Способ работы электродвигателя под водой

Изобретение относится к области электротехники, к надводной и подводной технике и робототехнике. Технический результат заключается в возможности длительной работы под водой обычных электродвигателей общепромышленных серий с возможностью их самовентиляции при неограниченном числе циклов изменения глубины погружения, в экономии сжатого воздуха и энергии для его получения, в отсутствии демаскирующего фактора в виде «пузырькового следа» в воде. Это достигается с помощью постоянного поддержания равенства давлений внутри и снаружи плотной полости, содержащей электродвигатель. Вытравленный из плотной полости газ при всплытии двигателя сжимают компрессором, установленным на валу двигателя, а сжатый газ направляют в газовый баллон. При погружении плотной полости сжатый газ из баллона подают в плотную полость. 1 ил.

 

Изобретение относится к области надводной и подводной техники и робототехники, содержащей электрические двигатели общепромышленных серий, установленные внутри плотной полости, в том числе электродвигатели с самовентиляцией, подверженные аварийным затоплениям, способные продолжать длительно работать на переменных глубинах погружения.

Известен [1] способ работы электродвигателя под водой (аналог 1), содержащий затопление плотной оболочки с расположенным внутри ее электродвигателем через отверстие в нижней части плотной оболочки, сжатие воздушной подушки и повышение воздушного давления внутри упомянутой оболочки, сообщающейся с внутренней полостью двигателя через отверстие в верхней его части, выравнивание воздушного давления во внутренней полости двигателя с наружным давлением внутри плотной оболочки. Недостаток способа - затопление плотной оболочки на больших глубинах погружения с возможностью поступления воды во внутреннюю полость двигателя при кренах и дифферентах.

Известен [2] способ работы погружного воздухонаполненного электродвигателя вертикального исполнения (аналог 2), содержащий подачу сжатых газов в плотную полость погружающегося двигателя, вытеснение поступающей в двигатель воды с последующим травлением расширяющихся газов через отверстие в нижней части всплывающего двигателя. Недостаток способа - невозможность воздушного охлаждения общепромышленных самовентилируемых двигателей, непроизводительное расходование сжатых газов.

Наиболее близким по совокупности признаков является [3] способ работы воздухонаполненного самовентилируемого электродвигателя, охлаждаемого воздушной или жидкой средой (прототип), содержащий подачу сжатых газов в погружающуюся плотную полость с расположенным внутри ее электродвигателем, выравнивание давления воздуха внутри плотной полости с наружным давлением воды, травление избыточных газов через отверстие в нижней части плотной полости при ее всплытии.

Недостаток способа - непрерывное травление газов, потребность их постоянного пополнения от внешнего надводного источника в случае многократного изменения двигателем глубины погружения, большой расход энергии на сжатие газа, демаскирующий фактор в виде «пузырькового следа» в воде.

В основу изобретения поставлена задача нахождения такого способа работы под водой обычного электродвигателя общепромышленной серии, многократно изменяющего глубину погружения, при котором не требуется надводного источника газа повышенного давления, уменьшается расход энергии на сжатие газа и устраняется демаскирующий фактор в виде «пузырькового следа» в воде.

Это достигается с помощью того, что вытравленный из плотной полости газ сжимают компрессором, установленным на валу двигателя, а сжатый газ направляют в газовый баллон, причем при погружении плотной полости сжатый газ из баллона подают в плотную полость.

Пример реализации способа работы электродвигателя под водой показан на фиг. 1. Электродвигатель 1 с магнитным уплотнением рабочего вала 2 установлен внутри плотной полости 3. Другой конец вала двигателя с помощью автоматической муфты 4 соединен с компрессором 5. Воздушный переключающий клапан 6 соединяет плотную полость с нагнетательным трубопроводом компрессора и с воздушным баллоном 7. Клапан травления 8 соединяет плотную полость с всасывающим трубопроводом компрессора.

Устройство работает следующим образом. При погружении плотной полости 3 давление воды снаружи полости становится больше давления воздуха внутри полости, возникает угроза разуплотнения рабочего вала 2, попадания воды внутрь плотной полости и затопления двигателя 1. В этом случае автоматически срабатывает переключающий клапан 6, который подает воздух в плотную полость 3 из баллона 7. При выравнивании давления воздуха внутри плотной полости с наружным давлением воды переключающий клапан 6 закрывается, и подача воздуха прекращается. При всплытии плотной полости давление воздуха внутри полости 3 становится больше давления воды снаружи полости, при этом автоматически открывается клапан травления 8, включается муфта 4, которая приводит в действие компрессор 5 от работающего двигателя 1. Одновременно переключающий клапан 6 соединяет напорный трубопровод компрессора с воздушным баллоном 7, который пополняется воздухом из плотной полости 3.

Достоинства способа - возможность длительной работы под водой обычных электродвигателей общепромышленных серий с возможностью их самовентиляции при неограниченном числе циклов изменения глубины погружения, экономия сжатого воздуха и энергии для его получения, отсутствие демаскирующего фактора в виде «пузырькового следа» в воде.

Литература:

1. Электрический двигатель для работы под водой, изобретение, авторское свидетельство АС СССР, автор Кузнецов Б.И., №62276, 1940 г.

2. Погружной воздухонаполненный электродвигатель вертикального исполнения, изобретение, патент Украины UA №101180 С2, 2013 г.

3. Воздухонаполненный самовентилируемый электродвигатель, охлаждаемый воздушной или жидкой средой, изобретение, патент Украины UA №102356, 2013 г.

Способ работы электродвигателя под водой, содержащий подачу сжатых газов в погружающуюся плотную полость с расположенным внутри ее электродвигателем, выравнивание давления воздуха внутри плотной полости с наружным давлением воды, травление избыточных газов через отверстие в нижней части плотной полости при ее всплытии, отличающийся тем, что вытравленный из плотной полости газ сжимают компрессором, установленным на валу двигателя, а сжатый газ направляют в газовый баллон, причем при погружении плотной полости сжатый газ из баллона подают в плотную полость.



 

Похожие патенты:
Изобретение относится к области электротехники, в частности к асинхронной машине, имеющей охлаждаемый ротор. Технический результат - обеспечение эффективной герметизации охлаждающей среды.

Группа изобретений относится к области нефтедобычи и может быть применена для гидрозащиты погружных электродвигателей электроцентробежных насосов для добычи пластовой жидкости из скважин.

Изобретение относится к области нефтедобычи и может быть применено для гидрозащиты погружных электродвигателей электроцентробежных насосов для добычи пластовой жидкости из скважин.

Изобретение относится к области электротехники, в частности к электромашинам с постоянными магнитами, и раскрывает способ изготовления корпуса для статора электромашины с постоянными магнитами с осевым потоком, имеющей статор, содержащий группу катушек, намотанных на соответствующие стержни статора и расположенных по окружности с интервалами вокруг оси электромашины, и ротор, несущий группу постоянных магнитов и установленный с возможностью вращения вокруг упомянутой оси, при этом упомянутые ротор и статор разнесены друг от друга вдоль упомянутой оси с образованием зазора между ними, в котором магнитный поток в этой электромашине направлен, в общем, в осевом направлении, причем способ включает изготовление радиальной стенки для упомянутого корпуса статора для расположения в упомянутом зазоре между упомянутым ротором и упомянутым статором посредством помещения полимерной мембраны в форму машины для литья под давлением, наформовывания литьем под давлением группы усиливающих элементов на упомянутую мембрану с использованием термопластичного полимера, связывающегося, когда он расплавлен, с полимером упомянутой мембраны; и изготовление упомянутого корпуса с использованием упомянутой радиальной стенки.

Изобретение относится к электротехнике. Технический результат состоит в обеспечении возможности электродвигателей любых типов и исполнения работать в различных средах, в любом пространственном положении.

Изобретение относится к электротехнике. Технический результат состоит в обеспечении возможности электродвигателей любых типов и исполнения работать в различных средах, в любом пространственном положении.

Изобретение относится к области нефтедобычи и может быть применено в установках для гидрозащиты погружных маслозаполненных электродвигателей электроцентробежных насосов для добычи пластовой жидкости из скважин.

Изобретение относится к области производства погружных скважинных электрических насосов и компрессоров. Устройство охлаждения и защиты от твердых частиц торцевого уплотнения погружного электродвигателя, соединенного соединительной муфтой с насосом, имеет на наружной цилиндрической поверхности муфты пескосбрасыватель, а в нижней части муфты - полый цилиндр.

Изобретение относится к электротехнике. Технический результат состоит в повышении надежности.

Изобретение относится к электротехнике и может быть использовано в нефтедобывающей промышленности при создании погружных электродвигателей с повышенным коэффициентом мощности, имеющих в конструкции косинусный конденсатор, который подвергается давлению, передаваемому от скважинной жидкости.

Изобретение относится к области электротехники, в частности к корпусу стартер-генератора коленчатого вала. Технический результат – повышение ремонтопригодности.

Изобретение относится к электротехнике, а именно к электродвигателям и к механизмам с его использованием. Технический результат – повышение КПД и обеспечение возможности поддержания постоянной частоты вращения вала при изменяющейся нагрузке.

Изобретение относится к области электротехники. Технический результат – улучшение охлаждения обмотки статора.

Изобретение относится к электротехнике. Технический результат состоит в том, что электрическая машина (1) содержит ротор (4), который установлен с возможностью вращения вокруг проходящей в осевом направлении (3) оси (5) вращения в подшипниковых устройствах (16,17), статор (7) с двумя осевыми концами, воздушный зазор между ротором и статором.

Изобретение относится к электротехнике и может быть использовано в системах, компьютерных программных продуктах для управления продувкой охлаждаемой водородом динамоэлектрической машины.

Изобретение относится к электротехнике, а именно к синхронному генератору (301) безредукторной ветроэнергетической установки (100), содержащему наружный ротор (304) с независимым возбуждением, полюса которого выполнены в виде сердечников полюсных наконечников с обмотками возбуждения, и статор (302), при этом синхронный генератор (301) имеет наружный диаметр (344) ротора и отношение наружного диаметра статора к наружному диаметру генератора больше 0,86, в частности, больше 0,9 и, в частности, больше 0,92.

Изобретение относится к электротехнике, а именно к конструкции синхронного генератора с наружным ротором для безредукторной ветроэнергетической установки. Синхронный генератор с наружным ротором содержит статор и состоящий из нескольких частей ротор с независимым возбуждением в виде сегментов, представляющих сердечники с катушками.

Изобретение относится к электротехнике, а именно к электродвигателям для бытовой техники, например, с постоянными магнитами, содержащим самоцентрирующиеся кожухи, позволяющие легко и правильно осуществлять сборку без применения центрирующих устройств.

Изобретение относится к электрическим машинам, а именно к бесконтактным синхронным генераторам индукторного типа. Технический результат - обеспечение возможности генерирования электрической энергии за счёт энергии торможения.

Изобретение относится к области электротехники. Технический результат: уменьшение массогабаритных характеристик, повышение надежности работы, повышение ресурса электромашины.

Изобретение относится к области электротехники, к надводной и подводной технике и робототехнике. Технический результат заключается в возможности длительной работы под водой обычных электродвигателей общепромышленных серий с возможностью их самовентиляции при неограниченном числе циклов изменения глубины погружения, в экономии сжатого воздуха и энергии для его получения, в отсутствии демаскирующего фактора в виде «пузырькового следа» в воде. Это достигается с помощью постоянного поддержания равенства давлений внутри и снаружи плотной полости, содержащей электродвигатель. Вытравленный из плотной полости газ при всплытии двигателя сжимают компрессором, установленным на валу двигателя, а сжатый газ направляют в газовый баллон. При погружении плотной полости сжатый газ из баллона подают в плотную полость. 1 ил.

Наверх