Электробаромембранный аппарат плоскокамерного типа с охлаждением разделяемого раствора

Изобретение следует отнести к аппаратам, которые предназначены для электрогиперфильтрационного и электронанофильтрационного разделения, концентрирования и очистки технологических растворов. Электробаромембранный аппарат плоскокамерного типа с охлаждением разделяемого раствора, включающий камеры разделения с каналами ввода и вывода разделяемого раствора и каналы для отвода прикатодного или прианодного пермеата, камеры охлаждения, отверстия для шпилек, устройства для подвода постоянного электрического тока к камерам аппарата, прикатодные или прианодные мембраны, переточные отверстия, прокладки, сетки-электроды, пластины-электроды, ионообменные мембраны, отличается тем, что камеры охлаждения в нем располагаются между камерами разделения, отделяющимися от них титановыми листами толщиной 1,5 мм, которые покрыты слоем керамикополимерной тегаюпроводящей диэлектрической силиконовой массы, каналы ввода-вывода охлаждающей воды расположены по два в каждом большом фланце симметрично горизонтальной оси аппарата на расстоянии 100-110 мм от нее и смещены на 5-6 мм влево от середины камеры охлаждения, правые и левые сетки-электроды имеют конфигурацию в виде десяти прутьев диаметром 1,5-2 мм, равномерно удаленных друг от друга на расстояние в 20 мм, изогнутых в форме двух витков синусоиды, но при этом концы прутков согнуты не до конца и имеют прямой цилиндрический участок, и расположенных вертикально относительно верхних и нижних границ камер разделения, а также припаянных каждый в шести местах к шести прямым прутьям такого же диаметра, расположенным перпендикулярно к изогнутым, причем два из этих прямых прутьев имеют удлинение с правой или левой стороны в зависимости от того, правой или левой является сетка-электрод, с помощью которых каждая сетка-электрод прикрепляется в двух местах в неизменном положении к соответствующим большим и малым фланцам корпуса путем выполнения в данных фланцах и паронитовых прокладках камер разделения проточек такого же диаметра, что и выступающие за переделы корпуса аппарата элементы сеток-электродов, а также заполнения герметизирующей композицией наружных проточек с увеличенным диаметром. Технический результат - осуществление улучшенного охлаждения разделяемого раствора; снижение температурной нагрузки на мембраны; увеличение степени турбулизации разделяемого раствора. 7 ил.

 

Изобретение относится к аппаратам, предназначенным для очистки, разделения и концентрирования растворов электрогиперфильтрационным и электронанофильтрационным методами. Применение возможно в химической, микробиологической, пищевой, текстильной и других отраслях промышленности.

Аналогом данной конструкции выступает электробаромембранный аппарат плоскокамерного типа, представленный в патенте № 2403957 RU, 11.03.2009 г. Данный аппарат состоит из фланцев корпуса, камер разделения с каналами ввода и вывода разделяемого раствора и отвода пермеата, устройства для подвода постоянного электрического тока, чередующихся диэлектрических камер корпуса, соединенных типом выступ-впадина, отверстий для подвода электрических проводов, последовательно соединенных через дренажную сетку с монополярным пористым электродом-пластиной "плюс" или "минус" и находящихся под пористой подложкой из ватмана и мембраной, канала для отвода прикатодного или прианодного пермеата образованного монополярным пористым электродом-пластиной с дренажной сеткой и диэлектрической камерой корпуса через каналы на диэлектрических камерах корпуса, а по всем межмембранным каналам проходит последовательно соединенная через переточные эллиптические окна электропроводящая сетка-турбулизатор, на все вершины которой нанесен диэлектрический элемент в точках касания с поверхностью мембран и получен на выходе из аппарата прианодный или прикатодный ретентат в зависимости от схемы подключения "плюс" или "минус". Недостатками являются малая площадь размещения прикатодных или прианодных мембран в единице объема аппарата, низкое качество и эффективность разделения растворов.

Прототипом данной конструкции является электромембранный аппарат с плоскими фильтрующими элементами, приведенный в патенте №2532813 RU, 07.05.2013 г. Известный аппарат состоит из фланцев корпуса, камер разделения с каналами ввода и вывода разделяемого раствора и каналами для отвода прикатодного и прианодного пермеата, камер охлаждения, отверстий для шпилек, устройства для подвода постоянного электрического тока к камерам аппарата, прикатодных и прианодных мембран, переточных отверстий, шпилек, прокладок, ионообменных спейсеров. Недостатками являются меньшая степень турбулизации и недостаточное охлаждение разделяемого (исходного) раствора, а также большая температурная нагрузка на мембраны.

Технический результат - осуществление улучшенного охлаждения разделяемого (исходного) раствора; снижение температурной нагрузки на мембраны; увеличение степени турбулизации разделяемого (исходного) раствора за счет расположения в нем камер охлаждения между камерами разделения, а не между камер сбора прианодного или прикатодного пермеата, отделяющихся от них титановыми листами толщиной 1,5 мм, которые покрыты слоем керамикополимерной теплопроводящей диэлектрической силиконовой массы, правых и левых сеток-электродов, имеющих конфигурацию в виде десяти равномерно удаленных друг от друга прутьев диаметром 1,5-2 мм, равномерно удаленных друг от друга на расстояние в 20 мм, изогнутых в форме двух витков синусоиды, но при этом концы прутков согнуты не до конца и имеют прямой цилиндрический участок, и расположенных вертикально относительно верхних и нижних границ камер разделения, а также припаянных каждый в шести местах к шести прямым прутьям такого же диаметра, расположенных перпендикулярно к изогнутым, причем два из этих прямых прутьев имеют удлинение с правой или левой стороны в зависимости от того, правой или левой является сетка-электрод, с помощью которых каждая сетка-электрод прикрепляется в двух местах в неизменном положении к соответствующим большим и малым фланцам корпуса путем выполнения в данных фланцах и паронитовых прокладках камер разделения проточек такого же диаметра, что и выступающие за переделы корпуса аппарата элементы сеток-электродов, а также заполнения герметизирующей композицией наружных проточек с увеличенным диаметром.

На фиг. 1 изображен электромембранный аппарат плоскокамерного типа с охлаждением разделяемого раствора, продольный разрез; фиг. 2 - вид сверху; фиг. 3 - вид слева; фиг. 4 - разрез А-А, указанный на фиг. 1; фиг. 5 - вид сзади; фиг. 6 - вид Б, указанный на фиг. 5; фиг. 7 - правая и левая сетки-электроды в изометрии.

Электробаромембранный аппарат шюскокамерного типа с охлаждением разделяемого (исходного) раствора состоит из двух краевых фланцев 1 и 13, четырех больших фланцев 2, 5, 8 и 11, четырех малых фланцев 3, 6, 9 и 12, а также трех межкамерных фланцев 4, 7 и 10, входного и выходного штуцеров для разделяемого (исходного) раствора 18 и 19 соответственно, восьми штуцеров 51 для вывода прианодного или прикатодного пермеата, в зависимости от схемы подключения электрического тока, четырех входных 43 и четырех выходных 44 штуцеров камеры охлаждения, входного канала 20 в большом фланце 2 и выходного канала 31 в малом фланце 12, камер разделения 22 и 49, а также следующих за ними шести аналогичных камер, прокладок 40 и 41, входных и выходных каналов 21, 26 и 23, 27 соответственно в прокладках 40 в первой 22 и второй 49 камерах разделения, а также по одному аналогичному входному и выходному каналу в каждой из прокладок 40 в следующих шести камерах разделения, переточного канала 24 в каждом из четырех больших фланцев 2, 5, 8 и 11, переточного канала 30 в больших фланцах 5, 8 и 11, переточного канала 25 в каждом из малых фланцев 3, 6, 9 и 12, переточного канала 29 в каждом из межкамерных фланца 4, 7 и 10, восьми камер сбора прианодного или прикатодного пермеата 32 и восьми выходных каналов 33 прианодного или прикатодного пермеата, в зависимости от схемы подключения электрического тока, восьми ионообменных мембран 34, анионообменных или катионообменных, в зависимости от схемы подключения электрического тока, восьми пластин-электродов 35, анодов или катодов, в зависимости от схемы подключения электрического тока, четырех левых сеток-электродов 36 и четырех правых сеток-электродов 37, анодов или катодов, в зависимости от схемы подключения электрического тока, четырех камер охлаждения 38, каждая из которых с двух сторон отделена перегородками 50 от камер разделения, восьми каналов ввода-вывода охлаждающей воды 39, восьми проточек 42, заполненные герметизирующей композицией и проводами для подключения пластин-электродов 35, шестнадцати проточек 46 в прокладках 40, шестнадцати проточек 47 и 48 в больших и малых фланцах 2, 5, 8, 11 и 3, 6, 9, 12 соответственно. Корпус электромембранного аппарата плоскокамерного типа с охлаждением разделяемого (исходного) раствора вместе с двумя металлическими пластинами 14 скрепляется шестью болтами 15, шайбами 16 и гайками 17. Подключение к электросети осуществляется с помощью устройства для подвода постоянного тока 45.

Краевые фланцы 1 и 13, большие фланцы 2, 5, 8 и 11, малые фланцы 3, 6, 9 и 12, межкамерные фланцы 4, 7 и 10, входной штуцер 18 и выходной штуцер 19 для разделяемого (исходного) раствора, штуцеры 51 для вывода прианодного или прикатодного пермеата, входные штуцеры 43 и выходные штуцеры 44 камеры охлаждения могут быть изготовлены из капролона, фторопласта, текстолита ПТК, стеклотекстолита СТЭФ. В качестве охлаждающей воды может использоваться водопроводная вода с температурой от 5 до 15°С. Материал прокладок 40 и 41 - паронит. Прикатодные или прианодные мембраны 34 могут быть изготовлены в виде ленты из мембран типа МГА-95, МГА-70П, МГА-80П, МГА-90П, МГА-95П-Н, МГА-95П-Т, МГА-100П, ОПМ-К, ESPA, ESNA, УАМ-150П, УАМ-300П, УАМ-500П, УАМ-1000П, УПМ-200, УПМ-П, УПМ-ПП, УФМ-100, УФМ-П, УФМ-ПТ, ОПМН-К, ОПМН, (ОФМН)-П, МФФК-О, МФФК-3, МК-40, МА-40. Герметизирующая композиция, заполняемая проточки 42 и 48, может быть выполнена из эпоксидных смол. Металлические пластины 14 могут изготовляться из стали 3, стали 15, стали стали 30, стали 45. Болты 15, шайбы 16 и гайки 77 являются стандартизированными изделиями и изготавливаются по действующим ГОСТам. Правые и левые сетки-электроды 36 и 37 может быть изготовлены из полимерного композита с наполнителем до 60% металлических порошков или технического углерода, материала Х18Н9Т, Х18Н10Т, а пластины-электроды 35 могут быть выполнены из 20-45 процентного пористого проката типа Х18Н15-ПМ, Х18Н15-МП, Н-МП, ЛНПИТ, ЛПН-ПМ. Перегородки 50 изготавливаются из титановых листов толщиной 1,5 мм, покрытых слоем керамикополимерной теплопроводящей диэлектрической силиконовой массой.

Работа электробаромембранного аппарата плоскокамерного типа с охлаждением разделяемого (исходного) раствора происходим по следующему принципу.

Разделяемый (исходный) раствор под давлением поступает через штуцер 18 (фиг. 1, 3), входной канал 20 в большом фланце 2 и входной канал 21 в прокладке 40 и заполняет камеру разделения 22 (фиг. 1, 4), образованную в пространстве между краевым фланцем 1 и большим фланцем 2 и ограниченную с одной стороны ионообменной мембраной 34 и пластиной-электродом 35, а с другой перегородкой 50 камеры охлаждения 38. Далее он проходит через выходной канал 23 в прокладке 40, переточный канал 24 в большом фланце 2, переточный канал 25 в малом фланце 3, входной канал 26 в прокладке 40 и заполняет камеру разделения 49, образованную в пространстве между большим фланцем 2 и малым фланцем 3 и ограниченную по аналогии с камерой разделения 22 с одной стороны ионообменной мембраной 34 и пластиной-электродом 35, а с другой перегородкой 50 камеры охлаждения 38, но вышеупомянутые элементы расположены в зеркальном отражении. Затем после прохождения выходного канала 27 в прокладке 40, переточного канала 28 в малом фланце 3, переточного канала 29 в межкамерном фланце 4 и переточного канала 30 в большом фланце 5 движение разделяемого (исходного) раствора осуществляется аналогично движению через камеры разделения 22 и 49 вплоть до его попадания в выходной канал 31 в малом фланце 12, откуда он поступает в выходной штуцер 19 и выводится из аппарата в виде ретентата. Параллельно процессу протекания разделяемого (исходного) раствора через камеры разделения происходит электролитическая диссоциация его компонентов за счет нахождения в каждой камере разделения подключенных к электрической сети по одной пластине-электроду 35, анодов или катодов, в зависимости от схемы подключения электрического тока, и одной левой или правой сетке-электроду 36 или 37, соответственно, анодов или катодов, в зависимости от схемы подключения электрического тока. При этом часть разделяемого (исходного) раствора вместе с продуктами электролитической диссоциации в виде прианодного или прикатодного пермеата, в зависимости от схемы подключения электрического тока, проникает через ионообменные мембраны 34, анионообменные или катионообменные, в зависимости от схемы подключения электрического тока, и пластины-электроды 35, анодов или катодов, в зависимости от схемы подключения электрического тока, в камеры сбора прианодного или прикатодного пермеата 32 и выводится через выходные каналы 33 прианодного или прикатодного пермеата, в зависимости от схемы подключения электрического тока.

Охлаждение разделяемого (исходного) раствора осуществляется использованием камер охлаждения 38, в которые через входные штуцеры 43 и каналы ввода-вывода охлаждающей воды 39 поступает водопроводная вода и выводится через другие каналы ввода-вывода охлаждающей воды 39 и выходные штуцеры 44, тем самым обеспечивая постоянное постоянную смену охлаждающей воды. Теплообмен между всеми камерами разделения, 22, 49 и остальные, и камерами охлаждения 38 происходит через перегородки 50, которыми с двух сторон отделены камеры охлаждения 38.

Для подключения электрических проводов к пластине-электроду 35 имеются проточки 42 диаметром 1,5-2 мм (фиг. 1, 2) по одной в краевых фланцах 1 и 13 и по две в межкамерных фланцах 4, 7 и 10, которые заполнены герметизирующей композицией и расположены по центру на уровне соответствующей пластине-электроду 35.

Левые 36 и правые 37 сетки-электроды имеют конфигурацию в виде десяти равномерно удаленных друг от друга прутьев диаметром 1,5-2 мм, изогнутых в форме синусоиды и припаянных каждый в шести местах к прямым прутьям такого же диаметра, причем два из этих прямых прутьев имеют удлинение с правой или левой стороны в зависимости от того, правой или левой является сетка-электрод, и за счет них подключаются к устройству для подвода постоянного тока 45 (фиг. 5, 6, 7) через проточки 46 в прокладках 40, проточки 47 и 48 в больших 2, 5, 8, 11 и малых 3, 6, 9, 12 фланцах. Также данные выступающие элементы, по 2 у каждой сетки-электрода, позволяют закрепить все сетки-электроды в неизменном положении путем выполнений проточек 47 такого же диаметра, что и выступающие элементы сеток-электродов 36 и 37, а также за счет заполнения проточек 48 герметизирующей композицией.

На разработанной конструкции электробаромембранного аппарата плоскокамерного типа без наложения электрического поля можно проводить баромембранные процессы, например, ультрафильтрацию, обратный осмос, микрофильтрацию.

Электробаромембранный аппарат плоскокамерного типа с охлаждением разделяемого раствора, включающий камеры разделения с каналами ввода и вывода разделяемого раствора и каналы для отвода прикатодного или прианодного пермеата, камеры охлаждения, отверстия для шпилек, устройства для подвода постоянного электрического тока к камерам аппарата, прикатодные или прианодные мембран, переточные отверстия, прокладки, сетки-электроды, пластины-электроды, ионообменные мембраны, отличающийся тем, что камеры охлаждения в нем располагаются между камерами разделения, отделяющимися от них титановыми листами толщиной 1,5 мм, которые покрыты слоем керамикополимерной тегаюпроводящей диэлектрической силиконовой массы, каналы ввода-вывода охлаждающей воды расположены по два в каждом большом фланце симметрично горизонтальной оси аппарата на расстоянии 100-110 мм от нее и смещены на 5-6 мм влево от середины камеры охлаждения, правые и левые сетки-электроды имеют конфигурацию в виде десяти прутьев диаметром 1,5-2 мм, равномерно удаленных друг от друга на расстояние в 20 мм, изогнутых в форме двух витков синусоиды, но при этом концы прутков согнуты не до конца и имеют прямой цилиндрический участок, и расположенных вертикально относительно верхних и нижних границ камер разделения, а также припаянных каждый в шести местах к шести прямым прутьям такого же диаметра, расположенным перпендикулярно к изогнутым, причем два из этих прямых прутьев имеют удлинение с правой или левой стороны в зависимости от того, правой или левой является сетка-электрод, с помощью которых каждая сетка-электрод прикрепляется в двух местах в неизменном положении к соответствующим большим и малым фланцам корпуса путем выполнения в данных фланцах и паронитовых прокладках камер разделения проточек такого же диаметра, что и выступающие за переделы корпуса аппарата элементы сеток-электродов, а также заполнения герметизирующей композицией наружных проточек с увеличенным диаметром.



 

Похожие патенты:

Изобретение относится к мембранным аппаратам рулонного типа и может быть использовано для электроультрафильтрации, электронанофильтрации, электромикрофильтрации и электрогиперфильтрации.

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа и может быть использовано для осуществления процессов мембранной технологии: электроультрафильтрации, электронанофильтрации, электромикрофильтрации и электроосмофильтрации.

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа и может быть использовано для осуществления процессов мембранной технологии: электроультрафильтрации, электронанофильтрации, электромикрофильтрации и электроосмофильтрации.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации.

Изобретение относится к способу очистки аминокислот. Описан способ деминерализации нейтрализационным диализом смешанного раствора аминокислоты и соли, включающий подачу смеси раствора фенилаланина и хлорида натрия в среднюю секцию трехсекционного диализатора, ограниченную мембранами разной природы фунциональных групп с геометрически неоднородной профилированной поверхностью, подачу в режиме противотока через смежную с катионообменной мембраной секцию раствора фенилаланина, а через смежную с анионообменной мембраной секцию - раствора хлорида натрия.

Изобретение относится к мембранной технике и технологии, а именно к технике электродиализа. Способ изменения характеристик электродиализатора с чередующимися катионообменными и анионообменными мембранами, включающий подачу в электродные камеры электродиализатора раствора серной кислоты с концентрацией 0,025 М, в камеры обессоливания - 0,005-0,01 М раствора анилина в минеральной кислоте с концентрацией ионов водорода 0,05 М, а в камеры концентрирования - раствора соли с концентрацией 0,0005-0,015 М, в которой анион кислотного остатка является окислителем, в минеральной кислоте с концентрацией ионов водорода 0,05 М, при плотности тока равной 100-400 А/м2 в течение 60-120 мин, с последующим промыванием емкостей и камер электродиализатора дистиллированной водой, после чего электродиализатор выдерживают под током плотностью 100 А/м2 в течение 60 мин при подаче во все камеры электродиализатора 0,025 М раствора серной кислоты.
Настоящее изобретение относится к суспензиям, содержащим очень малое количество солей и содержащим, по меньшей мере, один осажденный оксид кремния. Предложен способ получения суспензий, имеющих низкое содержание соли и включающих, по меньшей мере, один осажденный оксид кремния, включающий стадии: обеспечение суспензии, содержащей, по меньшей мере, один осажденный оксид кремния; доведение рН суспензии до величины 0,5-5, если рН суспензии, полученной на предыдущей стадии, не находится в указанном интервале; очистка суспензии с помощью электродиализа, причем устройство для электродиализа включает одну или более ячейку электродиализа, в каждой из которых область, содержащая продукт, отделена от области, содержащей католит, с помощью катионообменной мембраны, а расстояние между электродами составляет от 2 до 200 мм, и применяют потенциал от 5 до 1000 В.

Изобретение относится к области разделения, концентрирования и очистки растворов методом электрофильтрации и может быть использовано в химической, текстильной, целлюлозно-бумажной, микробиологической, пищевой и других отраслях промышленности.

Изобретение относится к области получения обессоленной воды и может быть использовано для деминерализации природных и сточных вод методом электродиализа в атомной энергетике, в электронной, медицинской, фармацевтической, химической, пищевой отраслях промышленности.

Изобретение относится к восстановлению лития из водных растворов, таких как сырьевые потоки, применяемые в производстве литий-ионных батарей, или образованные при извлечении лития из материалов на основе руды.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации.

Изобретение относится к аппаратам, предназначенным для очистки, разделения и концентрирования растворов электрогиперфильтрационным и электронанофильтрационным методами.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электрогиперфильтрации, электромикрофильтрации, электроультрафильтрации и электронанофильтрации.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации.

Изобретение относится к области энергетики, предназначено для одновременного получения пресной воды, холода и электроэнергии. Достигаемые технические результаты - более высокая экономия потребляемой электроэнергии, вплоть до полной компенсации энергозатрат на собственные нужды установки, сопровождающаяся снижением количества выбросов токсичных и парниковых газов судовой энергетической установки, больший коэффициент полезного действия, а также возможность получать холод - получены путем совмещения процесса опреснения воды с получением холода и электроэнергии.

Изобретение относится к мембранным аппаратам рулонного типа и может быть использовано для фильтрации и обратного осмоса. Аппарат содержит коллекторы отвода прикатодного и прианодного пермеата, образованные пространством между полуцилиндрами корпуса аппарата, корпусом аппарата и полимерной перфорированной перегородкой с перфорацией в три ряда отверстиями в шахматном порядке по всей длине.

Изобретение относится к области промышленной рекуперации жидких щелочных высокоминерализованных отходов. Установка включает блок предварительной очистки промышленных стоков 1, блок рециркуляции щелочного раствора, блок многокамерных электромембранных аппаратов, состоящий из блока 2 первой ступени электромембранной обработки для отделения диализата от очищенного щелочного стока, а также получения умягченного солевого раствора, и блока 3 второй ступени электромембранной обработки для получения дилюата и концентрированного щелочного раствора.

Изобретение относится к конструкциям мембранных аппаратов трубчатого типа и может быть использовано для осуществления процессов мембранной технологии. Электробаромембранный аппарат трубчатого типа содержит цилиндрический корпус с расположенными на его внешней поверхности патрубком для ввода разделяемой жидкости и на внутренней поверхности продольными каналами, устройство для подвода электрического тока, микропористые подложки, внешняя поверхность которых служит электродом-катодом, а внутренняя поверхность которых служит электродом-анодом, прикатодные мембраны, прианодные мембраны, последовательно соединенные камеры разделения, образованные концентрическими трубчатыми фильтрующими элементами, имеющими различные площади поверхности фильтрации и диаметры, с переточными каналами, центральную трубу и торцевые крышки, имеющие патрубки для вывода анионов и катионов с пермеатом.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электрогиперфильтрации, электромикрофильтрации, электроультрафильтрации и электронанофильтрации и может быть использовано в химической, текстильной, целлюлозно-бумажной, микробиологической, пищевой и других отраслях промышленности.

Изобретение относится к области разделения, концентрирования и очистки растворов методом электрофильтрации и может быть использовано в химической, текстильной, целлюлозно-бумажной, микробиологической, пищевой и других отраслях промышленности.
Наверх