Изоцианатно-эпоксидная вспениваемая система



Изоцианатно-эпоксидная вспениваемая система
Изоцианатно-эпоксидная вспениваемая система
Изоцианатно-эпоксидная вспениваемая система
Изоцианатно-эпоксидная вспениваемая система
Изоцианатно-эпоксидная вспениваемая система
Изоцианатно-эпоксидная вспениваемая система
Изоцианатно-эпоксидная вспениваемая система

Владельцы патента RU 2667523:

БАСФ СЕ (DE)

Настоящее изобретение относится к способу получения жесткого пеноматериала, включающему в себя взаимодействие по меньшей мере одного полиизоцианата со смесью, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, причем это взаимодействие осуществляется в присутствии не содержащего металлов основания Льюиса, имеющего по меньшей мере один атом азота, причем катализатор выбирают из группы, состоящей из 1,8-диазабицикло-5,4,0-ундецен-7-ена, N-метил-N'-(диметиламино-метил)пиперазина, пентаметилдиэтилентриамина, метилимидазола и их смесей и их производных. Также заявлены жесткий пеноматериал, получаемый при помощи указанного способа, и применение такого жесткого пеноматериала для изготовления изолирующих материалов, вакуумных изоляционных панелей, холодильных аппаратов, строительных элементов, лопастей винтов ветроэнергетических установок или элементов для строительства лодок и автомобилей. Технический результат – обеспечение способа получения жестких пеноматериалов, обладающих улучшенными прочностью при сжатии, прочностью при техническом изгибе, прочностью при растяжении, а также хорошей температурной устойчивостью, хорошей устойчивостью по отношению к влиянию окружающей среды и химическим веществам. 3 н. и 12 з.п. ф-лы, 2 табл., 5 пр.

 

Настоящее изобретение касается способа получения жесткого пеноматериала, включающего в себя взаимодействие по меньшей мере одного полиизоцианата со смесью, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, причем это взаимодействие осуществляется в присутствии не содержащего металлов основания Льюиса, имеющего по меньшей мере один атом азота, жесткого пеноматериала, который может получаться по способу такого типа, а также применения жесткого пеноматериала согласно изобретению для изготовления изолирующих материалов, вакуумных изоляционных панелей, холодильных аппаратов, строительных элементов, лопастей винтов ветроэнергетических установок или элементов для строительства лодок и автомобилей.

Пеноматериалы из изоцианатов с соединениями с кислотными атомами водорода, такими как спирты или амины, известны давно и описаны в литературе. При помощи смешивания подходящих соединений приходят к пеноматериалам на основе полиуретанов, полимочевин, полиизоциануратов или смесей этих соединений.

Эпоксидные пеноматериалы также известны в литературе, однако проявляют недостаток в том, что не достигаются низкие плотности в диапазоне менее 150 г/л, такие как являются обычными для полиуретановых пеноматериалов, и время обработки, в сравнении с полиуретановыми пеноматериалами, является очень продолжительным, то есть, например, больше 1 часа при толщине 10 мм. Тем не менее, эти пеноматериалы демонстрируют очень хорошую адгезию с эпоксидными покрывающими слоями, высокую жесткость и хорошую устойчивость.

Ряд патентов раскрывает получение, переработку и использование комбинаций из изоцианатов и эпоксидов. Использование этих классов веществ является затруднительным для технического применения, поскольку простые смеси изоцианатов и эпоксидов, также при повышенных температурах, с трудом можно ввести в реакцию. Из литературы известно, что при более высоких температурах, в частности, при температурах выше 120°C, после более продолжительного времени могут образовываться оксазолидоны. Конкурирующей реакцией является образование из изоцианатов полиизоциануратов (ПИР).

Так, патент США US 4,699,931 описывает способ получения полиизоциануратных пеноматериалов, модифицированных оксазолидоном, в котором полиэпоксиды и полиизоцианаты вводят в реакцию с аминовыми катализаторами образования ПИР и вспенивающими агентами, чтобы получить соответствующие пеноматериалы. При этом патент США US 4,699,931, раскрывает, что реакция протекает крайне быстро, например, при времени активации, составляющем менее 20 секунд.

Европейская заявка на патент ЕР 0130454 А2 раскрывает способ получения плотных реакционных смол на основе изоцианатов и эпоксидов. Кроме того, европейская заявка на патент ЕР 0130454 А2 показывает, что использование аминовых катализаторов уже при низких температурах приводит к короткому времени жизнеспособности. Системы смол, предложенные в европейской заявке на патент ЕР 0130454 А2, обладают тем недостатком, что эти смолы должны отверждаться при высоких температурах.

Немецкая заявка на патент DE 3600764 А1 описывает использование третичных или четвертичных аммониевых солей в качестве катализаторов, чтобы получить системы с длительным открытым временем. Недостатком в случае способа, предложенного в немецкой заявке на патент DE 3600764 А1, является то, что отверждение осуществляется при более высоких температурах. Также немецкая заявка на патент DE 3600764 А1 раскрывает, что при помощи третичных аминов может достигаться только открытое время, составляющее меньше 20 минут. Эти значения времени или соответственно условия переработки являются не достаточными для конструктивных элементов большего размера и для промышленного применения.

Таким образом, пеноматериал на основе эпоксидов и изоцианатов не может быть взят из литературы.

Следовательно, исходя из уровня техники задача, лежащая в основе настоящего изобретения, состояла в том, чтобы предоставить способ получения жестких пеноматериалов на основе изоцианатов и эпоксидов, которые являются подходящими для промышленного применения, или соответственно подходящие системы для жестких пеноматериалов. При этом время переработки должно было быть достаточно долгим, и в то же время, эти жесткие пеноматериалы должны иметь достаточную прочность и хорошую устойчивость.

Согласно изобретению эта задача решается при помощи способа получения жесткого пеноматериала, включающего в себя взаимодействие по меньшей мере одного полиизоцианата со смесью, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, причем это взаимодействие осуществляется в присутствии не содержащего металлов основания Льюиса, имеющего по меньшей мере один атом азота.

В случае дополнительного соединения с кислотными атомами водорода согласно изобретению речь может идти, в частности, о полиолах и полиаминах. В соответствии с этим, настоящее изобретение согласно другому варианту исполнения касается способа получения жесткого пеноматериала, как описано выше, причем по меньшей мере одно дополнительное соединение с кислотными атомами водорода выбирают из группы, состоящей из полиолов и полиаминов.

Неожиданным образом было обнаружено, что в системе для жесткого пеноматериала большая часть соединения с кислотными атомами водорода, в частности, полиолового компонента, может замещаться на эпоксид, и при подходящем катализе с помощью этого получаются жесткие пеноматериалы, которые по своей реакционной способности и плотности соответствуют вспененным с помощью воды полиуретановым или соответственно мочевинным пеноматериалам.

Пеноматериалы такого типа в качестве нового класса соединений позволяют модифицировать классические полиуретановые или соответственно полимочевинные пеноматериалы при помощи эпоксидных соединений, а при помощи дополнительной сшитой структуры привнести в пеноматериал повышенную прочность, что приводит к улучшению прочности при сжатии, температурной устойчивости и химической стойкости. Кроме того, придается высокая совместимость между эпоксидными смолами и пеноматериалами такого типа.

Далее, настоящее изобретение согласно другому варианту исполнения касается способа получения жесткого пеноматериала, как описано выше, причем этот способ включает в себя по меньшей мере следующие стадии:

(i) смешивание по меньшей мере одного полиизоцианата, смеси, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, и каталитической системы с получением смеси (I);

(ii) выгрузка смеси (I) в форму или в желаемую реакционную зону при помощи литья, распыления или распределения;

(iii) нагревание смеси (I) до температуры в диапазоне от 50 до 100°C до отверждения смеси.

Компоненты смеси (I) согласно изобретению являются низковязкими и жидкими при комнатной температуре, то есть, вязкость при 25°C составляет меньше чем 10000 мПа⋅с.

Смесь (I), помимо по меньшей мере одного полиизоцианата, смеси, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, и каталитической системы, может содержать другие компоненты, например, растворитель, реактивный разбавитель, стабилизаторы, загустители, тиксотропные средства, добавки, усилители сцепления, наполнители и, в частности, вспенивающие агенты.

Исходя из этого, согласно одному предпочтительному варианту исполнения настоящее изобретение касается способа получения жесткого пеноматериала, как описано выше, причем смесь (I) содержит вспенивающий агент.

Полученную смесь (I) выгружают в соответствии со стадией (ii). Это выгружение в рамках настоящего изобретения может осуществляться любым подходящим способом, в частности, при помощи литья, распыления или распределения. Подходящие методы являются известными специалисту.

Потом, согласно стадии (iii), осуществляют температурную обработку. Полное отверждение согласно изобретению осуществляют только при нагревании, предпочтительно при нагревании до температуры меньше 100°C, более предпочтительно при нагревании до температуры в диапазоне от 50 до 100°C. Согласно изобретению возможно, чтобы нагревание осуществлялось при помощи выделяющейся при экзотермической реакции теплоты реакции. Однако согласно изобретению также возможно, чтобы нагревание осуществлялось при помощи подходящих методов.

В соответствии с этим, настоящее изобретение согласно другому варианту исполнения касается способа получения жесткого пеноматериала, как описано выше, причем взаимодействие начинается при температуре меньше 100°C.

Нагревание согласно изобретению осуществляется вплоть до отверждения смеси. При этом под отверждением смеси следует понимать достижение по меньшей мере 20%, предпочтительно 50% и особенно предпочтительно 75% от конечной твердости.

Нагревание может осуществляться любым известным специалисту подходящим способом. Предпочтительно при помощи обогрева формы электрическим способом, маслом или водой, индукционного поля, горячего воздуха или ИК-излучения на поверхность смолы.

Взаимодействие по меньшей мере одного полиизоцианата и смеси, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, согласно изобретению осуществляют в присутствии не содержащего металлов основания Льюиса, имеющего по меньшей мере один атом азота, в качестве катализатора. При этом катализатор используют в подходящем количестве, чтобы катализировать реакцию. Этот катализатор используют, например, в количестве в диапазоне от 0,0001 до 3% масс.

Каталитическую систему согласно изобретению предпочтительно используют в количестве от 0,001 до 2% масс., в пересчете на сумму использованного полиизоцианата и смеси, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода. Предпочтительно эту каталитическую систему используют в количестве от 0,005 до 1,5% масс., в пересчете на сумму использованного полиизоцианата и смеси, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, особенно предпочтительно в количестве от 0,01 до 1,0% масс., в пересчете на сумму использованного полиизоцианата и смеси, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода.

В соответствии с этим, настоящее изобретение согласно другому варианту исполнения касается способа получения жесткого пеноматериала, как описано выше, причем катализатор используют в количестве от 0,01 до 2% масс., в пересчете на сумму использованного полиизоцианата и смеси, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода.

Согласно изобретению в качестве катализатора используют не содержащее металлов основание Льюиса, имеющее по меньшей мере один атом азота. При этом согласно изобретению катализатор сам по себе не подвергается реакции. Подходящие не содержащие металлов основания Льюиса, имеющие по меньшей мере один атом азота, являются известными специалисту. Например, в случае не содержащего металлов основания Льюиса речь может идти о третичном амине. В соответствии с этим, настоящее изобретение согласно другому варианту исполнения касается способа получения жесткого пеноматериала, как описано выше, причем катализатор представляет собой третичный амин.

В способе согласно изобретению каталитическую систему на основе по меньшей мере одного не содержащего металлов основания Льюиса, имеющего по меньшей мере один атом азота, предпочтительно выбирают из группы, состоящей из 1,8-диазабицикло-5,4,0-ундец-7-ена, N-метил-N'-(диметиламинометил)пиперазина, пентаметилдиэтилентриамина, метилимидазола и их смесей и их производных, в частности, выбирают из группы, состоящей из 1,8-диазабицикло-5,4,0-ундец-7-ена и его производных.

В соответствии с этим, настоящее изобретение согласно другому варианту исполнения касается способа получения жесткого пеноматериала, как описано выше, причем катализатор выбирают из группы, состоящей из 1,8-диазабицикло-5,4,0-ундец-7-ена, N-метил-N'-(диметиламинометил)пиперазина, пентаметилдиэтилентриамина, метилимидазола и их смесей и их производных. Далее, настоящее изобретение согласно другому варианту исполнения касается способа получения жесткого пеноматериала, как описано выше, причем катализатор выбирают из группы, состоящей из 1,8-диазабицикло-5,4,0-ундец-7-ена и его производных.

В случае каталитической системы речь предпочтительно идет о не содержащей металлов каталитической системе, то есть, не используют никакого другого содержащего металл катализатора. В соответствии с этим, настоящее изобретение согласно другому варианту исполнения касается способа получения жесткого пеноматериала, как описано выше, причем каталитическая система представляет собой не содержащую металлов каталитическую систему.

Особенно предпочтительно не содержащее металлов основание Льюиса в рамках настоящего изобретения представляет собой производное 1,8-диазабицикло-5,4,0-ундец-7-ена, особенно предпочтительно блокированный 1,8-диазабицикло-5,4,0-ундец-7-ен, более предпочтительно блокированный фенолом 1,8-диазабицикло-5,4,0-ундец-7-ен. Например, не содержащее металлов основание Льюиса представляет собой производное 1,8-диазабицикло-5,4,0-ундец-7-ена или смеси 1,8-диазабицикло-5,4,0-ундец-7-ена с кислотными компонентами, такими как, например, фенол или кислоты. Такие продукты имеются в продаже под различными торговыми наименованиями, такими как, например, Polycat SA 1/10, Toyocat DB 30, Toyocat DB 41, Toyocat DB 42 или Toyocat DB 60. Особенно предпочтительно используют 1,8-диазабицикло-5,4,0-ундец-7-ен или блокированный фенолом 1,8-диазабицикло-5,4,0-ундец-7-ен.

В другом варианте исполнения изобретения может быть благоприятным, помимо предпочтительно используемого согласно изобретению 1,8-диазабицикло-5,4,0-ундец-7-ена, в качестве катализатора еще добавлять другие третичные амины. При этом 1,8-диазабицикло-5,4,0-ундец-7-ен предпочтительно присутствует в избытке. Предпочтительные соотношения 1,8-диазабицикло-5,4,0-ундец-7-ена и других третичных аминов лежат в области соотношений 1:5 до 5:1, предпочтительно от 2:5 до 5:2.

В способе согласно изобретению используют смесь, содержащую по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода. При этом соотношение в смеси по меньшей мере одного полиэпоксида и по меньшей мере одного дополнительного соединения с кислотными атомами водорода может варьироваться в широком диапазоне, пока обеспечивается, чтобы при взаимодействии этой смеси с по меньшей мере одним полиизоцианатом образовывался пеноматериал. При этом полиэпоксид согласно изобретению используется, например, в количестве в диапазоне от 5 до 70% масс., в пересчете на сумму из использованного полиэпоксида и по меньшей мере одного дополнительного соединения с кислотными атомами водорода, предпочтительно в количестве в диапазоне от 10 до 60% масс, в пересчете на сумму из использованного полиэпоксида и по меньшей мере одного дополнительного соединения с кислотными атомами водорода, более предпочтительно в диапазоне от 20 до 60% масс., в пересчете на сумму из использованного полиэпоксида и по меньшей мере одного дополнительного соединения с кислотными атомами водорода.

В соответствии с этим, настоящее изобретение согласно другому варианту исполнения касается способа получения жесткого пеноматериала, как описано выше, причем полиэпоксид используется в количестве в диапазоне от 5 до 70% масс., в пересчете на сумму из использованного полиэпоксида и по меньшей мере одного дополнительного соединения с кислотными атомами водорода.

Согласно изобретению используется смесь, содержащая по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода. При этом данная смесь согласно изобретению содержит обычно до 5% масс., воды, в пересчете на сумму из использованного полиэпоксида, воды и по меньшей мере одного дополнительного соединения с кислотными атомами водорода, предпочтительно в количестве в диапазоне от 0,2 до 4,0% масс., в пересчете на сумму из использованного полиэпоксида, воды и по меньшей мере одного дополнительного соединения с кислотными атомами водорода, более предпочтительно в количестве в диапазоне от 1,0 до 2,5% масс., в пересчете на сумму из использованного полиэпоксида, воды и по меньшей мере одного дополнительного соединения с кислотными атомами водорода.

Предпочтительно по меньшей мере одно дополнительное соединение с кислотными атомами водорода в рамках изобретения выбирается из группы, состоящей из полиолов и полиаминов. В общем, подходящие полиолы и полиамины известны специалисту. Подходящие полиолы описываются, например, в издании «Kunststoffhandbuch, Band 7, Polyurethane», Carl Hanser Verlag, 3. Auflage 1993, главе 3.1. Особенно предпочтительно в рамках настоящего изобретения соединение с кислотными атомами водорода выбирается из группы, состоящей из простых полиэфирполиолов, сложных полиэфирполиолов, поликарбонатполиолов и полиаминов.

В соответствии с этим, настоящее изобретение согласно другому варианту исполнения касается способа получения жесткого пеноматериала, как описано выше, причем по меньшей мере одно дополнительное соединение с кислотными атомами водорода выбирается из группы, состоящей из простых полиэфирполиолов, сложных полиэфирполиолов, поликарбонатполиолов и полиаминов.

Используемые в рамках настоящего изобретения полиэпоксиды могут представлять собой любые соединения. При этом полиэпоксиды содержат по меньшей мере одну эпоксидную группу, тем не менее, предпочтительно две или больше эпоксидных групп. Подходящие полиэпоксиды известны специалисту из литературы, такой как, например, Handbook of Ероху Resins (H. Lee, K. Neville, McGraw-Hill Book Company). В качестве примеров монофункциональных эпоксидов следует назвать, например, простой изопропилглицидиловый эфир, простой третбутилглицидиловый эфир или простой этилгексилглицидиловый эфир. Особенно подходящими для способа согласно изобретению оказались эпоксиды на основе эпихлоргидрина и бисфенола-А, бисфенола-F, бисфенола-K, бисфенола S, бифенола, гидрохинона, резорцинола, тетрабромбисфенола А, фенол-формальдегидных новолачных смол, простых полиглицидиловых эфиров, сложных диглицидиловых эфиров, например, из фталевой кислоты или терефталевой кислоты и их производных, и алифатические ди- или триэпоксиды и смеси из них. Такие продукты продаются различными изготовителями под торговыми наименованиями Araldite©, D.E.R. ©, Epilox© или Baxxores©. Особенно предпочтительными являются эпоксиды бисфенола-А и их производные, в частности, простые глицидиловые эфиры, такие как, например, простой диглицидиловый эфир бисфенола-А, и смеси с указанными выше алифатическими ди- или триэпоксидами.

В соответствии с этим, настоящее изобретение согласно другому варианту исполнения касается способа получения жесткого пеноматериала, как описано выше, причем по меньшей мере один полиэпоксид выбирается из группы, состоящей из эпоксидов бисфенола-А, эпоксидов бисфенола-F, их производных, алифатических ди- или триэпоксидов и смесей из двух или более из них.

Согласно изобретению также могут использоваться смеси различных полиэпоксидов.

Согласно изобретению полиэпоксид может использоваться в чистой форме или в форме композиции, содержащей этот полиэпоксид и по меньшей мере один разбавитель. Подходящими, известными специалисту разбавителями являются, например, нереакционноспособные растворители, такие как этилацетат, метилэтилкетон, углеводороды, реактивные разбавители, такие как линейные, низковязкие ди- или триэпоксиды, пластификаторы, такие как фталаты или сложные эфиры лимонной кислоты. Кроме того, в рамках этого изобретения в качестве разбавителей должны пониматься также низковязкие реактивные разбавители, такие как, например, простые моноглицидиловые эфиры или простые диглицидиловые эфиры на основе короткоцепочечных ди- или триолов, таких как, например, 1,4-бутандиол, 1,6-гександиол, триметилолпропан, 1,4-циклогександиметанол или полиоксипропиленгликоль.

В качестве полиизоцианатов могут использоваться алифатические, циклоалифатические, арилалифатические и/или ароматические диизоцианаты. В частности, в качестве примеров следует назвать следующие ароматические изоцианаты: 2,4-толуилендиизоцианат, смеси из 2,4- и 2,6-толуилендиизоцианатов, 4,4'-, 2,4'- и/или 2,2'-дифенилметандиизоцианаты (МДИ), смеси из 2,4'- и 4,4'-дифенилметандиизоцианатов, уретанмодифицированные жидкие 4,4'- и/или 2,4-дифенилметандиизоцианаты, 4,4'-диизоцианатодифенилэтан, смеси из мономерных метандифенилдиизоцианатов и имеющих большее число ядер гомологов метандифенилдиизоцианата (полимерный МДИ), (1,2-) и 1,5-нафтилендиизоцианаты.

В качестве алифатических диизоцианатов используют обычные алифатические и/или циклоалифатические диизоцианаты, например, три-, тетра-, пента-, гекса-, гепта- и/или октаметилендиизоцианаты, 2-метил-пентаметилендиизоцианат-1,5, 2-этилбутилендиизоцианат-1,4, 1-изоциа-нато-3,3,5-триметил-5-изоцианатометилциклогексан (изофорондиизоциа-нат, ИФДИ), 1,4- и/или 1,3-бис(изоцианатометил)циклогексан (HXDI), 1,4-циклогександиизоцианат, 1-метил-2,4- и/или -2,6-циклогександиизоцианаты, 4,4'-, 2,4'- и/или 2,2'-дициклогексилметандиизоцианаты.

Полиизоцианатные форполимеры могут получаться путем того, что описанные выше полиизоцианаты, в избытке, например, при температурах от 30 до 100°C, предпочтительно примерно при 80°C, вводят во взаимодействие с полиолами с образованием форполимера. Предпочтительно для получения пригодных к использованию согласно изобретению форполимеров используют полиизоцианат и имеющиеся в продаже полиолы на основе сложных полиэфиров, например, на основе адипиновой кислоты, или простых полиэфиров, например, на основе этиленоксида и/или пропиленоксида.

Полиолы являются известными специалисту и описываются, например, в издании «Kunststoffhandbuch, Band 7, Polyurethane», Carl Hanser Verlag, 3. Auflage 1993, главе 3.1. Предпочтительно при этом в качестве полиолов используют описанные выше полимерные соединения с атомами водорода, реакционноспособными по отношению к изоцианатам. Особенно предпочтительно в качестве полиолов используют простые полиэфироспирты.

При необходимости к указанным полиолам при получении изоцианатных форполимеров добавляют обычные агенты удлинения цепи или сшивающие агенты. Такие вещества известны специалисту. Особенно предпочтительно в качестве агента удлинения цепи используют 1,4-бутандиол, дипропиленгликоль и/или трипропиленгликоль. Предпочтительно при этом соотношение органических полиизоцианатов и полиолов и агентов удлинения цепи выбирают таким образом, что изоцианатный форполимер имеет содержание NCO-групп от 2 до 30%, предпочтительно от 6 до 28%, особенно предпочтительно от 10 до 24%.

Особенно предпочтительные полиизоцианаты выбирают из группы, состоящей из МДИ, полимерного МДИ и ТДИ, а также их производных или форполимеров этих полиизоцианатов.

В соответствии с этим, настоящее изобретение согласно другому варианту исполнения касается способа получения жесткого пеноматериала, как описано выше, причем по меньшей мере один полиизоцианат выбирают из группы, состоящей из ароматических, арилалифатических и алифатических полиизоцианатов. Согласно другому варианту исполнения настоящее изобретение касается способа получения жесткого пеноматериала, как описано выше, причем по меньшей мере один полиизоцианат представляет собой форполимер с содержанием NCO-групп от 6 до 30%.

Согласно изобретению полиизоцианат может использоваться в чистой форме или в форме композиции, например, изоцианатного форполимера. В другом варианте исполнения может использоваться смесь, содержащая полиизоцианат и по меньшей мере один растворитель или разбавитель. Подходящие растворители известны специалисту.

Соотношение при взаимодействии полиизоцианатов и смеси, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, предпочтительно должно находиться при эквивалентном соотношении полиизоцианата и смеси, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, в диапазоне, например, от 0,25:1 до 5000:1, особенно предпочтительно от 0,35:1 до 500:1, наиболее предпочтительно от 0,5:1 до 100:1 и, в частности, от 0,75:1 до 50:1, более предпочтительно в диапазоне от 0,8:1 до 5:1.

Согласно изобретению могут добавляться обычные вспомогательные вещества. Следует упомянуть, например, вспенивающие агенты, поверхностно-активные вещества, наполнители, дополнительные огнезащитные средства, зародышеобразователи, средства, повышающие устойчивость к окислению, смазочные средства и средства для извлечения из формы, красители и пигменты, при необходимости средства, повышающие устойчивость, например, к гидролизу, свету, нагреванию или изменению окраски, неорганические и/или органические наполнители, усиливающие средства и пластификаторы. Подходящие вспомогательные вещества и добавки можно взять, например, из издания Kunststoffhandbuch, Band VII, herausgegeben von Vieweg und , Carl Hanser Verlag, 1966 (стр. 103-113).

Неожиданным образом было обнаружено, что влажное выдерживание отвержденного жесткого пеноматериала приводит к дальнейшему улучшению механических свойств. Этот эффект может достигаться уже при относительно коротком выдерживании в атмосфере водяного пара. Также этот эффект может наблюдаться при выдерживании в воде (морская вода, водопроводная вода, обессоленная вода) при повышенных температурах (>50°C).

В соответствии с этим, настоящее изобретение согласно другому варианту исполнения касается способа получения жесткого пеноматериала, как описано выше, причем полученный при взаимодействии вступивший в реакцию жесткий пеноматериал после этого взаимодействия выдерживается в условиях влажности.

Настоящее изобретение касается также применения не содержащего металлов основания Льюиса, имеющего по меньшей мере один атом азота, в качестве катализатора для взаимодействия по меньшей мере одного полиизоцианата со смесью, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода. В частности, настоящее изобретение касается применения 1,8-диазабицикло-5,4,0-ундец-7-ена и его производных в качестве катализатора для взаимодействия по меньшей мере одного полиизоцианата с по меньшей мере одним полиэпоксидом, более предпочтительно использование 1,8-диазабицикло-5,4,0-ундец-7-ена и его производных в качестве катализатора для взаимодействия эпоксидов бисфенола-А и его производных по меньшей мере с одним полиизоцианатом.

Далее, настоящее изобретение касается также жесткого пеноматериала, который может получаться или полученного по способу согласно изобретению, а также формованного изделия, которое может получаться из жестких пеноматериалов такого типа.

В соответствии с этим настоящее изобретение касается также жесткого пеноматерила, который может получаться или полученного при помощи способа, включающего в себя взаимодействие по меньшей мере одного полиизоцианата со смесью, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, причем взаимодействие происходит в присутствии не содержащего металлов основания Льюиса, имеющего по меньшей мере один атом азота.

Подходящие соединения с кислотными атомами водорода, полиэпоксиды, полиизоцианаты и каталитические системы описаны выше.

Так, настоящее изобретение согласно другому варианту исполнения касается жесткого пеноматериала, как описано выше, причем полиэпоксид используют в количестве в диапазоне от 5 до 70% масс. в пересчете на сумму из использованного полиэпоксида и по меньшей мере одного дополнительного соединения с кислотными атомами водорода.

Согласно другому варианту исполнения в качестве полиизоцианатов используют форполимеры. В результате изменения доли изоцианатов в форполимерах могут регулироваться дополнительные свойства, такие как, например, жесткость, если не используют никакие другие добавки, такие как, например, пластификаторы.

В соответствии с этим, настоящее изобретение согласно другому варианту исполнения касается жесткого пеноматериала, как описано выше, причем по меньшей мере один полиэпоксид выбирается из группы, состоящей из эпоксидов бисфенола-А, эпоксидов бисфенола-F, их производных, алифатических ди- или триэпоксидов и смесей из двух или более из них.

Далее, настоящее изобретение согласно другому варианту исполнения касается жесткого пеноматериала, как описано выше, причем по меньшей мере один полиизоцианат выбирается из группы, состоящей из ароматических, арилалифатических и алифатических полиизоцианатов.

В отношении структурных свойств, таких как замкнутость ячеек и теплопроводность не было обнаружено никаких различий и никакого ухудшения по сравнению с пеноматериалами для сравнения без эпоксида; некоторые механические свойства пеноматериала согласно изобретению являются аналогичными по сравнению с пеноматериалами, пригодными для сравнения, без добавления эпоксида, другие претерпевают заметное улучшение, такие как, например, прочность при сжатии и прочность при трехточечном изгибе, а также прочность при растяжении.

Жесткие пеноматериалы согласно изобретению имеют хорошую температурную устойчивость, хорошую устойчивость по отношению к влиянию окружающей среды и химическим веществам и хорошую адгезию или соответственно совместимость с эпоксидными смолами.

В качестве области применения для пеноматериалов согласно изобретению, помимо обычных областей применения жестких пенополиуретанов, полужестких пеноматериалов и термореактивных пеноматериалов, таких как уплотнение, центральное теплоснабжение, сэндвичевые элементы, применение в строительстве, изоляция от шумов, холодильные аппараты, детали грузовых автомобилей и конструкционные материалы, отдельно рассматривают использование в лопастях винтов для ветроэнергетических установок, в строительстве лодок и автомобилей, а также применения в качестве конструкционных материалов, в частности, в соединении с использованием эпоксидных или сложнополиэфирных смол.

В соответствии с этим, настоящее изобретение касается также применения жесткого пеноматериала, который может получаться или получен по способу согласно изобретению, или жесткого пеноматериала согласно изобретению для изготовления изолирующих материалов, вакуумных изоляционных панелей, холодильных аппаратов, строительных элементов, лопастей винтов ветроэнергетических установок или элементов для строительства лодок и автомобилей.

Другие варианты исполнения настоящего изобретения можно взять из пунктов Формулы изобретения и Примеров. Понятно, что указанные выше и поясняемые далее отличительные признаки объекта/способа/применения согласно изобретению могут применяться не только в соответствующих приведенных комбинациях, но также и в других комбинациях, не выходя за рамки изобретения. Так, например, комбинации предпочтительного отличительного признака с особенно предпочтительным отличительным признаком или не охарактеризованного далее отличительного признака с особенно предпочтительным отличительным признаком и т.д. также является включенной в неявном виде, также если эта комбинация не упоминается в прямой форме.

Далее приведены примерные варианты исполнения настоящего изобретения, причем эти варианты не ограничивают настоящее изобретение. В частности, настоящее изобретение также включает в себя такие варианты исполнения, которые получаются из приведенных далее зависимых пунктов и комбинаций с ними.

1. Способ получения жесткого пеноматериала, включающий в себя взаимодействие по меньшей мере одного полиизоцианата со смесью, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, причем это взаимодействие осуществляется в присутствии не содержащего металлов основания Льюиса, имеющего по меньшей мере один атом азота.

2. Способ согласно варианту исполнения 1, причем причем по меньшей мере одно дополнительное соединение с кислотными атомами водорода выбирается из группы, состоящей из полиолов и полиаминов.

3. Способ согласно одному из вариантов исполнения 1 или 2, причем полиэпоксид используется в количестве в диапазоне от 5 до 70% масс., в пересчете на сумму из использованного полиэпоксида и по меньшей мере одного дополнительного соединения с кислотными атомами водорода.

4. Способ согласно одному из вариантов исполнения с 1 по 3, причем катализатор представляет собой третичный амин.

5. Способ согласно одному из вариантов исполнения с 1 по 4, причем катализатор выбирается из группы, состоящей из 1,8-диазабицикло-5,4,0-ундец-7-ена, N-метил-N'-(диметиламинометил)пиперазина, пентаметилдиэтилентриамина, метилимидазола и их смесей и их производных.

6. Способ согласно одному из вариантов исполнения с 1 по 5, причем катализатор используют в количестве в диапазоне от 0,01 до 2% масс., в пересчете на сумму использованного полиизоцианата и смеси, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода.

7. Способ согласно одному из вариантов исполнения с 1 по 6, причем реакция по меньшей мере одного полиизоцианата со смесью, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, начинается при температуре <100°C.

8. Способ согласно одному из вариантов исполнения с 1 по 7, причем по меньшей мере одно дополнительное соединение с кислотными атомами водорода выбирают из группы, состоящей из простых полиэфирполиолов, сложных полиэфирполиолов, поликарбонатполиолов и полиаминов.

9. Способ согласно одному из вариантов исполнения с 1 по 8, причем по меньшей мере один полиэпоксид выбирают из группы, состоящей из эпоксидов бисфенола-А, эпоксидов бисфенола-F, их производных, алифатических ди- или триэпоксидов и смесей из двух или более из них.

10. Способ согласно одному из вариантов исполнения с 1 по 9, причем по меньшей мере один полиизоцианат выбирают из группы, состоящей из ароматических, арилалифатических и алифатических полиизоцианатов.

11. Способ согласно одному из вариантов исполнения с 1 по 9, причем по меньшей мере один полиизоцианат представляет собой форполимер с содержанием NCO-групп от 6 до 30%.

12. Жесткий пеноматериал, который может получаться или полученный при помощи способа, включающего в себя взаимодействие по меньшей мере одного полиизоцианата со смесью, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, причем взаимодействие происходит в присутствии не содержащего металлов основания Льюиса, имеющего по меньшей мере один атом азота.

13. Жесткий пеноматериал согласно варианту исполнения 12, причем полиэпоксид используют в количестве в диапазоне от 5 до 70% масс., в пересчете на сумму из использованного полиэпоксида и по меньшей мере одного дополнительного соединения с кислотными атомами водорода.

14. Жесткий пеноматериал согласно вариантам исполнения 12 или 13, причем по меньшей мере один полиэпоксид выбирают из группы, состоящей из эпоксидов бисфенола-А, эпоксидов бисфенола-F, их производных, алифатических ди- или триэпоксидов и смесей из двух или более из них.

15. Жесткий пеноматериал согласно одному из вариантов исполнения 12-14, причем по меньшей мере один полиизоцианат выбирают из группы, состоящей из ароматических, арилалифатических и алифатических полиизоцианатов.

16. Применение жесткого пеноматериала, который может получаться или получен по способу согласно одному из вариантов исполнения 1-11, или жесткого пеноматериала согласно одному из вариантов исполнения 12-15, для изготовления изолирующих материалов, вакуумных изоляционных панелей, холодильных аппаратов, строительных элементов, лопастей винтов ветроэнергетических установок или элементов для строительства лодок и автомобилей.

17. Способ согласно одному из вариантов исполнения 1-4, причем катализатор выбирают из группы, состоящей из 1,8-диазабицикло-5,4,0-ундец-7-ена и его производных.

Следующие далее Примеры служат для наглядного представления изобретения, однако никоим образом не являются ограничивающими в отношении объекта настоящего изобретения.

ПРИМЕРЫ

Были использованы следующие исходные вещества:

Полиол 1 инициированный глицерином полипропиленгликоль со средней молекулярной массой (MW) 420 г/моль и функциональностью примерно 2,99

Полиол 2 инициированный сахарозой/глицерином полипропиленгликоль со средней молекулярной массой (MW) 500 г/моль и функциональностью примерно 4,34

Полиол 3 инициированный триметилолпропаном (ТМП) полипропиленгликоль со средней молекулярной массой (MW) 1040 г/моль и функциональностью примерно 2,96

Полиол 4 инициированный пропиленгликолем полипропиленгликоль со средней молекулярной массой (MW) 1070 г/моль и функциональностью примерно 1,99

Stabi 1 Простой полиэфир-полидиметилсилоксан

Stabi 2 Силикон-гликолевый сополимер

Эпоксид Эпоксидная смесь на основе эпоксидов бисфенола-А и реактивных разбавителей

Kat 1 N,N-диметилциклогексиламин

Kat 2 1-метилимидазол

Kat 3 N-метил-N-(диметиламинометил)пиперазин

Kat 4 пентаметилдиэтилентриамин

Kat 5 1,8-диазабицикло-5,4,0-ундецен-7

Изоцианат полимерный МДИ с содержанием NCO-групп 31,5%

1. Пример получения

Компоненты рецептуры, за исключением изоцианата, были взвешены вместе и гомогенизированы в соответствии с долями в Таблице 1. 238,1 г этого А-компонента с помощью лабораторного смесителя в течение 10 секунд интенсивно смешивали с 301,9 г изоцианата. После этого данная исходная загрузка выливалась в металлическую форму объемом 11 л, и эту форму закрывали крышкой. После времени отверждения, составляющего больше 5 минут, можно извлечь заготовку пеноматериала с длиной стороны 22,2×22,2×22,2 см.

Исключение представляет собой Пример 4. Эту заготовку спустя 13 минут после заполнения формы помещали в нагревательный шкаф при 90°C и оставляли в этом шкафу для последующего отверждения на 16 часов.

Примеры для сравнения отмечаются как «Сравн.».

2. Свойства пеноматериала

У всех полученных заготовок из жесткого пеноматериала были проверены физические свойства, такие как приводятся в Таблице 2.

Пеноматериалы согласно изобретению демонстрируют преимущества в прочности при сжатии, модуле упругости Е при сжатии и при трехточечном изгибе.

3. Методики испытаний

Свойства образцов определяли в соответствии со следующими методиками испытаний.

Прочность при сжатии в Н/мм2 согласно стандарту DIN 53421 / DIN EN ISO 604

Деформация при сжатии в % согласно стандарту DIN 53421 / DIN EN ISO 604

Модуль упругости Е при сжатии в Н/мм2 согласно стандарту DIN 53421 / DIN EN ISO 604

Объемная масса в середине в кг/м3

Замкнутость ячеек в % согласно стандарту DIN ISO 4590

Прочность при разрыве в Н/мм2 согласно стандарту DIN 53292 / DIN EN ISO 527-1

Место разрыва согласно стандарту DIN 53292 / DIN EN ISO 527-1

Модуль упругости Е при растяжении в Н/мм2 согласно стандарту DIN 53292 / DIN EN ISO 527-1

Прочность при трехточечном изгибе в Н/мм2 согласно стандарту DIN 53423

Прогиб в мм согласно стандарту DIN 53423

Высота пламени в см согласно стандарту DIN 4102 В2

Теплопроводность в мВт/мК согласно Hesto А50

1. Способ получения жесткого пеноматериала, включающий в себя взаимодействие по меньшей мере одного полиизоцианата со смесью, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, причем это взаимодействие осуществляется в присутствии не содержащего металлов основания Льюиса, имеющего по меньшей мере один атом азота,

причем катализатор выбирают из группы, состоящей из 1,8-диазабицикло-5,4,0-ундецен-7-ена, N-метил-N'-(диметиламино-метил)пиперазина, пентаметилдиэтилентриамина, метилимидазола и их смесей и их производных.

2. Способ по п. 1, причем по меньшей мере одно дополнительное соединение с кислотными атомами водорода выбирают из группы, состоящей из полиолов и полиаминов.

3. Способ по одному из п. 1 или 2, причем полиэпоксид используют в количестве в диапазоне от 5 до 70 мас.%, в пересчете на сумму из использованного полиэпоксида и по меньшей мере одного дополнительного соединения с кислотными атомами водорода.

4. Способ по одному из п. 1 или 2, причем катализатор выбирают из группы, состоящей из 1,8-диазабицикло-5,4,0-ундецен-7-ена и его производных.

5. Способ по одному из п. 1 или 2, причем катализатор используют в количестве от 0,01 до 2 мас.%, в пересчете на сумму использованного полиизоцианата и смеси, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода.

6. Способ по одному из п. 1 или 2, причем реакция по меньшей мере одного полиизоцианата со смесью, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, начинается при температуре < 100°С.

7. Способ по одному из п. 1 или 2, причем по меньшей мере одно дополнительное соединение с кислотными атомами водорода выбирают из группы, состоящей из простых полиэфирполиолов, сложных полиэфирполиолов, поликарбонатполиолов или полиаминов.

8. Способ по одному из п. 1 или 2, причем по меньшей мере один полиэпоксид выбирают из группы, состоящей из эпоксидов бисфенола-А, эпоксидов бисфенола-F, их производных, алифатических ди- или триэпоксидов и смесей из двух или более из них.

9. Способ по одному из п. 1 или 2, причем по меньшей мере один полиизоцианат выбирают из группы, состоящей из ароматических, арилалифатических и алифатических полиизоцианатов.

10. Способ по одному из п. 1 или 2, причем по меньшей мере один полиизоцианат представляет собой форполимер с содержанием NCO-групп от 6 до 30%.

11. Жесткий пеноматериал, получаемый или полученный при помощи способа, включающего в себя взаимодействие по меньшей мере одного полиизоцианата со смесью, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, причем взаимодействие происходит в присутствии не содержащего металлов основания Льюиса, имеющего по меньшей мере один атом азота, причем катализатор выбирают из группы, состоящей из 1,8-диазабицикло-5,4,0-ундецен-7-ена, N-метил-N'-(диметиламино-метил)пиперазина, пентаметилдиэтилентриамина, метилимидазола и их смесей и их производных.

12. Жесткий пеноматериал по п. 11, причем полиэпоксид используют в количестве в диапазоне от 5 до 70 мас.%, в пересчете на сумму из использованного полиэпоксида и по меньшей мере одного дополнительного соединения с кислотными атомами водорода.

13. Жесткий пеноматериал по п. 11 или 12, причем по меньшей мере один полиэпоксид выбирают из группы, состоящей из эпоксидов бисфенола-А, эпоксидов бисфенола-F, их производных, алифати-ческих ди- или триэпоксидов и смесей из двух или более из них.

14. Жесткий пеноматериал по п. 11 или 12, причем по меньшей мере один полиизоцианат выбирают из группы, состоящей из ароматических, арилалифатических и алифатических полиизоцианатов.

15. Применение жесткого пеноматериала, получаемого или полученного по способу согласно по одному из пп. 1-10, или жесткого пеноматериала по одному из пп. 11-14, для изготовления изолирующих материалов, вакуумных изоляционных панелей, холодильных аппаратов, строительных элементов, лопастей винтов ветроэнергетических установок или элементов для строительства лодок и автомобилей.



 

Похожие патенты:

Настоящее изобретение относится к композиции динамически вулканизированного термоэластопласта, используемой для изготовления изделий, находящих свое применение в автомобильной, кабельной, электротехнической, обувной промышленности, а также в производстве резинотехнических изделий и товаров бытового назначения.

Изобретение относится к применению композиции модифицированного усиленного полиалкилентерефталата и формованному изделию из нее. Композиция содержит i) полиалкилентерефталат, ii) сополимер полиалкиленизофталата и полиалкилентерефталата и iii) усиливающее полиалкилентерефталат волокно.

Изобретение относится к области термопластичных формовочных масс, в частности к полиамидной формовочной массе, широко используемой для формования промышленных деталей, труб, контейнеров.

Изобретение относится к области термопластичных формовочных масс, в частности к полиамидной формовочной массе, широко используемой для формования промышленных деталей, труб, контейнеров.

Изобретение относится к шлихтующей композиции для изоляционных продуктов на основе минеральной ваты, в частности стекловаты или каменной ваты. Шлихтующая композиция содержит по меньшей мере один восстанавливающий сахарид, по меньшей мере один гидрогенизованный сахарид, по меньшей мере один полифункциональный сшивающий агент и по меньшей мере один полиглицерин.

Настоящее изобретение относится к армированному композиционному материалу на основе органических волокон природного происхождения, применяемому в качестве тепловой или аккустической изоляции, а также к способу его получения.

Изобретение относится к помещаемому в воду формованному полимерному изделию для получения текучей среды для гидравлического разрыва пласта при бурении и способу изготовления его.

Изобретение относится к водной композиции для склеивания, содержащей одно или большее количество анионогенных поверхностно-активных веществ и дополнительно содержащей диспергированные частицы, которые включают полиуретан, где указанный полиуретан является продуктом реакции группы реагентов (GR1), где GR1 включает один или большее количество ароматических полиизоцианатов и полиольный компонент, где указанный полиольный компонент включает (a) один или большее количество сложных полиэфирполиолов в количестве, составляющем от 50 до 99 мас.% в пересчете на массу указанного полиольного компонента, (b) один или большее количество диолов, содержащих гидрофильную боковую цепь, в количестве, составляющем от 0,1 до 10 мас.% в пересчете на массу указанного полиольного компонента, и (c) один или большее количество полиолов, отличающихся от (а) и (b), в количестве, составляющем от 0,9 до 40 мас.% в пересчете на массу указанного полиольного компонента.

Изобретение относится к способу переработки высокомолекулярных веществ в пористые или ячеистые материалы, которые могут быть использованы при изготовлении наполненного пенопласта высокой плотности из порошковой композиции, предназначенной для изготовления лёгкого пенопласта.

Изобретение направлено на разработку двухстадийного способа получения массивных блочных изделий из суспензионного политетрафторэтилена и неагломерированных наночастиц наполнителя, представляющего собой молекулярный нанокомпозит на основе ультрадисперсного политетрафторэтилена и наночастиц диоксида титана или диоксида кремния, синтезированный из газовой фазы пиролизом с последующим осаждением аммиачной водой на первой стадии.

Настоящее изобретение относится к водной дисперсии для получения материалов покрытия, к водоразбавляемому базовому покрытию, применимому для покрытия автомобильных кузовов и/или частей для установления на автомобильные кузова, способу получения многослойной цветной и/или для эффекта красочной системы и к способу получения водной дисперсии.

Изобретение относится к способу получения полиуретана. Способ включает на стадии (А) взаимодействие сложного полиэфирполиола с первым алифатическим полиизоцианатом, количество которого составляет от 0,5 до 12 % мол.
Изобретение относится к способу получения ламината, который содержит: а. получение клеевой смеси при (i) обеспечении отдельных частиц полиизоцианата (А) в качестве А-компонента; (ii) также обеспечении сложного полиэфира (В) с гидроксильным окончанием, образованного из линейного алифатического диола, имеющего концевые гидроксильные группы и от 2 до 10 углеродных атомов, и линейной дикарбоновой кислоты, причем сложный полиэфир имеет среднечисленную молекулярную массу от 300 до 5000 и является твердым при 25°C, и имеет температуру плавления 80°C или ниже, причем сложный полиэфир (В) с гидроксильным окончанием вводится как по существу смешивающийся твердый материал в растворитель-носитель в количестве, по меньшей мере, 20 мас.% по отношению к общей массе (А) и растворителя-носителя с образованием В-компонента; b.

Настоящее изобретение относится к полиуретанам, водным дисперсиям и их применению в печатном процессе, а также к краскам для флексографической или глубокой печати и способу печати на подложке.

Настоящее изобретение относится к радиационно отверждаемым, способным диспергироваться в воде полиуретан(мет)акрилатам, применяемым для нанесения покрытий. Указанные уретан(мет)акрилаты образуются из (а) по меньшей мере одного (цикло)алифатического ди- и/или полиизоцианата, (b1) по меньшей мере одного (цикло)алифатического диола с молекулярной массой меньше 700 г/моль, (b2) по меньшей мере одного сложного полиэфирдиола со среднемассовой молекулярной массой от 700 до 2000 и кислотным числом не более 20 мг КОН/г, (с) по меньшей мере одного соединения, имеющего по меньшей мере одну гидроксильную группу и по меньшей мере одну ненасыщенную группу, способную к радикальной полимеризации, (d) по меньшей мере одного соединения, имеющего по меньшей мере одну группу, реакционноспособную по отношению к изоцианату, и по меньшей мере одну кислотную группу, (е) по меньшей мере одного основания, (f) необязательно по меньшей мере одного моноспирта, имеющего ровно одну гидроксильную группу, (g) необязательно по меньшей мере одного монофункционального простого полиалкиленоксидполиэфироспирта, (h1) по меньшей мере одного амина, замещенного одним или двумя содержащими по меньшей мере 12 атомов углерода углеводородными остатками, и (h2) необязательно по меньшей мере одного соединения, содержащего по меньшей мере две первичные и/или вторичные аминогруппы.

Изобретение предлагает жесткий пенополиуретан (ППУ), имеющий ячейки малого размера. Жесткий ППУ изготавливается способом, который включает использование диоксида углерода, производящего давление на уровне первого заданного значения на смесь многоатомного спирта, включающую многоатомный спирт, катализатор и поверхностно-активное вещество.

Настоящее изобретение относится к способу получения термопластического полиуретанового эластомера, а также к применению данного эластомера для изготовления изделий методом литья под давлением или экструзии.

Настоящее изобретение относится к способу получения термопластического полиуретанового эластомера, а также к применению данного эластомера для изготовления изделий методом литья под давлением или экструзии.

Изобретение относится к способу сборки сегментов трубы, используемых при установках морских подводных трубопроводов. Способ включает обеспечение первой длины изолированной трубы и второй длины изолированной трубы, каждая имеет по меньшей мере один неизолированный не содержащий изоляции конец, соединение неизолированного конца первой длины изолированной трубы с неизолированным концом второй длины изолированной трубы для формирования соединения, введение отверждаемой реакционной смеси в зазор и отверждение реакционной смеси.

Настоящее изобретение относится к способу получения жесткого пенополимера, применяемого для теплоизоляции или в качестве конструкционного материала. Способ получения включает взаимодействие компонентов от A до C в присутствии компонента D.
Изобретение относится к напыляемой реакционной системе на основе полиуретана для формирования защитного покрытия в промышленных контейнерах. Реакционная система содержит первый компонент и второй компонент, причем продукт реакции первого компонента и второго компонента имеет предел прочности при растяжении по меньшей мере 1500 фунт/кв.дюйм (10,34 МПа) и относительное удлинение при разрыве в процентах по меньшей мере 400.

Настоящее изобретение относится к способу получения жесткого пеноматериала, включающему в себя взаимодействие по меньшей мере одного полиизоцианата со смесью, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, причем это взаимодействие осуществляется в присутствии не содержащего металлов основания Льюиса, имеющего по меньшей мере один атом азота, причем катализатор выбирают из группы, состоящей из 1,8-диазабицикло-5,4,0-ундецен-7-ена, N-метил-N-пиперазина, пентаметилдиэтилентриамина, метилимидазола и их смесей и их производных. Также заявлены жесткий пеноматериал, получаемый при помощи указанного способа, и применение такого жесткого пеноматериала для изготовления изолирующих материалов, вакуумных изоляционных панелей, холодильных аппаратов, строительных элементов, лопастей винтов ветроэнергетических установок или элементов для строительства лодок и автомобилей. Технический результат – обеспечение способа получения жестких пеноматериалов, обладающих улучшенными прочностью при сжатии, прочностью при техническом изгибе, прочностью при растяжении, а также хорошей температурной устойчивостью, хорошей устойчивостью по отношению к влиянию окружающей среды и химическим веществам. 3 н. и 12 з.п. ф-лы, 2 табл., 5 пр.

Наверх