Устройство для измерения нейтронной пористости

Использование: для измерения нейтронной пористости пластов горных пород в скважинах. Сущность изобретения заключается в том, что устройство определения нейтронной пористости включает в себя импульсный источник быстрых нейтронов, нейтронный детектор, размещенные в цилиндрическом охранном корпусе, при этом в качестве нейтронного монитора, детектора эпитепловых нейтронов, а также детектора тепловых нейтронов используется один детектор тепловых нейтронов, расположенный соосно с импульсным источником быстрых нейтронов и цилиндрическим охранным корпусом, детектор тепловых нейтронов подключен к усилителю-интегратору, усилитель-интегратор подключен к процессору, процессор подключен к системе телеметрии, при этом импульсный источник быстрых нейтронов подключен к блоку управления, блок управления подключен также к процессору. Технический результат: обеспечение возможности регистрации быстрых нейтронов, излучаемых импульсным источником нейтронов во время его импульсов, пропорциональным Не-3 счетчиком при условии наложения электрических сигналов на выходе пропорционального счетчика. 3 ил.

 

Изобретение относится к области геофизических исследований параметров геологических пластов методом импульсного нейтрон-нейтронного каротажа и может быть использовано в скважинных устройствах, предназначенных для измерения нейтронной пористости пластов горных пород в скважинах.

Импульсный нейтрон-нейтронный каротаж применяют в обсаженных скважинах для литологического расчленения разрезов и выделения коллекторов, выявления водо- и нефтегазонасыщенных пластов, определения положений водонефтяного контакта, определения газожидкостных контактов, оценки пористости пород, количественной оценки начальной, текущей и остаточной нефтенасыщенности, контроля за процессом испытания и освоения скважин («Техническая инструкция по проведению геофизических исследований и работ с приборами на кабеле в нефтяных и газовых скважинах РД 153-39.0-072-01», Москва – 2002).

Известно «Устройство, снабженное нейтронным генератором, для измерения нейтронной пористости, обладающее высокой чувствительностью к пористости». Устройство включает в себя: источник быстрых нейтронов, ближний нейтронный детектор и дальний нейтронный детектор, расположенный на большем расстоянии от нейтронного источника, чем ближний нейтронный детектор, источник быстрых нейтронов выполнен в виде электронного генератора нейтронов, электронный генератор нейтронов является генератором 14 МэВ нейтронов, излучаемые в горную породу нейтроны имеют энергию выше энергии нейтронов, излучаемых AmBe источником, ближний нейтронный детектор является детектором тепловых нейтронов, детектор тепловых нейтронов содержит 3Не, активная область детектора тепловых нейтронов, ближайшего к электронному генератору нейтронов, располагается от него на расстояниях менее, примерно, 7 или 9, или 10 дюймов, активная область детектора тепловых нейтронов, дальнего по отношению к электронному генератору нейтронов располагается от него на расстоянии более 15 дюймов, между детектором тепловых нейтронов и электронным нейтронным генератором установлен экран. Заявка на патент США №2011/0297818 А1, G01V 5/10. 08.12.2011. Аналог.

Недостатком аналога является относительно низкая точность измерения влажности горной породы в скважине при наличии в ней кристаллизационной (связанной) воды, поскольку поток тепловых нейтронов определяется общим содержанием воды, а не только водой, содержащейся в поровом пространстве. Относительно низкая точность измерения влажности может быть обусловлена также наличием в породе примесей, заметно поглощающих тепловые нейтроны.

Известно «Скважинное устройство для определения нейтронной пористости, характеризующееся повышенной точностью и уменьшением литологических эффектов». Устройство включает в себя: импульсный генератор 14 МэВ нейтронов, нейтронный монитор, первый и второй нейтронные детекторы и схему обработки данных. Причем, первый нейтронный детектор, или второй нейтронный детектор, или оба нейтронных детектора расположены от импульсного генератора на расстоянии, обеспечивающем минимальное влияние литологии. Заявка на патент США №2011/0260044 А1, G01V 5/10. 27.10.2011. Аналог.

Недостатком аналога является относительно низкая точность измерения влажности горной породы в скважине при наличии в ней кристаллизационной (связанной) воды, поскольку поток тепловых нейтронов определяется общим содержанием воды, а не только водой, содержащейся в поровом пространстве. Относительно низкая точность измерения влажности может быть обусловлена также наличием в породе примесей, заметно поглощающих тепловые нейтроны.

Известны «Скважинные устройства для определения сечения поглощения и пористости, снабженные нейтронными мониторами». Устройства включают в себя: импульсный источник нейтронов, нейтронный монитор, расположенный рядом с источником нейтронов, гамма-детектор, расположенный от источника нейтронов на расстоянии, примерно, 8-40 дюймов, защитный экран между гамма-детектором и нейтронным источником, детектор эпитепловых нейтронов, расположенный между источником нейтронов и гамма-детектором на расстоянии от 9 до 14 дюймов от нейтронного источника, детектор тепловых нейтронов, расположенный рядом с детектором эпитепловых нейтронов, дополнительно один и более детекторов эпитепловых и тепловых нейтронов, расположенных от нейтронного источника на большем расстоянии, чем расстояние между гамма- детектором и нейтронным источником, причем расстояние между дополнительными детекторами эпитепловых и тепловых нейтронов и нейтронным источником составляет 24 или более дюймов. Патент США № 7365307 В2, G01V 5/10. 29.04.2008. Прототип.

Недостатком прототипа является невозможность регистрации быстрых нейтронов, излучаемых импульсным источником нейтронов во время его импульсов, пропорциональным Не-3 счетчиком при условии наложения электрических сигналов на выходе пропорционального счетчика.

Прототип содержит, как минимум, три нейтронных детектора: нейтронный монитор, детектор эпитепловых нейтронов и детектор тепловых нейтронов, которые расположены на разных расстояниях от импульсного источника нейтронов. Это приводит к увеличению длины скважинного прибора и ухудшению условий беспрепятственной проводки скважинного прибора по скважине.

Техническим результатом изобретения является обеспечение регистрации быстрых нейтронов, излучаемых импульсным источником нейтронов во время его импульсов, пропорциональным Не-3 счетчиком при условии наложения электрических сигналов на выходе пропорционального счетчика. Следствием чего является уменьшение количества нейтронных детекторов в скважинном приборе и длины скважинного прибора, улучшающих условия беспрепятственной проводки скважинного прибора по скважине.

Это достигается за счет использования вместо нескольких нейтронных детекторов: нейтронного монитора, детектора эпитепловых нейтронов, а также детектора тепловых нейтронов одного детектора тепловых нейтронов, расположенного на одном расстоянии от нейтронного источника, и регистрации им отдельно быстрых, эпитепловых и тепловых нейтронов за счет измерения временной зависимости сигнала, возникающего на выходе пропорционального счетчика во время и между нейтронными импульсами, с помощью усилителя-интегратора.

Технический результат достигается тем, что устройство определения нейтронной пористости, включающее в себя импульсный источник быстрых нейтронов, нейтронный детектор, размещенные в цилиндрическом охранном корпусе, в качестве нейтронного монитора, детектора эпитепловых нейтронов, а также детектора тепловых нейтронов используется один детектор тепловых нейтронов, расположенный соосно с импульсным источником быстрым нейтронов и цилиндрическим охранным корпусом, детектор тепловых нейтронов подключен к усилителю-интегратору, усилитель-интегратор подключен процессору, процессор подключен к системе телеметрии, при этом импульсный источник быстрых нейтронов подключен к блоку управления, блок управления подключен также к процессору.

Сущность изобретения поясняется на Фиг. 1 - 3.

На Фиг. 1 схематично показаны состав и взаимное расположение основных элементов одной из возможных конструкций скважинного прибора, где:

1 – цилиндрический охранный корпус,

2 – импульсный источник быстрых нейтронов,

3 – детектор тепловых нейтронов,

4 – усилитель-интегратор,

5 – процессор,

6 – блок управления,

7 – система телеметрии.

На Фиг. 2 показана зависимость от времени удельного энерговыделения в детекторе 3 тепловых нейтронов при использовании в его качестве пропорционального 3Не счетчика и составляющие удельного энерговыделения, рассчитанные для кальцита с нейтронной пористостью (влажностью) 14,9% при его облучении 14 МэВ нейтронами с длительностью нейтронного импульса 1 мкс, где:

8 – зависимость удельного энерговыделения в детекторе 3,

9 - зависимость удельного энерговыделения в детекторе 3, вызываемого быстрыми нейтронами с энергией 14 МэВ - 40 кэВ,

10 - зависимость удельного энерговыделения в детекторе 3, вызываемого эпитепловыми нейтронами с энергией 40 кэВ – 0,414 эВ,

11 - зависимость удельного энерговыделения в детекторе 3, вызываемого тепловыми нейтронами с энергией менее 0,414 эВ.

На Фиг. 3 показаны рассчитанные зависимости удельного энерговыделения в детекторе 3 тепловых нейтронов при использовании в его качестве пропорционального 3Не счетчика при различной нейтронной пористости кальцита при его облучении 14 МэВ нейтронами с длительностью нейтронного импульса 1 мкс, где:

12 - зависимость удельного энерговыделения в детекторе 3 для кальцита с нейтронной пористостью 0,8%,

13 - зависимость удельного энерговыделения в детекторе 3 для кальцита с нейтронной пористостью 14,9%,

14 - зависимость удельного энерговыделения в детекторе 3 для кальцита с нейтронной пористостью 36,4%,

15 - зависимость удельного энерговыделения в детекторе 3 для пресной воды.

Скважинное устройство согласно заявляемому техническому решению содержит цилиндрический охранный корпус 1, импульсный источник 2 быстрых нейтронов, детектор 3 тепловых нейтронов, усилитель-интегратор 4, процессор 5, блок управления 6 и систему телеметрии 7.

Цилиндрический охранный корпус 1 служит в качестве прочного корпуса устройства и выполняется из стали толщиной около нескольких миллиметров.

Импульсный источник 2 быстрых нейтронов может быть выполнен в виде генератора нейтронов с энергией 2,5 МэВ или 14 МэВ, расположен соосно с охранным корпусом 1 и служит для облучения горной породы импульсами быстрых нейтронов. Импульсный источник 2 подключен электрически к блоку управления 6.

Детектор 3 тепловых нейтронов служит для регистрации нейтронов, поступающих от импульсного источника 2 и из окружающей среды. В качестве детектора 3 тепловых нейтронов может использоваться пропорциональный счетчик, заполненный 3Не, длина которого обычно составляет от 8 см до 15 см, а диаметр около 30 мм. Детектор 3 может быть выполнен в виде кассеты, содержащей несколько пропорциональных счетчиков. Детектор 3 тепловых нейтронов обычно располагают по отношению к импульсному источнику 2 на расстоянии L<15 см и соосно с охранным корпусом 1.

Блок управления 6 электрически подключен к импульсному источнику 2 и процессору 5 и служит для управления работой импульсного источника 2.

Детектор 3 тепловых нейтронов подключен электрически ко входу усилителя-интегратора 4, который служит для интегрирования, усиления и оцифровки заряда, образуемого в детекторе 3 тепловых нейтронов в результате взаимодействия с ними нейтронов различной энергии.

К усилителю-интегратору 4 подключен также процессор 5. Процессор 5 служит для программирования режимов работы усилителя-интегратора 4, блока управления 6 и передачи оцифрованных данных в системе телеметрии 7.

Система телеметрии 7 служит для передачи данных в наземную аппаратуру (на Фиг. 1 не показана).

Сигнал, снимаемый с выхода детектора 3, пропорционален удельному энерговыделению в детекторе 3 (зависимость 8 на Фиг. 2).

При облучении вещества импульсным источником 2 быстрых нейтронов в веществе в различные моменты времени с начала импульса присутствуют быстрые нейтроны различной энергии, эпитепловые и тепловые нейтроны. Соотношение их потоков зависит от времени и нейтронной пористости горной породы.

Величина энерговыделения (заряда), возникающего в детекторе 3 под действием быстрых нейтронов, определяется их потоком и средней энергией, передаваемой 3Не за счет упругого рассеяния быстрых нейтронов.

Величина энерговыделения (заряда), возникающего в детекторе 3 под действием эпитепловых и тепловых нейтронов, прямо пропорциональна потоку на него этих нейтронов, поскольку при их захвате ядром 3Не выделяется одна и та же энергия, равная 0,76 Мэв/нейтрон.

Во время импульса источника 2 и некоторое время после него на детектор поступают в основном быстрые нейтроны как непосредственно от источника, так и со стороны окружающего вещества (зависимость 9 на Фиг. 2 для нейтронов с энергией 14 МэВ – 40 кэВ). Из-за замедления быстрых нейтронов в веществе средняя энергия этих нейтронов постоянно уменьшается. Время замедления быстрых нейтронов сильно зависит от нейтронной пористости горной породы и уменьшается с ее увеличением.

Из зависимости 9 видно, что сигнал, возникающий в детекторе 3 тепловых нейтронов при t≈ 0,1 мкс от начала нейтронного импульса, может быть использован для мониторирования выхода импульсного источника 2.

Через несколько микросекунд после начала нейтронного импульса на детектор начинают поступать эпитепловые нейтроны (зависимость 10 на Фиг. 2 для нейтронов с энергией 40 кэВ – 0,414 эВ). В случае короткого ~1 мкс нейтронного импульса максимальная плотность их потока на детектор достигается примерно через t≈2-3 мкс и затем быстро спадает с постоянной спада не более нескольких десятков микросекунд. Таким образом, сигнал, возникающий в детекторе 3 тепловых нейтронов при t≈2-3 мкс, в основном вызван эпитепловыми нейтронами.

Тепловые нейтроны начинают поступать на детектор через несколько десятков микросекунд после начала нейтронного импульса (зависимость 11 на Фиг. 2 для нейтронов с энергией <0,414 эВ). В случае нейтронного импульса длительностью около 1 мкс удельное энерговыделение достигает максимума к моменту времени t~10-20 мкс. Сигнал, возникающий в детекторе 3 тепловых нейтронов t>≈20 мкс, в основном вызван тепловыми нейтронами.

Постоянная спада потока тепловых нейтронов на детектор зависит от нейтронной пористости горной породы и практически не превышает 1 мс. Поэтому при частоте повторения импульсов менее 100 Гц к моменту прихода следующего импульса тепловые нейтроны в горной породе вымирают и с приходом следующего импульса процесс полностью повторяется.

В настоящее время для измерения нейтронной пористости горной породы в скважине используются эпитепловые и тепловые нейтроны. Для их регистрации применяются пропорциональные 3Не или 10В счетчики.

Время сбора заряда, образованного в пропорциональном счетчике в результате захвата нейтрона составляет около 1-4 мкс [D. Mazed, S. Mameri, R. Ciolini. Design parameters and technology optimization of 3He-filled proportional counter for thermal neutron detection and spectrometry applications. Radiation Measurements 47 (2012) 577-587]. Соответствующее «мертвое» время для пропорциональных счетчиков составляет <10 мкс [G.P. Manessi. Development of advanced radiation monitors for pulsed neutron fields. PhD thises. (2015) 1-147, p.16]. Указанное мертвое время неизбежно приводит к просчету нейтронов при частоте регистрируемых событий более (5-10) кГц. Такая частота может иметь место при регистрации нейтронов во время сравнительно короткого и мощного нейтронного импульса и некоторое время после него.

«Временной спектр скоростей счета для отечественной низкочастотной аппаратуры сильно искажен просчетами, причем применяемая методика коррекции ограничивается просчетами до 2-кратных, что явно недостаточно. Основным интерпретационным параметром является измеряемый временной декремент спада нейтронов или фотонов, который зависит не только от свойств пласта, но и от условий измерения - конструкции и заполнения скважины, величины зонда. Полученное значение декремента к тому же обычно не обеспечивается оценкой его точности» (С.Г. Бородин. «Глубокая обработка данных импульсного нейтронного каротажа нефтегазовых скважин», автореферат диссертации на соискание ученой степени кандидата физико-математических наук, Москва – 2009).

Предлагаемое устройство для реализации импульсного нейтрон-нейтронного каротажа содержит усилитель-интегратор, обеспечивающий регистрацию нейтронов всего спектра (зависимость 8 на Фиг. 2), в том числе и при наложении регистрируемых событий, во всем временном интервале, как во время нейтронных импульсов, так и между ними.

Усилитель-интегратор обеспечивает измерение величины заряда, образуемого в нейтронном детекторе, падающими на него нейтронами, как в случае высокой частоты следования регистрируемых событий, так и в случае их частичного наложения. При этом заряд, собранный с выхода счетчика, пропорционален числу зарегистрированных нейтронов и выделяющейся при этом энергии [I. Rios, J. Gonzalez, and R.E. Mayer. Total fluence influence on the detected magnitude of neutron burst using proportional detectors. Radiation Measurement 53-54 (2013) 31-37; J. Moreno, L. Birstein, R.E. Mayer et al. System for measurement of low yield neutron pulses from D-D fusion reactions based upon a 3He proportional counter. Meas. Sci. Technol. 19 (2008) IOPScience 087002 (5pp)].

Устройство работает следующим образом.

Скважинный прибор размещают в скважине. Устанавливают с помощью процессора 5 режим работы блока управления 6 и усилителя-интегратора 4.

Включают импульсный источник 2 на генерацию импульсов быстрых нейтронов. Быстрые нейтроны выходят из импульсного источника 2 и в общем случае попадают в промывочную (скважинную) жидкость, обсадную колонну, а затем в горную породу вокруг скважины, в которых быстрые нейтроны взаимодействуют с ядрами, входящих в их состав химических элементов, вследствие чего в основном теряют энергию, становятся с течением времени эпитепловыми, а затем и тепловыми. Количество образовавшихся эпитепловых и тепловых нейтронов зависит от нейтронной пористости горной породы и времени после нейтронного импульса. Количество тепловых нейтронов и время их жизни зависит также от наличия химических элементов, поглощающих нейтроны.

Быстрые нейтроны импульсного источника 2, а также быстрые нейтроны источника, рассеявшиеся в окружающей среде во время нейтронного импульса, эпитепловые и тепловые нейтроны частично попадают в детектор 3 тепловых нейтронов. Заряд, возникающий под действием нейтронов в детекторе 3 тепловых нейтронов, поступает в усилитель-интегратор 4, в котором он усиливается и далее оцифровывается. Временная зависимость сигнала на выходе усилителя-интегратора 4 определяются количеством взаимодействий тех или иных нейтронов с веществом внутри детектора 3 тепловых нейтронов в соответствующие моменты времени и выделяющейся при этом энергией.

Сигналы, поступающие с выхода усилителя-интегратора 4 во время и между нейтронными импульсами передаются с помощью процессора 5 и системы телеметрии 7 в наземную аппаратуру (на Фиг. 1 не показана), где сохраняются в памяти персонального компьютера (ПК). Процесс повторяется для N≥1 нейтронных импульсов, при этом каждую последующую зависимость сигнала от времени для детектора 3 тепловых нейтронов суммируют с предыдущей. Число нейтронных импульсов N определяется заданной точностью измерений.

В наземной аппаратуре полученную временную зависимость сравнивают с набором зависимостей из базы данных, рассчитанных заранее для горной породы различной нейтронной пористости, при различных параметрах скважины и обсадной колонны, а также промывочной жидкости и аттестованных путем измерений указанных зависимостей данным способом на геофизических моделях горных пород.

Из базы данных выбирают расчетную зависимость наиболее близкую, в соответствии с применяемыми критериями оценки, к зависимости, зарегистрированной детектором 3 тепловых нейтронов. Нейтронную пористость горной породы, а также параметры скважины принимают совпадающими с нейтронной пористостостью и параметрами, использованными при получении расчетной зависимости.

Таким образом, заявленный технический результат: обеспечение регистрации быстрых нейтронов, излучаемых импульсным источником нейтронов во время его импульсов, пропорциональным Не-3 счетчиком при условии наложения электрических сигналов на выходе пропорционального счетчика осуществляется за счет использования импульсного источника 2 быстрых нейтронов, размещенного в цилиндрическом охранном корпусе 1 и подключенного к блоку управления 6, который подключен также к процессору 5, применения вместо нескольких нейтронных детекторов: нейтронного монитора, детектора эпитепловых нейтронов, а также детектора тепловых нейтронов одного детектора 3 тепловых нейтронов, подключенного последовательно к усилителю-интегратору 4, процессору 5 и системе телеметрии 7.

Устройство определения нейтронной пористости, включающее в себя импульсный источник быстрых нейтронов, нейтронный детектор, размещенные в цилиндрическом охранном корпусе, отличающееся тем, что в качестве нейтронного монитора, детектора эпитепловых нейтронов, а также детектора тепловых нейтронов используется один детектор тепловых нейтронов, расположенный соосно с импульсным источником быстрых нейтронов и цилиндрическим охранным корпусом, детектор тепловых нейтронов подключен к усилителю-интегратору, усилитель-интегратор подключен к процессору, процессор подключен к системе телеметрии, при этом импульсный источник быстрых нейтронов подключен к блоку управления, блок управления подключен также к процессору.



 

Похожие патенты:

Изобретение относится к способам определения координат источников электромагнитных излучений с помощью средств космического базирования путем регистрации и измерения поляризационных характеристик регистрируемого излучения.

Изобретение относится к бурению скважин, в частности к устройствам регистрации гамма-излучения. Предложено устройство вращающейся секции роторной управляемой системы, содержащее: внешний корпус; приводной вал, находящийся по меньшей мере частично внутри внешнего корпуса и вращательно независимый от внешнего корпуса; буровое долото, присоединенное к приводному валу; и по меньшей мере один детектор гамма-излучения, вращательно присоединенный к приводному валу внутри внешнего корпуса.

Использование: для геофизических исследований параметров геологических пластов методом компенсированного нейтрон-нейтронного каротажа. Сущность изобретения заключается в том, что устройство содержит цилиндрический охранный корпус, внутри которого последовательно вдоль его оси размещены источник быстрых нейтронов, защитный экран, ближний и дальний детекторы тепловых нейтронов.

Использование: для исследований параметров пластов и технического состояния скважин методом гамма-гамма каротажа. Сущность изобретения заключается в том, что скважинное устройство гамма-гамма каротажа содержит цилиндрический охранный корпус, цилиндрический экран, соосный с охранным корпусом и содержащий коллимирующие отверстия, находящиеся напротив источника гамма-квантов и гамма-детекторов, источник гамма-квантов, гамма-детекторы малого и большого зондов расположены внутри цилиндрического экрана последовательно вдоль оси охранного корпуса, причем малый зонд включает в себя один гамма-детектор, соосный с охранным корпусом и расположенный на расстоянии L1≈20 см от источника гамма-квантов, а большой зонд включает в себя шесть гамма-детекторов, подобных детектору малого зонда и расположенных по ту же сторону от источника гамма-квантов, что и детектор малого зонда, равномерно в поперечном сечении охранного корпуса, на расстоянии L2=2⋅L1 по оси охранного корпуса от источника гамма-квантов, при этом устройство содержит дополнительный зонд, включающий в себя шесть или более гамма-детекторов, подобных детектору малого зонда и расположенных в экране на расстоянии L3≥3⋅L1 по оси охранного корпуса от источника гамма-квантов по ту же сторону от источника гамма-квантов, что и детекторы большого зонда, равномерно в поперечном сечении охранного корпуса.

Использование: для геофизического исследования скважин. Сущность изобретения заключается в том, что прибор для геофизического исследования скважин может состоять из устройства для крепления генератора в скважинном приборе и генератора излучения, находящегося в устройстве для крепления генератора в скважинном приборе.

Использование: для геофизического исследования скважин. Сущность изобретения заключается в том, что прибор для геофизического исследования скважин может состоять из устройства для крепления генератора в скважинном приборе и генератора излучения, находящегося в устройстве для крепления генератора в скважинном приборе.

Изобретение относится к ядерной геофизике, а более конкретно к области ядерно-физических определений плотности горных пород, пересекаемых буровой скважиной, приборами, доставляемыми в интервал проведения исследований на буровом инструменте.

Изобретение относится к технологии контроля стабильности внутренних барьеров безопасности в пунктах консервации уран-графитового реактора. Способ контроля стабильности внутренних барьеров безопасности в пунктах консервации уран-графитового реактора включает в себя одновременное генерирование и регистрацию гамма-квантов и нейтронов с помощью детектора, покрытого слоем кадмия, детерминирование гамма-квантов по энергиям, измерение плотности пород, при этом предварительно при создании внутренних барьеров безопасности устанавливают инспекционные каналы в виде обсадных труб в количестве не менее трех в местах для проведения гамма-каротажа в реперных точках, выбранных с учетом индивидуальных конструктивных особенностей уран-графитового реактора, регистрируют фоновый гамма-спектр, определяют места просадки радиоактивных внутриреакторных конструкций с течением времени с помощью специального малогабаритного зондирующего устройства, состоящего из генератора нейтронов, системы детекторов для регистрации гамма-излучения и тепловых нейтронов, защитного корпуса, после чего проводят импульсный нейтрон-нейтронный каротаж в соответствующих реперных точках для обнаружения полостей в местах усадки глиносодержащей засыпки, одновременно проводят импульсный нейтронный гамма-каротаж для определения влагосодержания в используемых барьерных материалах.

Изобретение относится к геофизическому приборостроению, в частности к средствам гамма-гамма каротажа, а именно к области метрологического обеспечения скважинной геофизической аппаратуры и созданию стандартных образцов для калибровки скважинной аппаратуры.

Использование: для управляемой скважинной генерации ионизирующего излучения без использования радиоактивных изотопов химических элементов. Сущность изобретения заключается в том, что устройство для управляемой скважинной генерации ионизирующего излучения (12) включает, по меньшей мере, термоэлектронный эмиттер (11), расположенный в первой оконечной части (7а) электрически изолированного вакуумного контейнера (9), и лептонную мишень (6), расположенную во второй оконечной части (7b) электрически изолированного вакуумного контейнера (9).
Наверх