Способ тестирования арсенид-галиевых фотопреобразователей в составе солнечных батарей и устройство для его реализации

Изобретение относится к космической технике и может быть использовано при создании связных (телекоммуникационных) космических аппаратов (КА) для бесконтактного неразрушающего контроля качества полупроводниковых фотопреобразователей (ФП) солнечных батарей (БС). Заявленный способ тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей включает облучение участка поверхности тестируемого фотопреобразователя лазерным излучением с длиной волны (0,40÷0,55) мкм, контроль возникающего в необлученном участке фотоэлектролюминесцентного излучения на фотоприемник и определение качества фотопреобразователя путем сравнивания измеренной интенсивности фотоэлектролюминесцентного излучения тестируемого фотопреобразователя с интенсивностью фотоэлектролюминесцентного излучения эталонного фотопреобразователя. Заявленное устройство для тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей для реализации указанного выше способа включает лазер с длиной волны излучения 0,40÷0,55 мкм, фотоприемник, установленные на манипулятор с возможностью их вертикального и горизонтального возвратно-поступательного перемещения в двух взаимно перпендикулярных направлениях. Причем в качестве фотоприемника используют цифровой фотоаппарат, а включением и выключением лазерного излучателя, включением съемки цифровым фотоаппаратом, выбором координат тестируемого фотопреобразователя управляют с использованием ПЭВМ, для чего дополнительно введена ПЭВМ, связанная с лазерным излучателем, цифровым фотоаппаратом и манипулятором. Технический результат - повышение технологических возможностей тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей в процессе изготовления КА. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к космической технике и может быть использовано при создании связных (телекоммуникационных) космических аппаратов (КА) для бесконтактного неразрушающего контроля качества полупроводниковых фотопреобразователей (ФП) солнечных батарей (БС).

В настоящее время в составе КА все более широко используются солнечные батареи на основе арсенид-галлиевых фотопреобразователей (например, http://solarb.ru/arsenid-galievye-solnechnye-batarei). Поэтому задача обеспечения оптимальной проверки качества ФП на различных этапах изготовления солнечных батарей КА весьма актуальна.

Известен способ тестирования ФП (чипов каскадных фотопреобразователей) на основе Al-Ga-In-As-P с помощью электролюминесцентных измерений (Thomas Kirchartz, Anke Helbig, Martin Hermle, Uwe Rau и Andreas W. Bett "23rd Europian Photovoltaic Solar Energy Conference and Exhibition, 1-5 September 2008, Valencia, Spain). Известный способ-прототип включает в себя пропускание тока через исследуемый чип для возбуждения спектра электролюминесценции (ЭЛ) и исследование этого спектра с помощью Ge-приемника, объединенного с монохроматором. Теоретически показано, как, используя теорему электрооптической взаимности, которая описывает связь между квантовой эффективностью СЭ и интенсивностью спектра ЭЛ, можно рассчитать индивидуальную вольт-амперную характеристику чипа и, соответственно, судить о качестве этого чипа ФП.

Недостатком известного способа является то, что здесь использован классический метод возбуждение спектра ЭЛ - пропускание тока через исследуемый образец, то есть, применена контактная система со всеми ее недостатками.

Известно устройство для тестирования чипов каскадных фотопреобразователей на основе Al-Ga-In-As-P (Thomas Kirchartz, Anke Helbig, Martin Hermle, Uwe Rau и Andreas W. Bett "23rd Europian Photovoltaic Solar Energy Conference and Exhibition, 1-5 September 2008, Valencia, Spain). Устройство состоит из источника постоянного тока с пределом регулировки (0,1÷150) мА, оптического модулятора излучения спектра ЭЛ образца ФП, монохроматора в диапазоне (600÷1800) нм, германиевого приемника излучения, электронного селективного усилителя, синхронного с частотой модуляции спектра ЭЛ, и измерителя электрического сигнала.

Недостатком известного устройства является контактная система для возбуждения спектра ЭЛ исследуемого образца ФП, что при стандартных размерах чипов порядка 2×2 мм2 требует прецизионных точных механических контактов, которые требуют постоянного внимания.

Наиболее близким к заявляемому техническому решению по совокупности существенных признаков являются «Способ тестирования чипов каскадных фотопреобразователей на основе соединений Al-Ga-In-As-P, включающий облучение участка поверхности тестируемого чипа лазерным излучением с длиной волны (0,40÷0,55) мкм, направление возникающего в необлученном участке чипа фотоэлектролюминесцентного излучения на фотоприемник, имеющий фоточувствительность к излучению с длиной волны, более 0,6 мкм, измерение интенсивности фотоэлектролюминесцентного излучения и определение качества чипа путем сравнивания измеренной интенсивности фотоэлектролюминесцентного излучения тестируемого чипа с интенсивностью фотоэлектролюминесцентного излучения эталонного чипа каскадного фотопреобразователя на основе соединений Al-Ga-In-As-Р» и «Устройство для тестирования чипов каскадных фотопреобразователей на основе соединений Al-Ga-In-As-P, включающее лазер с длиной волны излучения 0,40÷0,55 мкм, линзу, фокусирующую излучение лазера на платформу для размещения матрицы тестируемых чипов, установленную на основании с возможностью его вращения вокруг вертикальной оси и горизонтального возвратно-поступательного перемещения в двух взаимно перпендикулярных направлениях, объектив, оптический фильтр, пропускающий излучение с длинами волн более 0,6 мкм, и фотоприемник, фоточувствительный к излучению с длинами волн более 0,6 мкм, установленные на одной оптической оси, и экран, препятствующий попаданию фотолюминесцентного излучения из облучаемого участка чипа в объектив, при этом фотоприемник подключен через усилитель к контроллеру с блоком памяти» (патент №2384838, RU).

Недостатком известных способа и устройства является низкая технологичность при использовании в процессе изготовления КА, которая заключается в исследовании отдельных экземпляров ФП.

Задачей заявляемого изобретения является повышение технологических возможностей тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей в процессе изготовления КА.

Поставленная задача в части способа решается тем, что при облучении участка поверхности тестируемого фотопреобразователя лазерным излучением с длиной волны 0,40÷0,55 мкм, контроле возникающего в необлученном участке фотоэлектролюминесцентного излучения на фотоприемник и определении качества фотопреобразователя путем сравнивания измеренной интенсивности фотоэлектролюминесцентного излучения тестируемого фотопреобразователя с интенсивностью фотоэлектролюминесцентного излучения эталонного фотопреобразователя, в качестве фотоприемника используют цифровой фотоаппарат, а включением и выключением лазерного излучателя, включением съемки цифровым фотоаппаратом, выбором координат тестируемого фотопреобразователя управляют с использованием ПЭВМ.

Поставленная задача в части устройства решается тем, что в устройстве, включающем лазер с длиной волны излучения 0,40÷0,55 мкм, фотоприемник, установленные на манипулятор с возможностью их вертикального и горизонтального возвратно-поступательного перемещения в двух взаимно перпендикулярных направлениях, в качестве фотоприемника используют цифровой фотоаппарат, кроме того, дополнительно введена ПЭВМ, связанная с лазерным излучателем, цифровым фотоаппаратом и манипулятором.

Действительно, использование цифрового фотоаппарата в связке с ПЭВМ позволяет проводить запоминание люминесцирующей картины различных этапов наземного жизненного цикла каждого конкретного ФП солнечной батареи. При этом любые влияния на целостность кристалла ФП будут зафиксированы и по параметру интенсивности излучения сравнены с первоначальным (эталонным) значением, полученным при первой проверке данного ФП. В дальнейшем результаты проверок ФП (фотолюминесцирующих картин), при необходимости, могут быть подвергнуты более глубокому анализу. Таким образом, создается индивидуальный паспорт для каждого ФП входящего в состав БС. Цифровой фотоаппарат дает возможность беспристрастной фиксации момента измерения, и проведения съемки в ультрафиолетовом и инфракрасном спектрах. Все это повышает технологические возможности способа тестирования арсенид-галлиевых ФП в составе солнечных батарей.

Использование системы позиционирования в виде манипулятора перемещающего фотокамеру с лазером в плоскости по заранее заданному алгоритму позволяет использовать данное устройство для широкого спектра БС на основе арсенид-галлиевых фотопреобразователей. Что также повышает технологические возможности.

На фиг. 1 изображены БС и устройство для тестирования арсенид-галлиевых фотопреобразователей, где:

1 - платформа, на которой установлены фотоаппарат и лазерный излучатель;

2 - манипулятор, перемещающий платформу по заданной программе от ПЭВМ;

3 - ПЭВМ, связанная с манипулятором, с лазерным излучателем и фотоаппаратом;

4 - проверяемая БС;

5 - рама для установки БС.

Перед объективом фотоаппарата установлена перегородка, закрывающая часть изображения фотопреобразователя, куда падает луч от лазерного излучателя (на рисунке не показано).

Устройство работает следующим образом. По сигналам с ПЭВМ манипулятор позиционирует платформу с фотоаппаратом и лазерным излучателем напротив проверяемого ФП БС. Включается лазерный излучатель, фотоаппарат фотографирует ФП в момент его люминесценции, отключается лазерный излучатель. Изображение с фотоаппарата передается в ПЭВМ для обработки. Анализируется интенсивность люминесценции проверяемого ФП и сравнивается с интенсивностью эталонного ФП.

Таким образом, заявляемый способ тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей и устройство для его реализации позволяют повысить технологические возможности известных способа и устройства тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей в процессе изготовления КА.

1. Способ тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей, включающий облучение участка поверхности тестируемого фотопреобразователя лазерным излучением с длиной волны 0,40÷0,55 мкм, контроль возникающего в необлученном участке фотоэлектролюминесцентного излучения на фотоприемник и определение качества фотопреобразователя путем сравнивания измеренной интенсивности фотоэлектролюминесцентного излучения тестируемого фотопреобразователя с интенсивностью фотоэлектролюминесцентного излучения эталонного фотопреобразователя, отличающийся тем, что в качестве фотоприемника используют цифровой фотоаппарат, а включением и выключением лазерного излучателя, включением съемки цифровым фотоаппаратом, выбором координат тестируемого фотопреобразователя управляют с использованием ПЭВМ.

2. Устройство для тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей, включающее лазер с длиной волны излучения 0,40÷0,55 мкм, фотоприемник, установленные на манипулятор с возможностью их вертикального и горизонтального возвратно-поступательного перемещения в двух взаимно перпендикулярных направлениях, отличающееся тем, что в качестве фотоприемника используют цифровой фотоаппарат, кроме того, дополнительно введена ПЭВМ, связанная с лазерным излучателем, цифровым фотоаппаратом и манипулятором.



 

Похожие патенты:

Изобретение относится к системе дистанционной связи, выполненной с возможностью встраивания в летательный аппарат (1А, 1B, 1С), содержащий по меньшей мере один винт (50А, 50B, 50С) двигателя с множеством лопастей (52А, 52B, 52С), выполненный с возможностью вращения относительно неподвижного модуля (10А, 10B, 10С) летательного аппарата вокруг оси (X) двигателя.

Изобретение относится к системе дистанционной связи, выполненной с возможностью встраивания в летательный аппарат (1А, 1B, 1С), содержащий по меньшей мере один винт (50А, 50B, 50С) двигателя с множеством лопастей (52А, 52B, 52С), выполненный с возможностью вращения относительно неподвижного модуля (10А, 10B, 10С) летательного аппарата вокруг оси (X) двигателя.

Изобретение относится к автомобильной промышленности. Способ и соответствующее устройство (100) для контроля шин на производственной линии обеспечивают предварительное размещение шины (200), подлежащей контролю, упругое деформирование участка боковины шины посредством приложения сжимающего усилия к внешней контактной поверхности участка боковины, при этом сжимающее усилие имеет осевое направление и ориентацию, направленную к диаметральной плоскости, освещение внутренней и/или внешней поверхности участка боковины и детектирование изображения освещенной поверхности, генерирование контрольного сигнала, соответствующего детектируемому изображению, и анализ контрольного сигнала для детектирования возможного наличия дефектов на участке боковины.

Изобретение относится к области неразрушающего контроля и касается способа обнаружения ударных повреждений конструкции. Способ включает в себя нанесение на поверхность конструкции люминесцентного покрытия люминесцирующего в видимой области спектра под воздействием УФ-излучения, просмотр покрытия при облучении конструкции УФ-излучением и обнаружение ударных повреждений за счет цветовых различий.

Изобретение относится к люминесцентным покрытиям для обнаружения повреждений конструкций и может быть использовано при неразрушающем контроле и диагностике состояния различных конструкций.

Изобретение относится к токоприемникам транспортных средств. Система для определения состояния токосъемника транспортного средства содержит устройство с видеокамерами для цифровой съемки изображений токосъемника и устройство для оценки записанных изображений на основе технологии сбора, передачи и обработки данных.

Группа изобретений относится к области стерилизации, а конкретно к проверке стерилизационной упаковки. Способ проверки стерилизационной упаковочной системы, содержащей первый и второй сегмент, на наличие прорывов включает этап размещения стерилизационной упаковочной системы между источником света и проверяющим, а также этап проверки указанной системы на наличие прорывов в первом или втором сегментах путем поиска света, проходящего через обращенный к проверяющему сегмент.

Изобретение относится к области дефектоскопии кристаллических материалов и может применяться для обнаружения структурных дефектов в кристаллических материалах, в том числе полупроводниковых.

Изобретение относится к области измерительной техники и касается способа и устройства определения топографии поверхности подложки с покрывающим слоем. Способ включает в себя измерение высоты поверхности покрывающего слоя на подложке по координатам x-y с использованием хроматического измерения белого света, измерение толщины указанного слоя по координатам x-y с использованием ультрафиолетовой интерферометрии и определение высоты поверхности подложки в координатах x-y по результатам измерений высоты поверхности и толщины слоя.

Изобретение относится к области авиационных двигателей и может быть использовано при мониторинге состояния этих двигателей в течение времени. Способ контроля повреждений на внутренней стороне картера вентилятора включает следующие этапы: отмечают первое повреждение (I1) на внутренней стороне картера вентилятора, ограничивают поверхность осмотра, содержащую упомянутое первое повреждение (I1), отмечают различные повреждения (Ii), присутствующие на ограниченной поверхности осмотра, при этом упомянутые отмеченные различные повреждения представляют собой совокупность рассматриваемых повреждений, для каждого рассматриваемого повреждения (Ii) измеряют глубину и длину упомянутого повреждения (Ii), для каждого рассматриваемого повреждения (Ii) определяют значение степени серьезности при помощи, по меньшей мере, одной номограммы, устанавливающей соотношение глубины и длины каждого рассматриваемого повреждения со степенью серьезности, для каждой поверхности осмотра, содержащей первое повреждение (I1), определяют общее значение степени серьезности посредством суммирования значений степени серьезности, определенных для каждого рассматриваемого повреждения (Ii).

Изобретение относится к средствам увода с орбиты выработавших свой ресурс или отказавших автоматических космических аппаратов (КА). Устройство содержит контейнер (1) с надувной конструкцией в виде эластичной оболочки (2), механизм ее крепления к контейнеру, выталкивания и раскрытия.

Группа изобретений относится к ракетной технике. В первом варианте космической головной части (КГЧ), включающей переходной отсек для крепления головного обтекателя и полезную нагрузку, на внутренней поверхности переходного отсека посредством узлов крепления размещены отделяемые части разделяемых плат электросоединителей и бортовая аппаратура.

Изобретение относится к спутниковым системам наблюдения Земли. Способ включает перевод спутника с кратной геосинхронной орбиты на близкую по высоте компланарную квазисинхронную орбиту с малой периодичностью наблюдения заданного района Земли.
Изобретение относится к системам автоматической стыковки космических аппаратов (КА). Устройство автоматической стыковки КА в операциях орбитального обслуживания содержит штырь на обслуживающем КА и коническое гнездо на обслуживаемом КА.

Изобретение относится к управлению движением космических аппаратов (КА), в частности для предотвращения сближения КА с активным объектом (АО). Согласно способу излучаемые приближающимся АО сигналы регистрируют на борту КА детекторами плоской формы, расположенными на поверхности сферической оболочки.

Изобретение относится к воздушно-космической технике. Летательный аппарат состоит из жестко связанных с корпусом двух реактивных двигателей, конусообразной камеры сгорания, жестко связанной с выхлопным соплом в конце камеры сгорания.

Изобретение относится к области электрических двигателей, в частности двигателей на эффекте Холла, и, в частности, касается средств контроля расхода рабочего тела, подаваемого в электрический двигатель, в рамках применения для космического аппарата.

Изобретение относится к эксплуатации группировки, преимущественно автоматических космических аппаратов (КА). Согласно способу комплектуют на Земле целевой КА, предназначенный для замещения неработающего КА (НКА), и сервисный КА.

Изобретение относится к удалению объектов крупногабаритного космического мусора (ККМ) (напр., отработавших разгонных блоков) на орбиты с ограниченным временем их существования.

Изобретение может быть использовано для построения местной вертикали по изображению горизонта Земли при ориентации и навигации космических летательных аппаратов.

Изобретение относится к управлению ориентацией космического аппарата (КА) с солнечными батареями (СБ). Способ включает ориентацию первой оси КА на центр Земли путем его разворотов вокруг второй и третьей осей по информации с прибора ориентации на Землю. Ориентацию второй оси КА относительно плоскости Солнце - КА - Земля проводят путем создания и поддержания скорости вращения вокруг первой оси КА по информации с блока измерения угловых скоростей. Изменяют знак этой скорости каждый раз при уменьшении сигнала с панелей СБ. Нормаль к поверхности СБ совмещают с направлением на Солнце путем разворота панелей СБ вокруг оси, параллельной третьей оси КА по расчетной баллистической информации с использованием привода солнечных батарей. На особых участках орбиты: при малых и больших углах Солнце - КА - Земля управляют вращением КА вокруг первой оси по баллистической информации и интегралу от скорости указанного вращения (курсовому углу). Техническим результатом изобретения является обеспечение рабочей ориентации панелей СБ при неисправности прибора ориентации на Солнце. 1 з.п. ф-лы, 3 ил.

Изобретение относится к космической технике и может быть использовано при создании связных космических аппаратов для бесконтактного неразрушающего контроля качества полупроводниковых фотопреобразователей солнечных батарей. Заявленный способ тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей включает облучение участка поверхности тестируемого фотопреобразователя лазерным излучением с длиной волны мкм, контроль возникающего в необлученном участке фотоэлектролюминесцентного излучения на фотоприемник и определение качества фотопреобразователя путем сравнивания измеренной интенсивности фотоэлектролюминесцентного излучения тестируемого фотопреобразователя с интенсивностью фотоэлектролюминесцентного излучения эталонного фотопреобразователя. Заявленное устройство для тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей для реализации указанного выше способа включает лазер с длиной волны излучения 0,40÷0,55 мкм, фотоприемник, установленные на манипулятор с возможностью их вертикального и горизонтального возвратно-поступательного перемещения в двух взаимно перпендикулярных направлениях. Причем в качестве фотоприемника используют цифровой фотоаппарат, а включением и выключением лазерного излучателя, включением съемки цифровым фотоаппаратом, выбором координат тестируемого фотопреобразователя управляют с использованием ПЭВМ, для чего дополнительно введена ПЭВМ, связанная с лазерным излучателем, цифровым фотоаппаратом и манипулятором. Технический результат - повышение технологических возможностей тестирования арсенид-галлиевых фотопреобразователей в составе солнечных батарей в процессе изготовления КА. 2 н.п. ф-лы, 1 ил.

Наверх