Теплофикационная паротурбинная установка

Изобретение относится к энергомашиностроению и может применяться в теплофикационной паротурбинной установке, работающей в режиме полного закрытия регулирующей диафрагмы. Теплофикационная паротурбинная установка содержит проточную часть турбины с регулирующей диафрагмой, выхлопной патрубок, вспомогательный пучок конденсатора, теплообменник сетевой воды с греющей полостью, подключенной к обратной магистрали сетевой воды, и охлаждающей полостью, сообщенной с проточной частью турбины перед регулирующей диафрагмой, установка также содержит дополнительный теплообменник сетевой воды с греющей и охлаждающей полостями, дроссель и компрессор, при этом вспомогательный пучок конденсатора установлен по периферии внутренней поверхности выхлопного патрубка, выход встроенного пучка конденсатора последовательно сообщен с компрессором, с охлаждающей полостью дополнительного теплообменника, с дросселем и с входом встроенного пучка конденсатора с образованием контура хладагента теплового насоса, а вход и выход греющий полости дополнительного теплообменника сообщены соответственно с обратной магистралью и с греющей полостью теплообменника сетевой воды. Изобретение позволяет повысить эффективность теплофикационной паротурбинной установки за счет регенерации тепла. 3 з.п. ф-лы,1 ил.

 

Изобретение относится к энергомашиностроению и может применяться в теплофикационной паротурбинной установке, работающей в режиме полного закрытия регулирующей диафрагмы.

В качестве наиболее близкого аналога выбрана теплофикационная паротурбинная установка (Шапиро Г.А. Повышение эффективности работы ТЭЦ,. М.: Энергоиздат, 1981, с. 102), содержащая проточную часть турбины с регулирующей диафрагмой, выхлопной патрубок, вспомогательный пучок конденсатора, теплообменник сетевой воды с греющей полостью, подключенной к обратной магистрали сетевой воды, и охлаждающей полостью, сообщенной с проточной частью турбины перед регулирующей диафрагмой.

Недостатком данной теплофикационной паротурбинной установки является низкая экономическая эффективность. Это вызвано тем, что в зимний период времени в целях максимальной выработки тепловой энергии практически весь пар из проточной части цилиндра низкого давления перед полностью закрытой регулирующей диафрагмой направляют в подогреватели сетевой воды. Ступени турбины, расположенные за регулирующей диафрагмой в части низкого давления, вынуждены работать в моторном режима, при котором, вследствие снижения расхода пара до величины протечки через зазоры закрытой регулирующей диафрагмы, в проточной части цилиндра низкого давления образуются вихревые течения обратных токов, которые приводят к разогреву рабочих лопаток последней ступени до недопустимо высокой температуры (240°С). При этом доля приведенного расхода пара через закрытую регулирующую диафрагму от номинального составляет 0,072. Отвод теплоты разогретого пар осуществляется пропуском последнего через встроенный пучок охлаждающей полости конденсатора, которая в дальнейшем поступает на дополнительный подогрев сетевой воды. Чтобы избежать тепловых потерь в конденсаторе, основной пучок охлаждающей полости конденсатора отключен от циркуляционной воды. Тогда температура конденсации пара в конденсаторе не может опуститься ниже температуры сетевой воды обратной магистрали (70°С) и, как следствие, давление насыщенных паров воды в конденсаторе составит 31 кПа, что в 8 раз превышает номинальное давление (Рн=4 кПа) и плотность пара (ρ=0.2 кг/м3). Повышение плотности пара приведет к дополнительным вихревым потерям в последних ступенях турбины и, как следствие, к снижению экономической эффективности установки.

Задачей является устранение указанных недостатков наиболее близкого аналога.

Техническим результатом заявленного изобретения является повышение эффективности теплофикационной паротурбинной установки за счет регенерации тепла.

Технический результат достигается тем, что теплофикационная паротурбинная установка содержит проточную часть турбины с регулирующей диафрагмой, выхлопной патрубок, вспомогательный пучок конденсатора, теплообменник сетевой воды с греющей полостью, подключенной к обратной магистрали сетевой воды, и охлаждающей полостью, сообщенной с проточной частью турбины перед регулирующей диафрагмой, при этом установка содержит дополнительный теплообменник сетевой воды с греющей и охлаждающей полостями, дроссель и компрессор, при этом вспомогательный пучок конденсатора установлен по периферии внутренней поверхности выхлопного патрубка, выход вспомогательного пучка конденсатора последовательно сообщен с компрессором, с охлаждающей полостью дополнительного теплообменника, с дросселем и с входом вспомогательного пучка конденсатора с образованием контура хладагента теплового насоса, а вход и выход греющей полости дополнительного теплообменника сообщены соответственно с обратной магистралью и с греющей полостью теплообменника сетевой воды.

На входе вспомогательного пучка конденсатора хладагент находится в жидкой фазе.

На входе встроенного пучка конденсатора температура хладагента составляет 50°С.

В качестве хладагента используется фреон R-113.

Повышение эффективности теплофикационной паротурбинной установки связано с тем, что в полости вспомогательного пучка температура кипения хладагента будет равна температуре насыщения пара при давлении насыщения, равного давлении в конденсаторе, работающего в номинальном режиме работы теплофикационной паротурбинной установки. При этом плотность пара в проточной части цилиндра низкого давления уменьшится до плотности пара в конденсаторе и, как следствие, уменьшатся потери работы турбины, связанные с поддержанием вихревого течения обратных токов в последних ступенях турбины.

На фиг. 1 представлена схема теплофикационной паротурбинной установки.

Теплофикационная паротурбинная установка содержит проточную часть высокого давления 1 и проточную часть низкого давления 2 турбины с расположенной между ними регулирующей диафрагмой 3, выхлопной патрубок 4, вспомогательный пучок 5 конденсатора 6, теплообменник 7 сетевой воды с греющей полостью 8, подключенной к обратной магистрали 9 сетевой воды, и охлаждающей полостью 10, сообщенной с проточной частью высокого давления 1 турбины перед регулирующей диафрагмой 3. Установка дополнительно содержит дополнительный теплообменник 11 сетевой воды с греющей полостью 12 и охлаждающей полостью 13, дроссель 14 и компрессор 15. При этом вспомогательный пучок 5 установлен по периферии внутренней поверхности выхлопного патрубка 4, выход 16 вспомогательного пучка 5 последовательно сообщен с компрессором 15, с охлаждающей полостью 13 дополнительного теплообменника 11, с дросселем 14 и с входом 17 вспомогательного пучка 5 с образованием контура хладагента теплового насоса 18. Вход 19 и выход 20 греющий полости 12 дополнительного теплообменника 11 сообщены соответственно с обратной магистралью 9 и с входом 21 греющей полостью 8 теплообменника 7 сетевой воды. Выход 22 греющей полости 8 сообщен с прямой магистралью 23 сетевой воды.

Теплофикационная паротурбинная установка в режиме полной теплофикационной нагрузки работает следующим образом. Вследствие полного закрытия регулирующей диафрагмы 3, основной расход пара из проточной части высокого давления 1 поступает в охлаждающую полость 10 теплообменника 7, где происходит передача теплоты конденсации пара на нагрев сетевой воды в греющей полости 8. Другая меньшая часть пара через зазоры закрытой регулирующей диафрагмы 3 поступает в проточную часть турбины низкого давления 2, где создается интенсивное вихревое течение обратных токов, приводящих к разогреву рабочих лопаток последней ступени до температуры 200-240°С. При этом доля приведенного расхода пара через закрытую регулирующую диафрагму от номинального составляет 0,072. Вследствие вихревого течения обратных токов, основной расход пара за последней ступенью турбины осуществляется по периферии лопаток, составляющей 0,1 высоты этих лопаток. Далее разогретый пар обтекает наружную поверхность вспомогательного пучка 5, охлаждается и поступает в конденсатор 6. По контору 18 теплового насоса циркулирует хладагент Фреон R-113, где на входе 17, находясь в жидкой фазе при температуре 50°С и давлении насыщенных паров 0,1 МПа, протекает в полости 5, кипит, переходя в паровую фазу, поступает в компрессор 15, который сжимает хладагент до давления 0,2 МПа. Далее парообразный хладагент конденсируется в охлаждающей полости 13 дополнительного теплообменника 11 и после дросселя 14 вновь поступает на вход 17 вспомогательного пучка 5. При этом теплота, полученная в результате конденсации паров хладагента, поступает на нагрев сетевой воды. Таким образом, во-первых, тепловые потери, вызванные вследствие интенсивного вихревого течения обратных токов в проточной части низкого давления турбины 2, возвращены в систему подогрева сетевой воды. Так, например, в теплофикационной турбине Т-180/210-12.8, работающей в режиме полного закрытия регулирующей диафрагмы 3, тепловые потери 3,4 МВт посредством теплового насоса возвращены на нагрев сетевой воды. Во-вторых, вследствие интенсивного охлаждения пара, прошедшего через вспомогательный пучок 5 непосредственно в периферийной зоне рабочих лопаток на выходе из проточной часть низкого давления турбины 2, его температура снизится от 200°С до 55°С. Это приведет к снижению давления насыщенных паров воды, до 15 кПа и, как следствие, к снижению потерь, вызванных снижением плотности вихревого течения обратных токов с 3,4 до 2,2 МВт. Из приведенного примера видно, что предлагаемая теплофикационная паротурбинная установка обладает высокой эффективностью и, в частности, составляет 10%. Все приведенные значения и интервалы значений для различных параметров системы выбраны исходя из расчетов. Выход за обозначенные интервалы значений ухудшают параметры установки.

Таким образом, снижение тепловых потерь в проточной части низкого давления и возврат теплоты этих потерь при помощи теплового насоса в дополнительный нагрев сетевой воды в заявленном техническом решении приводит к повышению эффективности заявленного технического решения по сравнению с известным.

1. Теплофикационная паротурбинная установка, содержащая проточную часть турбины с регулирующей диафрагмой, выхлопной патрубок, вспомогательный пучок конденсатора, теплообменник сетевой воды с греющей полостью, подключенной к обратной магистрали сетевой воды, и охлаждающей полостью, сообщенной с проточной частью турбины перед регулирующей диафрагмой, отличающаяся тем, что установка содержит дополнительный теплообменник сетевой воды с греющей и охлаждающей полостями, дроссель и компрессор, при этом вспомогательный пучок конденсатора установлен по периферии внутренней поверхности выхлопного патрубка, выход вспомогательного пучка конденсатора последовательно сообщен с компрессором, с охлаждающей полостью дополнительного теплообменника, с дросселем и с входом вспомогательного пучка конденсатора с образованием контура хладагента теплового насоса, а вход и выход греющей полости дополнительного теплообменника сообщены соответственно с обратной магистралью и с греющей полостью теплообменника сетевой воды.

2. Теплофикационная паротурбинная установка по п. 1, отличающаяся тем, что на входе вспомогательного пучка конденсатора хладагент находится в жидкой фазе.

3. Теплофикационная паротурбинная установка по п. 1, отличающаяся тем, что на входе вспомогательного пучка конденсатора температура хладагента составляет 50°C.

4. Теплофикационная паротурбинная установка по п. 1, отличающаяся тем, что в качестве хладагента используется фреон R-113.



 

Похожие патенты:

Изобретение относится к химической промышленности. Способ включает стадию газификации (1), в качестве агента газификации используют диоксид углерода.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. Тепловая электрическая станция содержит теплофикационную турбину с отопительными отборами пара, соединенными паропроводами с нижним и верхним сетевыми подогревателями, включенными по нагреваемой среде в сетевой трубопровод, вакуумный деаэратор подпиточной воды теплосети с трубопроводами исходной и деаэрированной воды, включенный в трубопровод исходной воды подогреватель исходной воды.

Изобретение относится к системе и способу теплоснабжения промышленных объектов. Система теплоснабжения содержит теплогенератор, потребителя, прямую магистраль для подачи нагретой в теплогенераторе воды упомянутому объекту, обратную магистраль, для транспортирования охлажденной воды к теплогенератору, обратный клапан, испаритель с рабочим телом, установленный в дымоходе теплогенератора, сбросной клапан, трубопровод высокого давления, трубопровод возврата конденсата, дополнительные обратные клапаны, установленные на обратной магистрали, при этом она снабжена закрепленным на испарителе расширительным баком со сбросным клапаном, соединенным трубопроводом высокого давления с обратной магистралью на участке между дополнительными обратными клапанами, соединенным трубопроводом возврата конденсата через обратный клапан с испарителем.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электрических станциях. Тепловая электрическая станция содержит паровой котел, турбогенератор, связанный с электрическими сетями через трансформатор, и распределительное устройство с элегазовыми высоковольтными выключателями.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего подогревателей, утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, в тепловой электрической станции используют теплообменник-охладитель сетевой воды, который устанавливают на обратном трубопроводе сетевой воды, а также конденсационную установку, имеющую конденсатор второй паровой турбины, и дополнительно осуществляют утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в первой турбине пара, утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара второй паровой турбины осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре.

Изобретение относится к области энергетики. В способе работы тепловой электрической станции утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизацию низкопотенциальной теплоты обратной сетевой воды осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре.

Изобретение относится к энергетике. Паротурбинная электростанция содержит некоторое количество парциальных турбин, соответственно с возможностью прохождения через них пара, перепускной трубопровод, расположенный между первой парциальной турбиной и второй парциальной турбиной, и промежуточный пароперегреватель в перепускном трубопроводе.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электрических станциях. Тепловая электрическая станция, содержащая турбину с отопительными отборами пара, подключенными к нижнему и верхнему сетевым подогревателям, включенным по нагреваемой среде между обратным и подающим сетевыми трубопроводами, вакуумный деаэратор с трубопроводом исходной воды, в который включен подогреватель исходной воды, бак-аккумулятор, подключенный трубопроводом деаэрированной воды к вакуумному деаэратору и трубопроводом подпиточной воды через подпиточный насос к обратному сетевому трубопроводу перед нижним сетевым подогревателем.

Изобретение относится к энергетике. Тепловая электрическая станция, содержащая паровой котел, теплофикационную турбину с отборами пара, подключенными к регенеративным подогревателям, деаэратор добавочной питательной воды с подключенными к нему трубопроводом исходной воды и патрубками подвода и отвода десорбирующего агента, бак-аккумулятор деаэратора, связанный трубопроводом деаэрированной добавочной питательной воды с трубопроводом основного конденсата турбины, патрубки подвода и отвода десорбирующего агента деаэратора добавочной питательной воды включены в газопровод, подключенный к горелкам котла, а трубопровод деаэрированной добавочной питательной воды подключен к трубопроводу основного конденсата турбины перед охладителем основных эжекторов и охладителем пара уплотнений турбины.
Наверх