Система испытаний земных станций спутниковой связи

Изобретение относится к измерительной технике и может быть использовано для построения измерительных информационных систем и измерительно-управляющих систем испытаний земных станций спутниковой связи. Технический результат изобретения - повышение пропускной способности системы испытаний земных станций спутниковой связи за счет группировки и одновременного выполнения нескольких заданий на измерения. Для этого введен анализатор сигналов для измерения и оценки параметров сигнала, передаваемого тестируемой земной станцией спутниковой связи. 3 ил.

 

Изобретение относится к измерительной технике и может быть использовано для построения измерительных информационных и измерительно-управляющих систем, систем орбитальных испытаний полезной нагрузки космических аппаратов и систем испытаний земных станций спутниковой связи.

Известны системы по патентам US7675462, US8611826, на основе которых решаются или могут быть решены задачи испытаний земных станций спутниковой связи (ЗССС), осуществляющих передачу данных через бортовые ретрансляционные комплексы космических аппаратов на геостационарной орбите, и включающие в себя, в том числе: измерение диаграммы направленности антенны ЗССС на передачу данных; измерение кроссполяризационной развязки; измерение долгосрочной стабильности частоты, эквивалентной изотропно-излучаемой мощности и т.д.

Недостатком, общим для данных систем, является отсутствие возможности одновременного проведения на их основе испытаний нескольких земных станций спутниковой связи, и, как следствие, недостаточная производительность работ.

Известны распределенные измерительно-управляющие системы, реализующие способы их функционирования по патентам RU 2406140, RU 2468420, RU 2481621, RU 2575410 и обеспечивающие многопользовательский удаленный доступ к объектам исследования, управления и измерения. К общему недостатку, присущему данным системам, относится отсутствие возможности их применения для испытаний земных станций спутниковой связи в связи с отсутствием ряда специализированных функциональных узлов.

Наиболее близкой к заявляемой является система по патенту РФ RU 2620596, включающая в свой состав ПЭВМ рабочих мест, сетевой сервер, измерительно-управляющий сервер, анализатор сигналов, переключатель, малошумящие усилители, антенну.

Недостатком данной системы является низкая пропускная способность системы при проведении на ее основе испытаний земных станций спутниковой связи, осуществляющих передачу сигналов с двумя видами поляризаций.

В основу изобретения положена задача повышения пропускной способности системы испытаний земных станций спутниковой связи, осуществляющих передачу сигналов с двумя видами поляризаций.

Поставленная задача решается тем, что в систему, содержащую ПЭВМ рабочих мест, сетевой сервер, измерительно-управляющий сервер, анализатор сигналов, малошумящий усилитель, переключатель, антенну, дополнительно введен, как минимум один анализатор сигналов, при этом выход вертикальной и выход горизонтальной поляризации антенны соединены с сигнальными входами переключателя, сигнальный выход переключателя через малошумящий усилитель соединен с сигнальными входами каждого анализатора сигналов, вход управления переключателя - с выходом управления измерительно-управляющего сервера, входы управления каждого анализатора сигналов соединены с соответствующими выходами управления измерительно-управляющего сервера, выходы обмена данными каждого анализатора сигналов соединены с соответствующими входами измерительно-управляющего сервера, измерительно-управляющий сервер соединен с сетевым сервером, который в свою очередь соединен с ПЭВМ рабочих мест посредством компьютерной сети.

Функциональная схема заявляемой системы представлена на фиг. 1.

Система испытаний земных станций спутниковой связи содержит k ПЭВМ рабочих мест 11, 12, 1k (ПЭВМ РМ), соединенных через компьютерную сеть 2 с сетевым сервером 3. К сетевому серверу 3 подключен измерительно-управляющий сервер 4 (ИУ-сервер). Измерительно -

управляющий сервер 4 соединен по выходам управления с соответствующими входами управления анализаторов сигналов 51, 52,…, 5m и переключателя 7 (П). Антенна 8 по выходам поляризации соединена с сигнальными входами переключателя 7. Сигнальный выход переключателя 7 связан с сигнальными входами анализаторов сигналов 51, 52,…, 5m через малошумящий усилитель 6 (МШУ). Анализаторы сигналов 51, 52,…, 5m по выходу обмена данными соединены с соответствующими входами измерительно-управляющего сервера 4.

Сигналы с частотным и поляризационным разделением k-тестируемые земные станции спутниковой связи передают через бортовой ретрансляционный комплекс космического аппарата на антенну 8.

Система работает следующим образом, по команде пользователей системы, ПЭВМ рабочего места 11, 12,…, 1k через компьютерную сеть 2 на сетевой сервер 3 передает представленное в цифровом виде задание на измерение, которое в порядке поступления на сетевой сервер 3, записывается им в очередь заданий других ПЭВМ. Задание на измерение содержит указатель выхода поляризации антенны 8 и параметры настройки анализатора сигналов 51, 52,…, 5m. Сетевой сервер 3 группирует имеющиеся задания в очереди в блоки с фиксированным числом заданий L в соответствии с их «принадлежностью» к одному из выходов поляризации (вертикальной или горизонтальной) в порядке их поступления на сетевой сервер 3. При этом емкость блока L больше, либо равна общему числу анализаторов сигналов т в системе, то есть L≥m.

Сетевой сервер 3 передает задания из очередного блока заданий в порядке их поступления на измерительно-управляющий сервер 4 для его выполнения незадействованными в текущий момент времени анализаторами сигналов 51, 52,…,5m. Измерительно-управляющий сервер 4 выполняет из одного блока имеющиеся задания на измерения одновременно с использованием т анализаторов сигналов 51, 52,…,5m - одно задание с использованием одного анализатора сигналов.

После обработки текущего (очередного) блока заданий, система автоматически переходит к обслуживанию заданий, размещенных в следующем блоке.

В соответствии с обрабатываемым заданием из очередного блока, измерительно-управляющий сервер 4 осуществляет выдачу управляющих сигналов на вход управления незадействованного в текущий момент анализатора сигналов из 51, 52,…,5m в целях установки его конфигурации. При этом для первого задания из очередного блока заданий, после завершения выполнения последнего задания из предыдущего блока, измерительно-управляющий сервер 4 осуществляет выдачу управляющего сигнала на вход переключателя 7 в целях выбора соответствующего выхода поляризации антенны 8 и запускает процесс измерения для данного анализатора сигналов.

Сигнал с соответствующего выхода поляризации антенны 8 через переключатель 7 поступает на вход малошумящего усилителя 6, а затем на входы анализаторов сигналов 51 ,52,…,5m. Задействованный анализатор сигналов на частоте, определяемой обрабатываемым заданием, выполняет измерение и оценку параметров сигнала, передаваемого тестируемой земной станцией спутниковой связи через бортовой ретрансляционный комплекс космического аппарата и принятого антенной 8.

Результаты измерения в цифровом виде, полученные от анализаторов сигналов 51, 52,…,5m, измерительно-управляющий сервер 4 передает на сетевой сервер 3, а сетевой сервер 3 на соответствующую ПЭВМ рабочего места 11, 12,…,1k для последующей обработки и визуализации.

После получения ответа на предыдущее задание, по команде пользователя ПЭВМ рабочего места 11, 12,…,1k отправляет следующее задание на измерение на сетевой сервер 3, если потребность в таковом имеется.

Современный уровень техники позволяет реализовать заявляемую систему на основе серийно выпускаемых приборов и устройств.

Технический результат изобретения поясним на конкретном примере для следующих исходных данных:

- дополнительно в систему введен один анализатор сигналов, то есть

m=2;

- емкость блока заданий L=2 задания;

- время выполнения каждого «-го задания из N имеющихся в очереди составляет i временных интервалов фиксированной длительности Δt:

Для упрощения положим, что время перевода переключателя 7 в одно из его состояний много меньше величины и им можно пренебречь.

Предположим, что на сетевом сервере в очереди в текущий момент содержатся N=6 заданий со следующими значениями времени выполнения (в единицах переменной порядком n их поступления на сетевой сервер 2 и принадлежностью к виду поляризации :

где n=1, 2, 3, 4, 5, 6; i=4, 4, 5, 2, 3, 3. При этом:

Р=Н - если задание содержит указатель выхода горизонтальной поляризации антенны;

Р=V - если задание содержит указатель выхода вертикальной поляризации антенны.

На фиг. 2 показана временная диаграмма выполнения заданий измерительно-управляющим сервером поочередно в устройстве прототипе.

Суммарное время выполнения рассмотренных заданий определяется как:

Для рассмотренного примера группировка заданий в очереди в блоки фиксированной длины в заявляемой системе в порядке их поступления выполняется сетевым сервером следующим образом:

- первый блок заданий:

- второй блок заданий

- третий блок заданий

В соответствии с изобретением, для рассмотренного примера выполнение заданий на измерения из одного блока выполняется измерительно-управляющим сервером параллельно во времени с использованием m анализаторов сигналов. Временная диаграмма обслуживания заданий в заявляемой системе для m=2 и L=2 приведена на фиг. 3, где: - выполнение задания с использованием первого анализатора сигналов 51; - выполнение заданий с использованием второго анализатора сигналов 52.

Суммарное время обслуживания в заявляемой системе имеющихся в очереди заданий, в соответствии с их группировкой для рассматриваемого примера определяется, следующим выражением:

С учетом вышеизложенного выигрыш в пропускной способности в заявляемой системе для рассмотренного примера составляет:

Повышение пропускной способности в R раз говорит о более эффективном функционировании системы испытаний земных станций спутниковой связи, которые передают сигналы с двумя видами поляризаций и о решении положенной в основу изобретения задачи. Повышение пропускной способности системы также может зависеть от выбора емкости блока L и числа дополнительно введенных анализаторов сигналов.

При этом следует отметить, что увеличение количества однотипных элементов - анализаторов сигналов и уменьшение количества МШУ в системе прототипе, не обеспечивает достижение соответствующего технического результата. Так как, наличие на сетевом сервере в очереди друг за другом заданий, содержащих указатели разных выходов поляризации антенны, при их выполнении измерительно-управляющим сервером по реализуемому системой прототипом способе обработки заданий в порядке их поступления, вызывает «простой» дополнительно вводимых анализаторов сигналов.

Таким образом, соответствие условию «изобретательский уровень» заявляемого изобретения обеспечивается достижением неожиданного технического результата при дополнении известной системы известной частью и упрощением конструкции. Совокупность признаков, характеризующих изобретение, дает возможность реализации иного способа функционирования системы и решения поставленной задачи.

Система испытаний земных станций спутниковой связи, содержащая ПЭВМ рабочих мест, сетевой сервер, измерительно-управляющий сервер, анализатор сигналов, малошумящий усилитель, переключатель, антенну, отличающаяся тем, что дополнительно введен как минимум один анализатор сигналов, при этом первый выход поляризации антенны соединен с первым сигнальным входом переключателя, второй выход поляризации антенны - со вторым сигнальным входом переключателя, сигнальный выход переключателя через малошумящий усилитель соединен с сигнальными входами каждого анализатора сигналов, вход управления переключателя - с третьим выходом управления измерительно-управляющего сервера, входы управления каждого анализатора сигналов соединены с соответствующими выходами управления измерительно-управляющего сервера, выходы обмена данными каждого анализатора сигналов соединены с соответствующими входами измерительно-управляющего сервера.



 

Похожие патенты:

Изобретение относится к сотовой связи. Техническим результатом является сбережение энергии и ограничение помех.

Изобретение относится к беспроводной связи. Электронное устройство обеспечивает схему модуля отслеживания нарушения настройки, сконфигурированную, чтобы обнаруживать изменение в коэффициенте стоячей волны по напряжению (VSWR) между радиочастотным (RF) передатчиком и RF-антенной относительно предварительно определенного базового показателя VSWR, и схему датчика приближения, сконфигурированную, чтобы регулировать мощность передачи несущей волны, передаваемой от RF-передатчика, если изменение не может удовлетворять условию приемлемого VSWR.

Изобретение относится к области систем обработки сигналов в средствах связи. Технический результат заключается в уменьшении количества параметров оптимизации адаптивного алгоритма без потери в качестве работы цифровой системы линеаризации.

Изобретение относится к области беспроводной сотовой связи и описывает системы и методы для радиочастотной (РЧ) калибровки в многоантенной системе (MAS) с многопользовательскими (MU) передачами (MU-MAS), в которой применяется принцип взаимности между восходящими и нисходящими каналами.

Изобретение относится к средствам контроля работоспособности системы заканчивания скважины. В частности предложена система для проверки параметров функционирования компоновки для нижнего заканчивания, содержащая: компоновку для нижнего заканчивания, развернутую в стволе скважины перед развертыванием компоновки для верхнего заканчивания, причем компоновка для нижнего заканчивания содержит датчик, систему связи и систему регулирования расхода; и систему инструмента для обслуживания, развернутую с возможностью извлечения в стволе скважины, причем система инструмента для обслуживания содержит интерфейс системы инструмента для обслуживания, взаимодействующий с компоновкой для нижнего заканчивания, перед соединением компоновки для верхнего заканчивания с компоновкой для нижнего заканчивания.

Изобретение относится к информационно-измерительной и контрольной технике для мониторинга, анализа и контроля сообщений, передаваемых по мультиплексным цифровым каналам, в частности, по ГОСТ Р 52070-2003 и РТМ 1495-75, например, при проведении полунатурного моделирования.

Изобретение относится к области связи. Техническим результатом является возможность выбрать ячейку, более предпочтительную для терминала, в среде, где осуществляется формирование диаграммы направленности.
Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении эффективности мониторинга качества линии радиосвязи терминальным устройством под покрытием множества лучей.

Изобретение относится к области связи. Раскрытая система беспроводной передачи включает в себя пару из приемника и передатчика.

Изобретение относится к беспроводной связи. Беспроводное устройство в первом кластере устройств сети с распознаванием соседей (в кластере NAN).

Изобретение относится к измерительной технике и может быть использовано для построения измерительных информационных систем и измерительно-управляющих систем испытаний земных станций спутниковой связи. Технический результат изобретения - повышение пропускной способности системы испытаний земных станций спутниковой связи за счет группировки и одновременного выполнения нескольких заданий на измерения. Для этого введен анализатор сигналов для измерения и оценки параметров сигнала, передаваемого тестируемой земной станцией спутниковой связи. 3 ил.

Наверх