Способ получения триалкиловых эфиров фосфонуксусной кислоты

Изобретение относится к способу получения эфиров фосфонуксусной кислоты, которые могут быть использованы в качестве исходных соединений в синтезе фосфорсодержащих биологически активных веществ и реагентов. Предложенный способ получения триалкиловых эфиров фосфонуксусной кислоты заключается во взаимодействии эфира хлоруксусной кислоты с диалкиловым эфиром фосфористой кислоты под воздействием ультразвука в присутствии карбоната калия при мольном соотношении реагентов, соответственно равном 1:1:(1-1,5). Предложен новый эффективный способ получения ценных веществ. 2 з.п. ф-лы, 6 пр.

 

Изобретение относится к способу получения триалкиловых эфиров фосфонуксусной кислоты, которые могут быть использованы в качестве исходных соединений в синтезе фосфорсодержащих биологически активных веществ и реагентов в реакции Хорнера-Вадсворта-Эммонса:

Фосфонуксусная кислота и ее производные, являясь фосфорорганическими биологически активными соединениями, проявляют подтвержденную противовирусную и противораковую активности.

Фосфонуксусная кислота и ее производные представляют большой интерес как промежуточные продукты для получения новых классов фосфорорганических соединений.

Известен способ получения триметилового эфира фософонуксусной кислоты (McGreer D.Е., Chiu N.W.K. Thermalrearrangementof α,β- to β,γ-unsaturatedesters. Evidence for a 1,5-hydrogen transfer mechanism // Canadian Journal of Chemistry. - 1968. - V. 46. - №. 13. - P. 2225-2232), который предполагает прямое взаимодействие между триэтилфосфитом и метилбромацетатом по реакции Михаэлиса-Арбузова при нагревании до 160°C с выходом целевого продукта 80%.

Данный способ может быть использования для получения эфиров фосфонуксусной кислоты только в лабораторных масштабах, так как производство одного из исходных продуктов триэтилфосфита в промышленных масштабах на территории РФ на данный момент отсутствует из-за отсутствия технологических решений для его реализации. Кроме того, в представленном в этой публикации способе синтеза используется высокотоксичный метилбромацетат.

Известен способ получения триметилового эфира фосфонуксусной кислоты (Схема 1) при котором синтез триалкиловых эфиров фосфоновых кислот проводят в присутствии соответствующего спирта и 4-диметиламинопиридина (DMAP) в среде толуола (патент Япония №63233990).

СХЕМА 1

где R1 = С1-4 алкил; R2 и/или R3 = Н или = С1-4 алкил; R4 = гидрокарбил; R5 = С1-4 алкил.

Также известен способ получения триметилового эфира фосфонуксусной кислоты (патент США №1353779), согласно которому взаимодействие диметилового эфира хлорацетиленфосфоновой кислоты с метанолом проводят при нагревании до 50°С в присутствии триэтиламина с выходом целевого продукта 68-70%. (Схема 2)

СХЕМА 2

Недостатком данного способа является использование в качестве исходного субстрата труднодоступного диметилового эфира хлорацетиленфосфоновой кислоты, синтез которого реализуем лишь на лабораторном уровне.

Наиболее близким к заявляемому изобретению по технической сущности и достигаемому результату является способ получения триалкиловых эфиров фосфонуксусной кислоты, в котором получение триметилового эфира фосфонуксусной кислоты осуществляется через реакцию межфазного алкилирования диметилфосфитаметилхлорацетатом в гетерогенной системе «органическая фаза/твердая фаза» в присутствии карбоната калия при молярном соотношении диметилфосфит, метилхлорацетат и карбонат калия, соответственно, равном (1-1,3):1:(1,5-2) (патент России №2527977) (прототип). Свежеперегнанный метилхлорацетат добавляют по каплям к смеси диметилфосфита и сухого карбоната калия многократными порциями (оптимально 3-6 равными порциями) через каждые 2,5-3,5 часа. Синтез проводят в течение 10-18 часов при перемешивании реакционной массы со скоростью 300-450 оборотов в минуту и при температуре 20-50°С (схема 3). Выход триметилового эфира составляет около 80%.

СХЕМА 3

Недостатками данного способа является то, что в заявленных условиях при первоначальном смешивании диметилфосфита и карбоната калия образуется густая трудно промешиваемая реакционная масса, поэтому воспроизведение и масштабирование данного процесса до многокиллограммовых загрузок требует дополнительных технологических приемов, которые должны обеспечивать равномерное перемешивание реакционной смеси, а также исключать локальные перегревы, возникающие в результате экзотермической реакции добавляемого отдельными порциями метилхлорацетата по ходу реакции. В число недостатков также входят необходимость тонкого измельчения гигроскопичного карбоната калия, длительность проведения процесса и низкая селективность реакции, заключающаяся в образовании побочных продуктов 2, 3 и 4 (Схема 3).

Технической задачей заявляемого изобретения является сокращение времени синтеза и увеличение выхода целевого продукта.

Поставленная задача решается путем взаимодействия эфира хлоруксусной кислоты с диалкиловым эфиром фосфористой кислоты в присутствии карбоната калия, при мольном соотношение реагентов: эфиры хлоруксусной кислоты : диалкиловый эфир фосфористой кислоты : карбонат калия равном соответственно 1:1:(1-1,5) при нагревании до 50°С. При этом реакционную массу подвергают воздействию ультразвука частотой 35-50 кГц. Продукт получают с выходом 85-90%.

В качестве эфира хлоруксусной кислоты могут быть использованы метиловый или этиловый или изопропиловый эфир хлоруксусной кислоты.

В качестве диалкилового эфира фосфористой кислоты могут быть использованы диметиловый или диэтиловый или диизопропиловый эфир фосфористой кислоты.

Отличительным признаком данного изобретения является то, что в смесь эфира диалкилфосфористой кислоты и алкилового эфира хлоруксусной кислоты добавляют карбонат калия равными порциями через каждые полчаса в 3 приема. При этом тщательное измельчение карбоната калия можно исключить из технологического процесса за счет облучения реакционной массы ультразвуком частотой 35-50 кГц. Время реакции при этом составляет от 4,5 до 5,5 часов. Выход триалкилового эфира фосфонуксусной кислоты 85-90%.

Изобретение может быть проиллюстрировано следующими примерами.

Пример 1.

В 4-х горлую круглодонную колбу объемом 0,5 л, снабженную механической мешалкой, термометром и обратным холодильником с хлоркальциевой трубкой, погруженную в ультразвуковую ванну с рабочей частотой 35 кГц, загружают при перемешивании 59,8 г (0,543 моля) диметилфосфита и 58,9 г (0,543 моля) метилхлорацетата. Реакционную смесь нагревают до температуры 50°С и при перемешивании со скоростью 400 об/мин прибавляют тремя равными порциями через каждые полчаса карбонат калия. Общая масса прибавленного карбоната калия составляет 75,0 г (0,543 моля). После прибавления последней порции реакционную массу перемешивают в течение 4,5 часов, охлаждают до комнатной температуры и прибавляют 120 мл хлороформа (соотношение метилхлорацетат : диметилфосфит : карбонат калия = 1:1:1). Осадок отфильтровывают, от фильтрата отгоняют в вакууме 100 мм рт.ст. хлороформ и перегоняют остаток в вакууме от 1 до 2 мм рт.ст. Получают 84,1 г (85%) триметилового эфира фосфонуксусной кислоты с т. кип. 104-106°С/2 мм рт.ст.

1Н-ЯМР (400 МГц), d6-ДМСО, δ, м.д. J, Гц: 3.82 [s, 3Н, Р-О-CH3]; 3.79 [s, 3Н, Р-О-СН3]; 3.74 [s, 3Н, -С(O)-O-СН3]; 2.98 [d, 2Н, J(-P-CH2-)=21,62 Гц, (-Р-CH2-)];

31Р-ЯМР (400 МГц), d6-ДМСО, δ, м.д.: 22.86; CDCl3, δ, м.д.: 22.49;

Пример 2.

В 4-х горлую круглодонную колбу объемом 5 л, снабженную механической мешалкой, термометром и обратным холодильником с хлоркальциевой трубкой, погруженную в ультразвуковую ванну с рабочей частотой 50 кГц, загружают при перемешивании 598 г (5,43 моля) диметилфосфита и 589 г (5,43 моля) метилхлорацетата. Реакционную смесь нагревают до температуры 50°С и при перемешивании со скоростью 300 об/мин прибавляют тремя равными порциями через каждые полчаса карбонат калия. Общая масса прибавленного карбоната калия составляет 1126,0 г (8,15 моля). После прибавления последней порции реакционную массу перемешивают в течение 4,5 часов, охлаждают до комнатной температуры и прибавляют 1000 мл хлороформа (соотношение метилхлорацетат : диметилфосфит : карбонат калия = 1:1:1,5). Осадок отфильтровывают, от фильтрата отгоняют в вакууме 100 мм рт.ст. хлороформ и перегоняют остаток в вакууме от 1 до 2 мм рт.ст. Получают 887 г (89%) триметилового эфира фосфонуксусной кислоты с т. кип. 104-106°С/2 мм рт.ст.

Пример 3.

В 4-х горлую круглодонную колбу объемом 2 л, снабженную механической мешалкой, термометром и обратным холодильником с хлоркальциевой трубкой, погруженную в водяную баню, загружают при перемешивании 239,2 г (2,17 моля) диметилфосфита и 235,6 г (2,17 моля) метилхлорацетата. Реакционную смесь нагревают до температуры 50°С и при перемешивании со скоростью 200 об/мин прибавляют тремя равными порциями через каждые полчаса карбонат калия. Общая масса прибавленного карбоната калия составляет 450,4 г (3,26 моля). После прибавления последней порции реакционную массу перемешивают в течение 6,5 часов, охлаждают до комнатной температуры и прибавляют 500 мл хлороформа (без облучения реакционной смеси ультразвуком с частотой 40 кГц). Осадок отфильтровывают, от фильтрата отгоняют в вакууме 100 мм рт.ст. хлороформ и перегоняют остаток в вакууме от 1 до 2 мм рт.ст. Получают 346 г (87%) триметилового эфира фосфонуксусной кислоты с т. кип. 104-106°С/2 мм рт.ст.

Пример 4.

В 4-х горлую круглодонную колбу объемом 0,5 л, снабженную механической мешалкой, термометром и обратным холодильником с хлоркальциевой трубкой, погруженную в ультразвуковую ванну с рабочей частотой 50 кГц, загружают при перемешивании 59,8 г (0,543 моля) диметилфосфита и 58,9 г (0,543 моля) метилхлорацетата. Реакционную смесь нагревают до температуры 50°С и при перемешивании со скоростью 450 об/мин прибавляют тремя равными порциями через каждые полчаса карбонат калия. Общая масса прибавленного карбоната калия составляет 112,6 г (0,815 моля). После прибавления последней порции реакционную массу перемешивают в течение 4,5 часов, охлаждают до комнатной температуры и прибавляют 100 мл толуола (соотношение метилхлорацетат : диметилфосфит : карбонат калия = 1:1:1,5). Осадок отфильтровывают, от фильтрата отгоняют в вакууме 100 мм рт.ст. толуол и перегоняют остаток в вакууме от 1 до 2 мм рт.ст. Получают 87,1 г (88%) триметилового эфира фосфонуксусной кислоты с т. кип. 104-106°С/2 мм рт.ст.

Пример 5.

В 4-х горлую круглодонную колбу объемом 0,5 л, снабженную механической мешалкой, термометром и обратным холодильником с хлоркальциевой трубкой, погруженную в ультразвуковую ванну с рабочей частотой 35 кГц, загружают при перемешивании 44,9 г (0,270 моль) диизопропилфосфита и 29,3 г (0,270 моль) изопропилхлорацетата. Реакционную смесь нагревают до температуры 50°С и при перемешивании со скоростью 400 об/мин прибавляют тремя равными порциями через каждые полчаса карбонат калия. Общая масса прибавленного карбоната калия составляет 55,89 г (0,405 моля). После прибавления последней порции реакционную массу перемешивают в течение 5 часов, охлаждают до комнатной температуры и прибавляют 50 мл толуола (соотношение метилхлорацетат : диизопропиллфосфит : карбонат калия = 1:1:1,5). Осадок отфильтровывают, от фильтрата отгоняют в вакууме 100 мм рт.ст. толуол и перегоняют остаток в вакууме от 1 до 2 мм рт.ст. Получают 55,3 г (86%) триметилового эфира фосфонуксусной кислоты с т. кип. 131-135°С/1 мм рт.ст. ND20=1,6115.

1Н-ЯМР (400 МГц), d6-ДМСО, δ, м.д. J, Гц: 1,32 [d, 12Н, J3CH3CHCH3=6.04, (СН3-СН-СН3)]; 4.74 [m, 2Н, J3(-O-CH(CH3)2=6.04, (-O-СН(СН3)2)]; 2.93 [d, 2Н, J2(-P-CH2-)=21,62, (-Р-СН2-)].

31Р-ЯМР (400 МГц), d6-ДМСО, δ, м.д.: 17,41;

Пример 6.

В 4-х горлую круглодонную колбу объемом 2 л, снабженную механической мешалкой, термометром и обратным холодильником с хлоркальциевой трубкой, погруженную в ультразвуковую ванну с рабочей частотой 45 кГц, загружают при перемешивании 149,0 г (1,08 моль) диэтилфосфита и 132,3 г (1,08 моль) этилхлорацетата. Реакционную смесь нагревают до температуры 50°С и при перемешивании со скоростью 300 об/мин прибавляют тремя равными порциями через каждые полчаса карбонат калия (соотношение этилхлорацетат : диэтилфосфит : карбонат калия = 1:1:1,5). Общая масса прибавленного карбоната калия составляет 223,6 г (1,62 моля). После прибавления последней порции реакционную массу перемешивают в течение 5 часов, охлаждают до комнатной температуры и прибавляют 200 мл толуола. Осадок отфильтровывают, от фильтрата отгоняют в вакууме 100 мм рт.ст. толуол и перегоняют остаток в вакууме от 1 до 2 мм рт.ст. Получают 208,2 г (85%) триэтилового эфира фосфонуксусной кислоты с т. кип. 105-107°С/1 мм рт.ст. ND20=1,4313.

1Н-ЯМР (400 МГц), d6-ДМСО, δ, м.д. J, Гц: 1,21 [dt, 9Н, JOCH2CH3=18.3, 7.1, (O-СН2Н3)]; 3.10 [d, 2Н, J(-P-CH2-)=21.4, (-Р-СН2-)]; 4,06 [dq, 6Н, JOCH2CH3=22.2, 7.4 (О-СН2-СН3)].

31Р-ЯМР (400 МГц), d6-ДМСО, δ, м.д.: 21,35

1. Способ получения триалкиловых эфиров фосфонуксусной кислоты, заключающийся во взаимодействии эфира хлоруксусной кислоты с диалкиловым эфиром фосфористой кислоты под воздействием ультразвука в присутствии карбоната калия при мольном соотношении реагентов, соответственно равном 1:1:(1-1,5).

2. Способ по п. 1, отличающийся тем, что в качестве эфира хлоруксусной кислоты используют метиловый, или этиловый, или изопропиловый эфир хлоруксусной кислоты.

3. Способ по п. 1, отличающийся тем, что в качестве диалкилового эфира фосфористой кислоты используют диметиловый, или диэтиловый, или диизопропиловый эфир фосфористой кислоты.



 

Похожие патенты:

Изобретение относится к полимерам пониженной горючести. Предложена полимерная композиция с пониженной горючестью, содержащая термопластичный полимер и от 1 до 50 мас.% из расчета на общую массу полимерной композиции материала замедлителя горения, полученного способом, включающим нагревание при температуре 200°C или выше в течение периода от 0,01 до 20 ч одного или нескольких соединений формулы (I), где R представляет собой незамещенный C1-12 алкил; М представляет собой металл, который представляет собой Mg, Ca, Zn, Al или Sn; y является числом 2 или 3, таким образом, М(+)y представляет собой катион металла, где (+)y указывает на номинальный заряд, присваиваемый катиону, и p является числом 2 или 3.

Изобретение относится к новому соединению, которое может быть использовано в качестве антиоксиданта при стабилизации каучуков и смазочных масел, бис(3,5-ди-трет-бутил-4-гидроксифенил)пропил)-фосфонат формулы: Технический результат - получено новое химическое соединение, являющееся эффективным антиоксидантом.

Изобретение относится к композиции эфиров метоксиметилфосфоновой кислоты на основе этиленгликоля и способу ее получения, которая может применяться в качестве компонента, повышающего термостойкость и понижающего горючесть композиционных материалов специального назначения, используемых предприятиями авиационной и вертолетной промышленности для изготовления теплозащитных покрытий.

Изобретение относится к композиции эфиров метоксиметилфосфоновой кислоты на основе пентаэритрита и способу ее получения, которая может применяться в качестве компонента, повышающего термостойкость и понижающего горючесть композиционных материалов специального назначения, используемых предприятиями авиационной и вертолетной промышленности для изготовления полимерсотопластов.

Изобретение относится к соединениям, выбранным из указанной ниже группы, а также их фармацевтически приемлемым солям, которые обладают ингибирующей активностью в отношении STAT3 и/или STAT5.

Настоящее изобретение относится к пригодным для применения в качестве контрастного вещества для магнитно-резонансной томографии наноструктурам, содержащим парамагнитные ионы марганца (II), введенные в хелатообразующую полимерную структуру, где наноструктура имеет почти сферическую форму и средний размер 3-7 нм; где молярное отношение Р/Mn составляет 7-20; где полимерная структура образована путем полимеризации мономера, представляющего собой с использованием спонтанного гидролиза и конденсации, где степень полимеризации составляет от 25 до 3000000 мономеров; где ионы марганца (II) введены в полимерную структуру путем контактирования полимера с раствором солей марганца (II); где указанная наноструктура необязательно содержит биологически инертные группы -(CH2CH2O)nCH3, где n=4, которые прививают к остаточным фосфоновым или силанольным группам полимера после хелатирования марганца путем взаимодействия с ,причем количество биологически инертных групп на каждой единице наноструктуры от 10 до 1000.

Изобретение относится к мономеру фталонитрила, способу его получения, связующее и препрег на его основе, которые могут быть использованы в химической промышленности.

Изобретение относится к соединению формулы (I), где кольцо А представляет собой возможно замещенную фенильную группу, где возможный заместитель представляет собой фтор или метокси; кольцо В представляет собой возможно замещенную фенильную группу, где возможный заместитель выбран из метокси, 1 или 2 атомов фтора, -CH2CN, -О-СН2-С3циклоалкила, изопропокси; изоксазола (который может быть замещен 1 или 2 метильными группами), -О-CH2-CN и -O-СН2-С(O)ОН; X представляет собой связь или -СН2О-; Y представляет собой -CH2O-; Z представляет собой связь или -(CR5R6)-; L представляет собой -СО2Н; R1 представляет собой OR7; R2 представляет собой кольцо, выбранное из группы, состоящей из С3-С12 циклоалкила, С6арилконденсированногоС3-С6 циклоалкила, и возможно замещенного С6 арила, причем каждый возможный заместитель выбран из метила, фтора, метокси, циано и метансульфонила; каждый R3, R4, R5 и R6 независимо выбран из группы, состоящей из Н, CN, ОН, CONH2, С1-С12 алкила, С2-С12 алкинила, С6 арила и возможно замещенного C1-C18 гетероарила, выбранного из изоксазола, причем изоксазол может быть замещен 1 или 2 метильными группами, или любые два из R3, R4, R5 и R6 совместно с атомами, к которым они присоединены, могут образовывать возможно замещенный С3-циклоалкил или двойную связь между атомами, к которым они присоединены; R7 выбран из группы, состоящей из Н, возможно замещенного С1-С12 алкила, причем возможные заместители выбраны из 3 атомов фтора или -N(СН3)2 или фенила, С2-С12 алкенила, С3-С12 циклоалкила и С6 арила; r равен 1; или его фармацевтически приемлемой соли.

Изобретение относится к способу получения и разделения O-изобутилметил-фосфоната и O,O'-диизобутилметилфосфоната, который может быть использован для метрологического контроля.

Изобретение относится к безопасному способу получения O-пинаколилметилфосфоната, который может использоваться в химической промышленности. В предложенном способе О-пинаколилметилфосфонат получают со значением массовой доли основного вещества в продукте не менее 96% масс.

Изобретение относится к способу получения эфиров фосфонуксусной кислоты, которые могут быть использованы в качестве исходных соединений в синтезе фосфорсодержащих биологически активных веществ и реагентов. Предложенный способ получения триалкиловых эфиров фосфонуксусной кислоты заключается во взаимодействии эфира хлоруксусной кислоты с диалкиловым эфиром фосфористой кислоты под воздействием ультразвука в присутствии карбоната калия при мольном соотношении реагентов, соответственно равном 1:1:. Предложен новый эффективный способ получения ценных веществ. 2 з.п. ф-лы, 6 пр.

Наверх