Адаптивный поляризационный фильтр

Изобретение относится к оптическому приборостроению и может быть использовано в интерференционных оптических фильтрах, приборах защиты от ослепляющего излучения, для обеспечения безопасности движения транспортных средств. Адаптивный поляризационный фильтр содержит последовательно установленные оптически прозрачные системы с использованием оптически прозрачного вещества и последовательностей жидкокристаллических пленок. В него введены стеклянные подложки с нанесенными на них прозрачными электродами для управления свойствами низкомолекулярных жидких кристаллов, заключенных в полимерную матрицу, поляризационные голографические решетки, записанные в жидкокристаллических композитах, вращатель плоскости поляризации па основе нематических жидких кристаллов, источники постоянного и переменного напряжения, регистратор интенсивности приходящего света, система управления элементами электродов и устройств, включенных в оптическое соединение фильтра совместно с ЭВМ на базе микропроцессора. Технический результат - обеспечение малых потерь падающего излучения, исключение рассеяния поляризационных составляющих проходящего света с возможностью их одинакового подавления, уменьшение толщины, упрощение управления элементами устройства, обеспечение работы в статическом режиме при ручном управлении и динамическом в автоматическом режиме. 1 ил.

 

Изобретение относится к устройствам оптического приборостроения, интерференционным оптическим фильтрам, приборам защиты от ослепляющего излучения, для обеспечения безопасности движения транспортных средств.

Известен адаптивной поляризационный фильтр, патент РФ 2464596, используемый для защиты от излучения. Фильтр содержит две последовательности пространственно разнесенных жидкокристаллических пленок с системами электродов, формирующих в пленках пространственную оптическую анизотропию.

Недостатками данного аналога являются большие потери падающего излучения из-за поглощения света жидкокристаллическим слоем, неодинаковость подавления ортогональных поляризационных составляющих излучения.

Наиболее близким по технической сущности и выбранным в качестве прототипа является "Адаптивный поляризационный фильтр", патент РФ 2413256. Данное устройство имеет наиболее схожую структуру с заявленным адаптивным поляризационным фильтром.

Недостатки прототипа:

1. Большие потери падающего излучения из-за поглощения в жидкокристаллических пленках.

2. Существенная величина рассеяния каждой поляризационной составляющей проходящего света из-за разнесения жидкокристаллических пленок в пространстве.

3. Различие в подавлении ортогональных составляющих излучения.

4. Трудоемкая технология изготовления с высокой себестоимостью изделия.

5. Большие габариты фильтра со сложной системой управления работой устройства.

Задачей (техническим результатом) предлагаемого изобретения является: создание поляризационного фильтра с малыми потерями падающего излучения и исключение рассеяния поляризационных составляющих проходящего света с возможностью их одинакового подавления, с незначительной толщиной, упрощенной системой управления элементами устройства, работой в статическом режиме при ручном управлении и динамическом в автоматическом режиме, малой себестоимостью, адаптивного к поляризованному и естественному свету.

Данный технический результат достигается тем, что в известное устройство, патент на изобретение РФ 2413256, адаптивный поляризационный фильтр содержащий последовательно установленные оптически прозрачные системы с использованием оптически прозрачного диэлектрического вещества и последовательностей жидкокристаллических пленок введены: стеклянные подложки с нанесенными на них прозрачными электродами для управления свойствами низкомолекулярных жидких кристаллов заключенных в полимерную матрицу, поляризационные голографические решетки записанные в жидкокристаллических композитах, вращатель плоскости поляризации на основе нематических жидких кристаллов, источники постоянного и переменного напряжения, регистратор интенсивности проходящего света, система управления элементами электродов и устройств, включенных в оптическое соединение фильтра совместно с ЭВМ на базе микропроцессора.

На чертеже изображена схема оптического соединения предлагаемого адаптивного поляризационного фильтра.

Адаптивный поляризационный фильтр содержит стеклянную подложку 1, прозрачное покрытие с электродами 2, поляризационную голографическую дифракционную решетку 3, вращатель плоскости поляризации 4, регистратор интенсивности проходящего света 5, источник постоянного и переменного напряжения 6, систему управления совместно с ЭВМ для обеспечения работоспособности всех элементов фильтра 7.

Устройство работает следующим образом:

Адаптивный поляризационный фильтр собирается согласно схеме оптического соединения представленного на чертеже. Для восприятия технологии создания устройств на основе жидких кристаллов заключенных в полимерную матрицу следует указать на их основные свойства и возможности. Жидкие кристаллы одновременно обладают признаками кристалла и жидкости. Их субстанция прозрачная. Молекулы жидких кристаллов переориентируются во внешнем электрическом поле и изменяют поляризацию света, проходящего через их слои. В основе всех элементов, содержащих жидкие кристаллы, включенных в оптическое соединение, изображенное на чертеже лежит единый конструктивный принцип - субстанция жидких кристаллов 3 и 4 заключенных в полимерную матрицу располагается между двумя параллельными друг к другу стеклянными пластинами 1 с нанесенными на них прозрачными покрытиями с электродами 2. Поляризационные голографические решетки 3 регистрировались предварительно в области суперпозиции двух когерентных волн равной интенсивности со взаимно ортогональными поляризациями (λ=658 нм). Угол схождения интерферирующих волн порядка единиц градусов. Под влиянием стационарного интерференционного поля в исходной композиции происходила полимеризация мономера. В результате формировалась поляризационная решетка с периодически изменяющимися ориентациями молекул нематического жидкого кристалла. Вращатель плоскости поляризации 4 состоит из двух подложек с электродами для подключения потенциала и жидких кристаллов между ними. Молекулы кристалла от одной подложки до другой повернуты на 90 градусов если между пластинами отсутствует напряжение. Когда подается потенциал, то молекулы строго ориентируются вдоль поля. Промежуточное значение потенциала позволяет вращать плоскость поляризации при прохождении света через устройство.

Излучение, попадающее на вход адаптивного поляризационного светофильтра проходит через первые элементы 1-3 оптического соединения -дифракционную решетку как поляризатор, ориентированную, например, по вертикали, далее через нейтральный вращатель 4 к элементам 2-3 второй дифракционной решетки как анализатора, ориентированного, например, горизонтально. Скрещенные под углом 90 градусов поляризатор и анализатор подавляют практически полностью падающее на фильтр излучение. Для естественного света включается в работу вращатель 4, что позволяет выделять отдельные компоненты падающего на анализатор излучение и добиваться его подавления. Автоматизация данных процессов осуществляется элементами 5-7 поляризационного фильтра.

Таким образом набор перечисленных элементов позволяет решить заявленную техническую задачу - создание эффективного поляризационного фильтра с малыми потерями падающего излучения и исключением рассеяния поляризационных составляющих проходящего света с возможностью их одинакового подавления, из-за оптического контакта и отсутствия зазоров между элементами, фильтр имеет малую толщину, трудоемкость его изготовления и себестоимость обусловлены стандартными комплектующими и не велики по сравнению с изготовлением элементов аналога и прототипа, система управления работой элементов упрощена из-за их малого количества и не широкого изменения функций, может работать в статическом режиме при ручном управлении и динамическом в автоматическом режиме, фильтр адаптирован к поляризованному и естественному свету.

Адаптивный поляризационный фильтр, содержащий последовательно установленные оптически прозрачные системы с использованием оптически прозрачного вещества и последовательностей жидкокристаллических пленок, отличающийся тем, что в него введены стеклянные подложки с нанесенными на них прозрачными электродами для управления свойствами низкомолекулярных жидких кристаллов, заключенных в полимерную матрицу, поляризационные голографические решетки, записанные в жидкокристаллических композитах, вращатель плоскости поляризации на основе нематических жидких кристаллов, источники постоянного и переменного напряжения, регистратор интенсивности проходящего света, систему управления элементами электродов и устройств, включенных в оптическое соединение фильтра совместно с ЭВМ на базе микропроцессора.



 

Похожие патенты:

Группа изобретений относится к области оптической передачи данных. Способ изготовления поляризатора, в котором формируют оптический волновод на подложке, используя процесс изготовления полупроводниковых приборов, при этом формируют структуру и размеры оптического волновода таким образом, чтобы обеспечить поддержку требуемой поляризационной моды распространяющегося светового излучения в соответствии с требуемой рабочей длиной волны.

Изобретение относится к оптической технике. Оптический модулятор, каждый пиксель которого содержит перекрывающие площадь пикселя неподвижный плоский поляризатор и параллельный ему подвижный плоский поляризатор.

Изобретение относится к оптической технике. Оптический модулятор, каждый пиксель которого содержит перекрывающие площадь пикселя неподвижный плоский поляризатор и параллельный ему подвижный плоский поляризатор.

Способ получения скалярного вихревого пучка и устройство для его реализации обеспечивают формирование дальнепольного распределения интенсивности за счет интерференции отдельных гауссовых, параллельных пучков, находящихся в различных фазовых состояниях и расположенных равномерно вдоль периметров геометрических фигур, обладающих общим центром симметрии.

Изобретение относится к прикладной оптике и может быть использовано в акустооптических монохроматорах, спектрометрах и спектрометрах изображений. Светосильный двухкристальный акустооптический монохроматор состоит из оптически соединенных входного элемента селекции поляризации света, первой АО ячейки, промежуточного элемента селекции поляризации света, второй АО ячейки, выходного элемента селекции поляризации света.

Изобретение относится к прикладной оптике и может быть использовано в акустооптических монохроматорах, спектрометрах и спектрометрах изображений. Светосильный двухкристальный акустооптический монохроматор состоит из оптически соединенных входного элемента селекции поляризации света, первой АО ячейки, промежуточного элемента селекции поляризации света, второй АО ячейки, выходного элемента селекции поляризации света.

Ориентированная пленка включает в себя первую-четвертую области, имеющие первый-четвертый углы ориентации. Первый поляризованный свет, имеющий первую интенсивность, излучается на первую и вторую области фоточувствительной пленки.

Изобретение относится к области оптического материаловедения, в частности к конвертеру поляризации лазерного излучения. Оксидное стекло обрабатывают сфокусированным лазерным пучком.

Изобретение относится к области оптического материаловедения, в частности к конвертеру поляризации лазерного излучения. Оксидное стекло обрабатывают сфокусированным лазерным пучком.

Изобретение относится к оптике. Кристаллическое тело, образованное из монокристалла типа граната, имеет пару пропускающих свет поверхностей, которые противостоят друг другу и пропускают свет, и по меньшей мере одну боковую поверхность, которая соединяет пару пропускающих свет поверхностей, при этом отношение В/А плотности А (количества на 1 см2) дислокаций в пропускающих свет поверхностях и плотности В (количества на 1 см2) дислокаций в боковой поверхности удовлетворяет следующей общей формуле: 1≤(В/А)≤3600.

Изобретение относится к области промышленного производства и касается покрытого изделия. Покрытое изделие содержит подложку и последовательно расположенные на подложке первый содержащий серебро и отражающий инфракрасное (ИК) излучение слой, первый содержащий NiCr контактный слой, первый содержащий нитрид кремния диэлектрический слой, второй содержащий NiCr контактный слой, второй содержащий серебро и отражающий инфракрасное излучение слой, третий содержащий NiCr контактный слой и второй содержащий нитрид кремния диэлектрический слой.

Система освещения для имитации внутри помещения освещения, создаваемого небом и Солнцем, содержит хроматическое зеркало, имеющее зеркально отражающую поверхность и рассеивающий слой перед ней, преимущественно рассеивающий коротковолновые компоненты падающего света по сравнению с его длинноволновыми компонентами, и осветитель, выполненный с возможностью работы в качестве источника белого света для освещения хроматического зеркала так, что падающий свет проходит рассеивающий слой дважды.

Изобретение относится к оконным системам, более конкретно к оконным системам, обеспечивающим условия конфиденциальности. Предлагается защитная оконная система (1), содержащая оконную панель (100), осветительное устройство (200) и устройство (300) управления.

Изобретение относится к диэлектрическим зеркалам. Диэлектрическое зеркало включает в себя покрытие, имеющее чередующиеся слои с низкими и высокими показателями преломления.

Изобретение относится к оптической измерительной технике. Устройство для измерения коэффициентов отражения и излучения материалов и покрытий состоит: из зеркального эллипсоида с отверстием, выполненным под углом 5-20° к его оси, предназначенным для ввода излучения на образец, плоскость которого проходит через нижний фокус эллипсоида; небольшой интегрирующей сферы с пироэлектрическим приемником излучения, чувствительная поверхность которого расположена на поверхности сферы; и экрана, предназначенного для устранения прямого попадания излучения, отраженного от поверхности образца на фотоприемник.

Изобретение относится к оптическим приборам. Оптический прибор для формирования оптического изображения, предназначенного для наблюдения, содержит оптическую систему для формирования оптического изображения объекта, видимого наблюдателю на выходном зрачке на плоскости наблюдения, и дифракционный элемент, расположенный в плоскости изображения оптической системы и выполненный с возможностью формирования набора выходных зрачков, которые визуально воспринимаются наблюдателем как единый увеличенный выходной зрачок.

Изобретение относится к области оптического приборостроения и касается алмазной дифракционной решетки для видимого диапазона. Дифракционная решетка содержит алмазную подложку с внедренной в ее поверхность дифракционной периодической микроструктурой.

Изобретение относится к области технологий волоконно-оптической связи. Устройство контроля лазерной длины волны содержит два оптических приёмника и фильтр.

Изобретение относится к способу изготовления дифракционной решетки, предназначенной для применения в спектральном приборе. Способ включает в себя следующие этапы: находят рисунок штрихов дифракционной решетки в соответствии с законом изменения расстояния между этими штрихами, найденным согласно схеме спектрального прибора.

Способ включает в себя формирование заданной периодической микроструктуры на поверхности полированного алмаза с помощью имплантации ионами бора с энергией 10-100 кэВ, дозой облучения 1⋅1015-1.0⋅1020 ион/см2 через поверхностную маску.

Изобретение относится к области исследования и анализа материалов. Оптическое устройство содержит источник оптического излучения, приёмник оптического излучения и направляющий элемент в виде объёмной фигуры с плоскими гранями из твердотельного материала, прозрачного для длин волн заданного диапазона, в котором выполнена интегральная оптическая структура, сформированная путём модификации показателя преломления.

Изобретение относится к оптическому приборостроению и может быть использовано в интерференционных оптических фильтрах, приборах защиты от ослепляющего излучения, для обеспечения безопасности движения транспортных средств. Адаптивный поляризационный фильтр содержит последовательно установленные оптически прозрачные системы с использованием оптически прозрачного вещества и последовательностей жидкокристаллических пленок. В него введены стеклянные подложки с нанесенными на них прозрачными электродами для управления свойствами низкомолекулярных жидких кристаллов, заключенных в полимерную матрицу, поляризационные голографические решетки, записанные в жидкокристаллических композитах, вращатель плоскости поляризации па основе нематических жидких кристаллов, источники постоянного и переменного напряжения, регистратор интенсивности приходящего света, система управления элементами электродов и устройств, включенных в оптическое соединение фильтра совместно с ЭВМ на базе микропроцессора. Технический результат - обеспечение малых потерь падающего излучения, исключение рассеяния поляризационных составляющих проходящего света с возможностью их одинакового подавления, уменьшение толщины, упрощение управления элементами устройства, обеспечение работы в статическом режиме при ручном управлении и динамическом в автоматическом режиме. 1 ил.

Наверх