пьезоэлемента, подключенного к источнику переменного напряжения.

Узкополосный фильтр состоит из двух одинаковых прозрачных треугольных призм, которые изготовлены из материала с высоким показателем преломления. Между ними нанесены чередующиеся слои, изготовленные из материалов с низким и высоким показателями преломления.

Изобретение относится к устройствам контроля структур емкости посредством проходящего света. Устройство для контроля и регистрации структур емкости, с расположенным на одной стороне транспортировочного участка для емкостей осветительным устройством для просвечивания участка емкости, и расположенным на второй стороне транспортировочного участка оптическим устройством для регистрации изображения участка емкости, снятого в проходящем свете.

Изобретение относится к сельскому хозяйству, а именно к способам тестирования эффективности регуляторов роста растений с помощью оптических характеристик, поскольку количество метаболитов, образующихся в процессе прорастания семян, характеризует степень их прорастания.

Изобретение относится к микропланшету для центрифугирования множества проб. Микропланшет, содержащий множество лунок, размещенных в виде двухмерной решетки, причем микропланшет содержит рамку и несколько продольных распорок, каждая из которых содержит ряд лунок, причем распорки размещены в рамке с возможностью поворота, а каждый ряд лунок установлен в микропланшете с возможностью наклона, так что во время центрифугирования микропланшета лунки выравниваются в направлении центробежной силы.

Группа изобретений относится к пищевой промышленности. Устройство (10) для повторного разогрева приготовленного продукта питания, например мяса, содержит контейнер (12) для размещения продукта питания, подлежащего повторному разогреву, опознающий модуль (16), нагревающий модуль (18) и блок (20) обработки.

Изобретение относится к аналитической химии, а именно к фармацевтическому анализу, и может быть использовано для количественного определения фенобарбитала в таблетках “Корвалол” методом УФ-спектрофотометрии.

Изобретение относится к способу мониторинга контролируемого параметра смеси, в которой протекает реакция полимеризации в гетерогенной фазе, устройству для осуществления этого способа, а также способу регулирования реакции полимеризации.

Группа изобретений относится к определению уровней газообразных элементов. Способ определения уровней газообразных элементов, содержит получение в начале периода измерения первого электронного изображения устройства, имеющего колориметрический чувствительный элемент, выполненный с возможностью изменения цвета в ответ на воздействие одного или более загрязняющих веществ, и степень изменения цвета зависит от концентрации загрязняющих веществ; получение в конце периода измерения второго электронного изображения колориметрического чувствительного элемента; определение первого значения и второго значения, основанного на цвете колориметрического чувствительного элемента в первом и втором электронных изображениях соответственно; определение на основе первого и второго значений величины загрязнения для одного или более загрязняющих веществ, воздействию которых колориметрический чувствительный элемент подвергался в течение периода измерения.

Изобретение относится к области измерительной техники и может быть использовано для контроля экологического обустройства окружающей среды. Изобретение представляет собой портативный респирометрический прибор с автономным питанием, рассчитанный на оперативный контроль дыхательной эмиссии СО2 непосредственно по месту проведения почвенного мониторинга различных природно-хозяйственных объектов.

Группа изобретений относится к очистке сточных вод. Способ определения мутности жидкой фазы многофазных сточных вод включает: размещение датчика мутности, состоящего из корпуса, содержащего излучатель света и светочувствительный датчик, в многофазной сточной воде.

Изобретение относится к способам определения местоположения единичных молекул вещества в образце. Единичные молекулы вещества находятся во флуоресцентном состоянии, в котором их можно возбуждать светом возбуждения для испускания света флуоресценции.

Изобретение относится к области аналитического приборостроения и предназначено для определения концентрации азота в аргоне смеси. Газоанализатор, предназначенный для измерения концентрации азота в аргоне, содержит датчик для измерения концентрации азота в аргоне, при этом содержит устройство для измерения концентрации кислорода, в котором под воздействием источника постоянного напряжения удаляется кислород из азотно-аргоновой смеси, последовательно соединенное с датчиком для измерения концентрации азота в аргоне.

Изобретение относится к медицинской технике. Устройство для количественной оценки флюоресценции и оптических свойств тканей in vivo содержит оптический зонд.

Изобретение относится к оптической измерительной технике. Устройство для измерения коэффициентов отражения и излучения материалов и покрытий состоит: из зеркального эллипсоида с отверстием, выполненным под углом 5-20° к его оси, предназначенным для ввода излучения на образец, плоскость которого проходит через нижний фокус эллипсоида; небольшой интегрирующей сферы с пироэлектрическим приемником излучения, чувствительная поверхность которого расположена на поверхности сферы; и экрана, предназначенного для устранения прямого попадания излучения, отраженного от поверхности образца на фотоприемник. В качестве источника излучения, модулятора и зеркала содержит компактный, модулируемый электрическим током малоинерционный инфракрасный излучатель, частота модуляции которого синхронизована с частотой выборки АЦП регистрирующего устройства. Техническим результатом изобретения является линейная зависимость сигнала регистрации пироэлектрического приемника от мощности отраженного от образца излучения, которая не зависит от индикатрисы отражения образца, обеспечивая равенство условий для образцов с зеркальным и диффузным характером отражения. 4 з.п. ф-лы, 6 ил.

Наверх