Система гидроразрыва пласта в необсаженном стволе скважины

Гидроразрыв пласта проводят в необсаженном стволе скважины без изоляции кольцевого пространства. Кольцевое пространство перекрывается телескопическими элементами, размещенными за изолирующими клапанами. Данную группу телескопических элементов можно раскрывать и выдвигать телескопические элементы для перекрывания кольцевого пространства и герметичного соединения с пластом. Жидкость гидроразрыва пласта под давлением можно перекачивать через телескопически выдвинутые трубопроводы и проводить гидроразрыв необходимого участка пласта. В подходящем пласте не требуется цементирование для поддержания целостности скважины. Телескопические элементы могут, если необходимо, иметь фильтры. В нормальных условиях природные свойства пласта таковы, что устройство гравийного фильтра также не требуется. Эксплуатационную колонну можно спускать в колонну с телескопическими устройствами, и продуктивные участки пласта можно эксплуатировать через избирательно открытые телескопические элементы. Технический результат заключается в повышении эффективности гидравлического разрыва пласта. 17 з.п. ф-лы, 8 ил.

 

Изобретение относится к гидроразрыву пласта и, более конкретно, способу гидроразрыва пласта в необсаженном стволе скважины без внешних изоляторов зон.

Имеется две обычно используемые методики гидроразрыва в способе заканчивания. На фиг.1 показан ствол 10 скважины c колонной 12 обсадных труб, с цементированием 14 в окружающем кольцевом пространстве 16. Цементирование обычно выполняют через цементировочный башмак (не показано) на нижнем конце колонны 12 обсадных труб. Во многих случаях, если предусмотрено дополнительное бурение, башмак разбуривают и проводят дополнительное бурение. После цементирования колонны 12 и затвердевания цемента 14 спускают и отстреливают перфоратор (не показано) для выполнения перфорационных каналов 18, в которых затем проводят гидроразрыв жидкостью, подаваемой с поверхности, затем следует спуск и установка пакера или мостовой пробки 20 для изоляции перфорационных каналов 18. После этого процесс повторяют, при этом за перфорированием следует гидроразрыв пласта, за которым следует установка еще одного пакера или мостовой пробки над вновь выполненными и обработанными гидроразрывом перфорационными каналами. Последовательно, пары 22, 24; 26, 28; 30, 32 и 34 перфорационных каналов и пакеров/мостовых пробок создают на месте работы в скважине 10, проводя работу от забоя 36 скважины к поверхности 38.

Изменение данной схемы направлено на исключение перфорации с установкой в стенку обсадной колонны телескопически выдвигающихся элементов, которые можно избирательно выдвигать через цемент до затвердевания цемента для создания трубопроводов, проходящих в пласт, и установления соединения через зацементированное кольцевое пространство. Использование выдвигающихся элементов вместо перфорирования показано в USP 4475729. Когда элементы выдвинуты, кольцевое пространство цементируют и снабженные фильтрами трубопроводы открывают для обеспечения прохода через выдвигающиеся элементы, так что в данном конкретном случае скважину можно использовать для нагнетания. Хотя использование выдвигающихся элементов исключает перфорирование, стоимость цементирования, плюс стоимость времени работы буровой установки может становиться очень высокой, и в некоторых местах усложнение снабжения буровой площадки может увеличивать стоимость.

В более новом решении используют внешние пакеры, набухающие в скважинных текучих средах, или с иной установкой, такие как пакеры 40, 42, 44, 46 и 48 на фиг.2, установленные снаружи на колонне 49 для изоляции зон 50, 52, 54 и 56, снабженные клапанами, обычно скользящими муфтами 58, 60, 62 и 64 в соответствующих зонах. Колонна 49 подвешена на обсадной колонне 66 и имеет заглушку на нижнем конце 67. Используя различные известные устройства для сдвига муфт, их можно открывать в любом необходимом порядке так, что кольцевые пространства 68, 70, 72 и 74 можно изолировать между двумя пакерами так, что жидкость гидроразрыва под давлением можно подавать в кольцевое пространство и передавать давление в окружающий пласт. Данный способ гидроразрыва пласта включает в себя соответствующее размещение пакеров при сборке колонны и задержки, связанные с обеспечением набухания пакеров для изоляции зон. Имеются также потенциальные неопределенности по достижению уплотнения всеми пакерами для надежного направления давления, нагнетаемого в колонне, в назначенные зоны при подаче давления в колонну 49 на поверхности. Некоторые примеры набухающих пакеров даны в USP 7441596, 7392841 и 7387158.

Необходимо создание методики, и такая методика создана способом настоящего изобретения, для точного приложения давления гидроразрыва к нужному пласту с исключением дорогостоящих процедур, таких как цементирование и пакерование кольцевого пространства, там, где пластовые характеристики позволяют сохранить целостность ствола скважины. Давление в колонне передается через выдвигающиеся напорные трубопроводы, проходящие в пласт. Данные группы напорных трубопроводов соединены с изолирующим устройством так, что только группа или группы в зоне, представляющей интерес и подлежащей разрыву, избирательно открываются в заданное время. Давление, нагнетаемое через выдвинутые напорные трубопроводы, идет прямо в пласт мимо кольцевого пространства. Данные и другие признаки настоящего изобретения должны стать лучше понятными специалистам в данной области техники из описания предпочтительного варианта осуществления и прилагаемой фиг. 3 с пониманием того, что объем изобретения определен объемом прилагаемой формулой изобретения и соответствующими эквивалентами.

Гидроразрыв пласта выполняют в необсаженном стволе скважины без изоляции кольцевого пространства. Кольцевое пространство перекрывается телескопическими элементами, размещенными за изолирующими клапанами. Данную группу телескопических элементов можно открывать и выдвигать телескопические элементы для перекрывания кольцевого пространства и герметичного соединения с пластом. Жидкость гидроразрыва под давлением можно перекачивать через телескопически выдвинутые трубопроводы и обрабатывать гидроразрывом необходимые участки пласта. В подходящем пласте не требуется цементирования для поддержания целостности скважины. Телескопические элементы могут, если необходимо, иметь фильтры. В нормальных условиях природные свойства пласта также не требуют установки гравийного фильтра. Эксплуатационную колонну можно спускать в колонну с телескопическими устройствами, и продуктивные участки пласта можно эксплуатировать через избирательно открытые телескопические элементы.

Сущность изобретения поясняется на чертежах, где:

на фиг. 1 показана известная система цементирования обсадной колонны и последовательно выполненные перфорирование и установка внутренних пакеров или мостовых пробок для изоляции зон после перфорирования и гидроразрыва.

На фиг. 2 показана другая известная система с использованием внешних набухающих пакеров в кольцевом пространстве для изоляции доступных зон с клапанами со скользящими муфтами.

На фиг. 3 показан способ настоящего изобретения с использованием выдвигающихся в пласт трубопроводов с избирательным доступом через клапан, так что пласт можно обрабатывать гидроразрывом напрямую из колонны, обходя кольцевое пространство необсаженного ствола скважины.

На фиг. 4 показан детальный вид телескопических трубопроводов в выдвинутом положении.

На фиг. 5a и 5b показано выдвижение с одновременным открытием телескопического элемента скользящей муфтой для создания доступа в пласт.

На фиг. 6a и 6b показан спуск колонны с выдвигающимися устройствами для выдвижения телескопических трубопроводов в пласт.

На фиг. 3 показан необсаженный ствол 100 скважины ниже обсадной колонны 102. Хвостовик 104 подвешен на обсадной колонне 102 с использованием подвески 106 хвостовика. Компоновка 108 гидроразрыва пласта является однотипной с другими компоновками, показанными на фиг. 3, и специалисту в данной области техники должно быть ясно, что можно использовать любое число компоновок 108, в большой степени аналогичных, но с возможностью внесения изменений для приведения в действие в необходимой последовательности, как описано ниже. Как показано на фиг. 4, каждая компоновка 108 имеет закрывающее устройство, предпочтительно, скользящую муфту 110, выполненную, если необходимо с возможностью приведения в действие шаром 114, сбрасываемым в гнездо 112. В одном варианте осуществления гнезда и шары, сбрасываемые в них, все имеют отличающиеся размеры, и муфты можно закрывать последовательно снизу вверх, сбрасывая первым шар меньшего размера в гнездо меньшего размера на нижней компоновке 108 и затем последовательно сбрасывая шары увеличивающихся размеров, встающие в другие гнезда для закрытия клапанов 110.

Комплект 116 телескопических элементов, избирательно перекрываемых клапаном 110, может иметь любое число или комплектацию или размер элементов, необходимых в варианте применения для прогнозируемых расходов гидроразрыва пласта или последующей добычи. Телескопическая компоновка 116 показана с втянутыми элементами на фиг. 3, а телескопические элементы 116' показаны на фиг.3 выдвинутыми и прижатыми к стенке ствола 100 скважины. В предпочтительном варианте осуществления все телескопические компоновки 116 первоначально закрыты пробками 118 так, что внутреннее давление в хвостовике 104 должно создавать телескопическое выдвижение элементов в каждой компоновке, таких как 120 и 122, или, вместе с тем, может потребоваться много перемещающихся относительно друг друга секций в зависимости от ширины кольцевого зазора, которую нужно пройти для такого прохода ведущими концами 124 в пласт, чтобы направленное давление попадало в пласт, а не в кольцевое пространство 126 необсаженного ствола. Пробки 118 выполнены для обеспечения выдвижения всех компоновок 116 в ответ на открытие клапанов 110 на каждой компоновке 116 и приложение давления внутри хвостовика 104. После выдвижения всех телескопических компоновок пробки 118 в каждой из них можно удалить. Удаление можно выполнить множеством способов, одним способом является использование пробок, которые могут исчезать, таких как пробки из алюминиевого сплава, которые должны растворяться введенной текучей средой. Каждая или некоторые из компоновок могут иметь фильтрующий материал 128 в сквозном трубопроводе, образующемся после выдвижения и после удаления пробки 118.

Клапаны 110, связанные с каждой телескопической компоновкой 116, можно также приводить в действие инструментом сдвига муфт в любом нужном порядке. Каждый клапан может иметь индивидуальный профиль для сцепления со сдвигающим инструментом в тех же или отдельных рейсах для выполнения гидроразрыва пласта с одним клапаном 110 и соответствующим телескопическим комплектом 116, подготовленными для гидроразрыва пласта или с несколькими подготовленными клапанами 110 и телескопическими комплектами 116.

Как альтернативу, для закрытия клапана 110 можно использовать поворотные гнезда под шары, принимающие шары заданного диаметра и обеспечивающие приведение в действие надлежащего клапана 110 и прохождение шара после перемещения гнезда, где такое перемещение создает другое гнездо в другом клапане 110 для приема другого предмета, имеющего диаметр, одинаковый с первым сброшенным предметом, и приведения в действие другого клапана 110. Другие методики можно использовать для обеспечения приведения в действие нескольких клапанов в одном рейсе в скважину. Например, поворотный сдвигающий инструмент можно спускать в скважину и приводить в действие так, что при подъеме из скважины или спуске в скважину им можно открывать или закрывать один или несколько клапанов, либо используя индивидуальные профили сцепления на каждом клапане, предпочтительно являющемся скользящей муфтой, или даже используя общие сдвигающие профили при известном местоположении каждого клапана, и приводить в действие сдвигающий инструмент при достижении конкретного клапана, требующего сдвига.

Альтернативно, можно использовать разрывные диски, подобранные для последовательного разрыва при различных уровнях давления, при этом телескопические трубопроводы должны открываться при заданном давлении и в конкретной последовательности. Вместе с тем, когда разрывной диск разрывается, открывая подачу через группу телескопических трубопроводов, данные трубопроводы нельзя вновь закрыть, когда другой комплект дисков разрывается для доступа в другую зону. Со скользящими муфтами весь имеющийся объем и давление можно направлять в заданную группу трубопроводов, но с разрывными дисками имеется меньше возможностей обработки конкретной зоны гидроразрывом в изоляции.

Способ настоящего изобретения обеспечивает гидроразрыв пласта в необсаженном стволе скважины с направлением жидкости гидроразрыва в надлежащий пласт, гидроразрыв может проходить в необсаженном стволе скважины без кольцевых барьеров и без цементирования хвостовика. Такaя методика в комбинации с клапанами на большинстве или всех телескопических компоновках обеспечивает точное выполнение гидроразрыва пласта в нужных местах и в необходимом порядке. После гидроразрыва пласта некоторые или все клапаны можно закрывать либо для закрытия всей скважины, в которой гидроразрыв пласта проведен, или для избирательноного оставления открытыми одного или нескольких мест для добычи через хвостовик в эксплуатационную колонну (не показано). Получающийся в результате способ экономит затраты на цементирование и на барьеры в кольцевом пространстве и обеспечивает нацеливание всего процесса на гидроразрыв пласта за меньшее время, чем известные способы, такие как описаны выше и показаны на фиг. 1 и 2.

Хотя телескопические компоновки рассмотрены в качестве предпочтительного варианта осуществления, предусматриваются другие конструктивные исполнения, которые могут эффективно перекрывать зазор окружающего кольцевого пространства для соединения с пластом способом, облегчающим передачу давления и уменьшающим потерю давления или текучей среды в окружающее кольцевое пространство. Специалисту в данной области техники должно быть ясно, что данный способ относится к скважинам в консолидированных пластах, где обрушение ствола скважины не является существенной проблемой.

Одной альтернативой гидравлического выдвижения компоновок 116 является их механическое выдвижение. Как показано позицией 130 на фиг. 5, телескопические блоки втянуты в обсадную колонну, так что не выступают за ее внешний диаметр 132 при установке в скважину. Когда скользящая муфта 134 сдвигается, как показано на фиг. 5b, при сбросе шара 138 в гнездо 140, скользящая муфта 134, имеющая конусный участок 136, прикладывает механическое усилие на телескопические блоки 130 и выдвигает их в соединение с пластом, показанным позицией 131. Хотя скользящая муфта является предпочтительной, любые механические устройства можно использовать для механического выдвижения телескопических блоков. В одном примере, показанном на фиг. 6a и 6b, используют спуск колонны 142 с вставными толкателями 144 для выталкивания наружу телескопических блоков, как показано на фиг. 6a и 6b. Толкатели могут выдвигаться внутренним давлением или другим средством. В данном случае закрывающее устройство используют, если необходимо.

Альтернативой выталкиванию компоновок 116 давлением с использованием телескопических компонентов является применение расширения хвостовика 104 для достижения компоновками окружающего пласта. Такое решение может представлять комбинацию телескопических компоновок с расширением трубчатого изделия. Расширение хвостовика может иметь калибрующую оправку, перемещение которой выдвигает компоновки, находящиеся внутри хвостовика 104 во время спуска в скважину. Альтернативно, расширение можно выполнять с помощью давления, которое не только расширяет хвостовик, но также выдвигает компоновки 116.

Если необходимо, ведущие концы передних телескопических секций 122 можно выполнить твердыми и заостренными, например со вставками из карбида или алмаза, помогающими проходу в пласт, а также уплотнению к нему. Ведущий конец может быть выполнен зубчатым или иметь другие рисунки с остриями, помогающими проходу в пласт.

Приведенное выше описание показывает предпочтительный вариант осуществления, и специалист в данной области техники может выполнить много его модификаций без отхода от объема изобретения и его эквивалентов, определенных формулой изобретения.

1. Способ гидроразрыва пласта, в котором осуществляют

спуск колонны заканчивания, содержащей множество трубопроводов, в необсаженный ствол скважины в нужных местах для прохода в его стенку;

перекрывание кольцевого пространства вокруг колонны в нужных местах, по меньшей мере, некоторыми трубопроводами, соединяющимися с пластом, при этом оставляя кольцевое пространство, по существу, открытым в пласт;

использование, по меньшей мере, одного скользящего клапанного элемента для завершения перекрывания кольцевого пространства, по меньшей мере, некоторых из трубопроводов и для избирательного закрытия, по меньшей мере, некоторых из трубопроводов; причем вышеуказанный скользящий клапанный элемент, также содержащий канавку, устанавливается над соответствующим трубопроводом для заклинивания трубопровода радиально в кольцевом пространстве, когда конусный конец вышеуказанной канавки перемещается относительно трубопровода и вышеуказанный скользящий клапанный элемент открывает трубопровод для создания давления в колонне заканчивания;

подачу текучей среды под давлением, по меньшей мере, через один из трубопроводов для гидроразрыва пласта с кольцевым пространством, по существу, открытым в пласт.

2. Способ по п.1, в котором размещают клапанный элемент в колонне.

3. Способ по п.1, в котором осуществляют удлинение или сдвиг трубопроводов для контакта с пластом.

4. Способ по п.3, в котором обеспечивают выполнение трубопроводов из телескопических элементов с относительным перемещением.

5. Способ по п.4, в котором осуществляют:

первоначальное внутреннее блокирование трубопроводов;

нагнетание давления в блокированных трубопроводах для относительного перемещения телескопических элементов.

6. Способ по п.1, в котором осуществляют механическое или гидравлическое выдвижение или сдвиг трубопроводов для герметичного контакта с пластом.

7. Способ по п.5, в котором удаляют блокировку из трубопроводов после выдвижения их до контакта с пластом.

8. Способ по п.7, в котором осуществляют растворение или удаление блокировки с использованием текучей среды в скважине.

9. Способ по п.1, в котором осуществляют последовательный гидроразрыв пласта через множество трубопроводов, связанных, по меньшей мере, с двумя скользящими муфтами, выбранными для последовательного открытия так, что различные группы трубопроводов, связанные с различными скользящими муфтами, можно использовать для гидроразрыва в любом требуемом порядке.

10. Способ по п.1, в котором перекрывают кольцевое пространство всеми трубопроводами с их выдвижением или сдвигом приблизительно в одно время.

11. Способ по п.1, в котором обеспечивают сохранение только одной открытой скользящей муфты при подаче текучей среды под давлением в трубопроводы, связанные с открытой скользящей муфтой.

12. Способ по п.11, в котором осуществляют:

закрытие открытой скользящей муфты и открытие другой скользящей муфты, размещенной ближе к устью от закрытой скользящей муфты; и

последовательное закрытие и затем открытие муфт в направлении к устью скважины до выполнения подачи текучей среды под давлением через все трубопроводы.

13. Способ по п.11, в котором осуществляют

закрытие открытой скользящей муфты и открытие другой скользящей муфты, размещенной ближе к забою от закрытой скользящей муфты; и

последовательное закрытие и затем открытие муфт в направлении к забою скважины до выполнения подачи текучей среды под давлением через все трубопроводы.

14. Способ по п.11, в котором осуществляют

открытие всех скользящих муфт и получение добычи через трубопроводы.

15. Способ по п.1, в котором осуществляют

установку ведущих концов трубопроводов для герметичного контакта с пластом.

16. Способ по п.15, в котором обеспечивают проход в пласт ведущим концом.

17. Способ по п.1, в котором создают заостренный или повышенной твердости ведущий конец для прохода в пласт.

18. Способ по п.2, в котором осуществляют удлинение или сдвиг трубопроводов для контакта с пластом с использованием клапанного элемента.



 

Похожие патенты:

Настоящее изобретение относится к композитному материалу для обработки скважин и его применению при обработке скважин. Композитный материал для обработки скважины для повышения добычи углеводородов, включающий агент для модификации поверхности, нанесенный по крайней мере частично на твердую частицу в виде покрытия, и где агент для модификации поверхности содержит содержащий металл якорный фрагмент и гидрофобный хвост, где гидрофобный хвост представляет собой кремнийорганическое соединение, фторированный углеводород или оба компонента - кремнийорганическое соединение и фторированный углеводород, и, кроме того, где содержащий металл якорный фрагмент в составе агента для модификации поверхности присоединен к твердой частице.

Предложен скважинный инструмент, снабженный: первым элементом скважинного инструмента, содержащим химически активный металл; вторым элементом скважинного инструмента, содержащим разлагаемую смоляную композицию, которая стимулирует разложение химически активного металла, причем предпочтительно разлагаемая смоляная композиция содержит разлагаемую смолу, при разложении которой образуется кислота, или разлагаемая смоляная композиция содержит разлагаемую смолу и неорганическое вещество или органическое вещество, которое стимулирует разложение химически активного металла; а также при необходимости элементом из разлагаемого каучука.

Изобретение относится к горному делу и может быть применено для формирования в породных массивах систем взаимосвязанных сплошных трещин нужных размеров и форм, обеспечивающих создание в породном массиве непротекающих емкостей, повышающих эффективность скважинно-щелевых технологий добычи полезных ископаемых, например выщелачивания меди или урана.

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности разработки залежей, содержащих нефть с высокой вязкостью.

Изобретение относится к области разработки нефтяных месторождений, в частности к добыче нефти из низкопроницаемых коллекторов. Технический результат - повышение нефтеотдачи пласта за счет снижения фильтрационного сопротивления движению флюидов.

Группа изобретений относится к операциям заканчивания в стволе скважины с использованием многотрубных систем. Технический результат – повышение эффективности заканчивания скважины.

Описаны система и способ приготовления флюида для обработки приствольной зоны, включающий загрузку пакетов, содержащих покрытую оболочкой добавку, в зону хранения пакетов первого контейнера; пропускание пакетов в измельчитель пакетов; разрушение оболочек пакетов для вскрытия добавки; пропускание незащищенной оболочкой добавки в смеситель; пропускание водного раствора из второго контейнера в смеситель и смешивание незащищенной оболочкой добавки с водным раствором для получения флюида для обработки приствольной зоны.

Изобретение относится к применению отслаивающего материала для повышения вязкости неводной жидкой основы, содержащей органофильную глину. Отслаивающий материал содержит глицеринкарбонат и алкоксилированный спирт, имеющий формулу: ,в которой R представляет собой неразветвленный или разветвленный алкил, содержащий от 2 до 18 атомов углерода, или ароматический радикал, имеющий структуру: ,в которой R1 представляет собой разветвленный или неразветвленный алкил, содержащий от 2 до 18 атомов углерода, R2 представляет собой H или CH3, R3 представляет собой H или CH3, a составляет от 0 до 12 и b составляет от 1 до 12.

Настоящее изобретение относится к композициям и способам для сохранения контроля над скважиной в течение капитального ремонта. Способ обработки подземной скважины в процессе ремонта скважины, содержащий этапы: приготовление композиции, содержащей воду, по меньшей мере, один водорастворимый полимер, частицы и способные разрушаться волокна, помещение композиции в ствол скважины таким образом, чтобы она вступала в контакт с хвостовиком со щелевыми прорезями, скважинным фильтром, перфорациями, либо их комбинациями, обеспечение возможности прохождения композиции в хвостовик, фильтр или перфорации так, чтобы частицы и волокна формировали, по меньшей мере, одну пробку или осадок на фильтре, или то и другое, которые выдерживают перепад давления выше 3,5 МПа, предотвращая дальнейшее движение флюида через хвостовик, фильтр или перфорации, создание возможности волокнам разрушаться, что приводит к ослаблению пробки или осадка на фильтре или того и другого, и удаление пробки или осадка на фильтре, или того и другого, для возобновления движения флюида через хвостовик, фильтр или перфорации.

Группа изобретений относится к горному делу, в частности к вариантам системы гидравлического разрыва пласта. Система включает гидравлическую систему передачи энергии, выполненную с возможностью обмена давлением между первой жидкостью и второй жидкостью.

Изобретение относится к нефтедобывающей промышленности и может быть применено для разработки коллекторов нефти и\или газа горизонтальными скважинами с проведением многостадийного гидравлического разрыва пласта как в карбонатных, так и в терригенных коллекторах.

Группа изобретений относится к области исследования, передачи данных и электроэнергии в буровых скважинах. Система содержит электроприводной скважинный прибор, спусковую колонну гибких труб, прикрепленную к скважинному прибору, для размещения скважинного прибора в пустотелом стволе скважины, трубу-кабель, размещенную внутри колонны гибких труб и функционально связанную со скважинным прибором.

Группа изобретений относится к горному делу и может быть применена в скважинной конструкции для использования со скважинным инструментом. Скважинная конструкция содержит: корпус и захватывающую втулку; запирающий профиль, зафиксированный относительно одного из корпуса и захватывающей втулки; запирающий элемент для сцепления с запирающим профилем; и клапанную втулку, содержащую профиль, имеющий запирающую секцию и высвобождающую секцию, и выполненную с возможностью перемещения между запирающим положением, в котором запирающая секция клапанной втулки поддерживает запирающий элемент для зацепления с запирающим профилем таким образом, чтобы ограничить относительное перемещение между корпусом и захватывающей втулкой, и высвобождающим положением, в котором высвобождающая секция клапанной втулки не поддерживает запирающий элемент, чтобы запирающий элемент мог перемещаться относительно запирающего профиля таким образом, чтобы допускать относительное перемещение между корпусом и захватывающей втулкой, для обеспечения приведения в действие скважинного инструмента, причем клапанная втулка содержит привод для зацепления захватывающей втулки, когда клапанная втулка находится в высвобождающем положении, для обеспечения клапанной втулке возможности приведения захватывающей втулки в действие относительно корпуса.

Изобретение относится к устройствам для бурения нефтяных и газовых скважин, а именно к циркуляционным переводникам бурильной колонны. Циркуляционный переводник бурильной колонны содержит корпус, поршень с радиальными отверстиями и центральным каналом, внутри которого размещено седло, пружину, поджимающую поршень, а также содержит два закрепленных в корпусе циркуляционных порта с расходными отверстиями, активационные и деактивационные шары.

Группа изобретений относится к скважинному захватному устройству, способу захвата объекта внутри скважины и скважинному захватному инструменту для захвата объекта.

Изобретение относится к системе высокого давления для многократного гидравлического разрыва пласта и системе трубного гидравлического клапана (ТГК) для соединения с эксплуатационной колонной для обеспечения возможности изоляции перспективного пласта внутри скважины.

Изобретение относится к области буровой техники и предназначено для гидравлического сообщения внутренней полости бурильной колонны с затрубным пространством при спускоподъемных операциях и для разобщения этих пространств в условиях бурения, в том числе и на пониженном расходе бурового раствора (жидкости).

Настоящее изобретение относится к способу разрыва пласта, окружающего скважину, и содержит этапы, на которых: (i) обеспечивают трубу, включающую по меньшей мере два участка, причем каждый участок содержит средства изоляции кольцевого пространства, выборочный путь потока между внутренней областью и внешней областью трубы и средства изоляции сквозного ствола для выборочного закупоривания сквозного ствола трубы; (ii) перемещают трубу в скважину; (iii) изолируют кольцевое пространство между внешней областью трубы и скважиной, чтобы тем самым создавать по меньшей мере две изолированные зоны; (iv) выбирают любую зону для разрыва; (v) удаленно открывают путь потока в участке трубы, соответствующем выбранной зоне так, чтобы обеспечить протекание текучей среды между внутренней областью и внешней областью трубы; (vi) удаленно изолируют сквозной ствол трубы так, чтобы закупорить сквозной ствол закрытием средств изоляции сквозного ствола на участке трубы, соответствующем выбранной зоне так, чтобы предотвратить протекание текучей среды вдоль сквозного ствола; и (vii) разрывают по меньшей мере часть пласта, окружающего скважину.

Группа изобретений относится к скважинным инструментам для обработки пласта. Инструмент содержит кожух, залавливающее устройство, установленное в кожухе и содержащее один или несколько радиально перемещающихся элементов седла с возможностью установки из открытой конфигурации, в которой элементы седла обеспечивают проход объекта через инструмент, в залавливающую конфигурацию, в которой элементы седла залавливают объект, проходящий через инструмент, выпускающий элемент в кожухе, перемещающийся с помощью залавливающего устройства между закрепляющим положением, в котором выпускающий элемент обеспечивает установку залавливающего устройства в залавливающую конфигурацию с помощью радиального закрепления элементов седла в радиально внутреннем или в убранном положении, к положению раскрепления, в котором выпускающий элемент обеспечивает установку залавливающего устройства в выпускающую конфигурацию, снимая радиальное закрепление элементов седла, обеспечивая перемещение элементов седла радиально наружу, обеспечивая выпуск ранее заловленного объекта.

Группа изобретений относится к горному делу и может быть применена в скважинном инструменте при гидроразрыве скважины. Предложено механическое счетное устройство, устанавливаемое в скважинном инструменте и содержащее трубчатый корпус с каналом, первый комплект выступов на трубчатом корпусе, смещаемых по радиусу относительно канала трубчатого корпуса между выступающим и втянутым по радиусу положениями, второй комплект выступов на трубчатом корпусе, смещаемых по радиусу относительно канала трубчатого корпуса между выступающим и втянутым по радиусу положениями.

Настоящее изобретение относится к способу обработки подземного пласта для модификации поверхности. Способ обработки кремнистого или содержащего оксид металла подземного пласта, через который проходит скважина, включает закачивание в скважину агента для модификации поверхности, содержащего производное органической фосфорсодержащей кислоты в качестве якорного фрагмента и фторсодержащий остаток в качестве гидрофобного хвоста, где гидрофобный хвост напрямую присоединен к якорному фрагменту, когда агент для модификации поверхности закачан в скважину, связывание агента для модификации поверхности с поверхностью подземного пласта за счет присоединения к пласту якорного фрагмента, и расположение агента для модификации поверхности на кремнистом или содержащем оксид металла подземном пласте таким образом, чтобы гидрофобный хвост был удален от поверхности пласта. По другому варианту способ обработки кремнистого или содержащего оксид металла подземного пласта, через который проходит скважина, включает: а) закачивание в скважину флюида для обработки скважины, содержащего агент для модификации поверхности, который включает производное органической фосфорсодержащей кислоты в качестве якорного фрагмента и фторсодержащий остаток в качестве гидрофобного хвоста, и б) связывание агента для модификации поверхности с поверхностью подземного пласта за счет формирования монослойного или многослойного покрытия в ходе самоорганизации хвоста, где до проведения стадии (а) число участков связывания агента для модификации поверхности с поверхностью подземного пласта повышают при проведении предварительной обработки подземного пласта флюидом на неводной основе. По третьему варианту способ обработки кремнистого или содержащего оксид металла подземного пласта, через который проходит скважина, включает: закачивание в скважину агента для модификации поверхности, включающего производное органической фосфорсодержащей кислоты в качестве якорного фрагмента и фторсодержащий остаток в качестве гидрофобного хвоста, где гидрофобный хвост напрямую или не напрямую присоединен к якорному фрагменту, и связывание агента для модификации поверхности с поверхностью подземного пласта за счет присоединения к пласту якорного фрагмента. Изобретение развито в зависимых пунктах формулы. Технический результат – повышение эффективности обработки. 3 н. и 26 з.п. ф-лы, 4 ил., 4 табл., 6 пр.
Наверх