Способ растворения диоксида плутония с получением концентрированного раствора

Изобретение относится к способу растворения диоксида плутония или смешанных оксидов актиноидов, содержащих диоксид плутония, любых других оксидов с окислительно-восстановительным потенциалом положительнее потенциала пары Ag2+/Ag+(-1,98 В). Способ включает загрузку в электролизер с пульсационной камерой раствора азотной кислоты, диоксида плутония, серебра в виде металла или нитрата, подачу на анод и катод электрического тока, а в пульсационную камеру импульсов с периодом 0,9 секунды и длительностью 0,4 секунды, добавление по мере изменения концентраций реагирующих компонентов в электролизере диоксида плутония и азотной кислоты в анолит, подпитку католита концентрированной азотной кислотой 630 г/л по 10 мл, после каждой загрузки диоксида плутония проводят подпитку, при этом добавление реагирующих компонентов производят после подтверждения полного растворения ранее добавленных. Изобретение обеспечивает простой и неэнергозатратный процесс с технологически приемлемым временем его проведения при комнатной температуре, отсутствие посторонних мешающих экстракции компонентов и коррозионно-опасных реагентов и получение раствора с высокой концентрацией плутония. 2 табл., 2 пр.

 

Изобретение относится к способам растворения диоксида плутония или смешанных оксидов актиноидов, содержащих диоксид плутония, любых других оксидов с окислительно-восстановительным потенциалом положительнее потенциала пары Ag2+/Ag+(-1,98 В) и может быть применено в гидрометаллургической технологии, включающей операции растворения материалов, содержащих диоксид плутония для целей последующей экстракционной очистки растворов нитрата плутонила.

Известно, что диоксид плутония (РuО2), полученный при низких температурах, легко растворяется в концентрированной соляной, бромной, ортофосфорной, йодистоводородной и хлорной кислотах. Однако прокаленный и выдержанный относительно продолжительное время диоксид плутония трудно растворим даже в указанных кислотах. К известным химическим способам перевода прокаленного диоксида плутония в растворимое состояние относятся следующие: 1) предварительное сплавление РuО2 с KHSO4; 2) взаимодействие РuО2 при 700°С с четыреххлористым углеродом; 3) растворение в кислотах: соляной, фосфорной, йодистоводородной, хлорной и концентрированной хлоруксусной кислотах с выделением водорода и образованием иона Рu3+; 4) растворение в разбавленных серной и азотной кислотах, при этом, растворение диоксида плутония протекает медленно, кислоты оказывают пассивирующее воздействие, также процесс сопровождается образованием нерастворимого осадка, состоящего из полимеров гидроокиси плутония или гидратированных оксидов (И.Н. Бекман ПЛУТОНИЙ Учебное пособие http://profbeckman.narod.ru/Pluton.htm); 5) растворение в смесях минеральных кислот HNO3, HF и HI (Плутоний / Справочник под ред. О. Вика, том 1, М.: Атомиздат, 1971. - С. 23); 6) способы растворения, предполагающие сплавление в солевых составах: сплавление с пиросульфатом калия (Аналитическая химия плутония. М.: Наука, 1965, с. 107), сплавление со смесью нитрата калия и гидроксида калия (патент RU 2456687, МПК G21C 3/00, C01G 56/00, опубл. 20.07.2012) и др.

Все указанные способы химического растворения диоксида плутония имеют один или совокупность следующих недостатков, негативно влияющих на последующий экстракционный аффинаж: невозможность полностью растворить плутоний, образование солей плутония с малыми коэффициентами экстракции; не технологичность процесса, выраженная в много стадийности или применении высоких температур, корродирующее действие применяемых компонентов на материалы аппаратов.

Способ концентрирования растворов их упариванием также приводит к необратимой полимеризации плутония и вызывает отложение продуктов на стенках выпарного аппарата, что приводит к частым остановкам процесса. Операция упаривания раствора плутония требует учета его коррозионного действия на аппараты.

Доказано, что ионные потенциалы и, соответственно, склонность к гидролизу и комплексообразованию уменьшаются в ряду:

Не смотря на большую, чем остальные, устойчивость пятивалентного плутония, РuО2+ в водных растворах он легко диспропорцианирует на Pu(IV) и Pu(VI). Pu(IV) склонен к комплексообразованию, в частности с азотной, серной, соляной и уксусной кислотами. Так, в концентрированной азотной кислоте Pu(IV) образует комплексы Pu(NO3)5- и Рu(NO3)62-. В водных растворах Pu(IV) легко гидролизуется, а гидроксид плутония склонен к полимеризации. Таким образом, наиболее приемлемым вариантом является получение концентрированного раствора плутония в состоянии Pu(VI) и перевод его в Pu(IV) непосредственно перед экстракционным аффинажем, так как Рu в степени окисления 4+ обладает наибольшим коэффициентом распределения.

Существует электролитический способ извлечения и очистки металлического плутония в расплаве эквимолярной смеси хлоридов калия и натрия. В данном способе после электролитического рафинирования плутоний подвергают электрохимическому растворению в 1-5 М азотной кислоте (электролите) при температуре от 20°С до 80°С и анодной плотности тока 0,5-10 А/см2 с использованием плутония в качестве анода. В качестве материала катода могут быть использованы тантал, титан, вольфрам, кислотостойкая нержавеющая сталь (И.Н. Бекман ПЛУТОНИЙ Учебное пособие Глава 13 http://profbeckman.narod.ru/Pluton.htm).

Недостатком данного способа электрохимического растворения является то, что при получении большой концентрации плутония при высоких анодных потенциалах возможно образование полимерных гидроксидов плутония, в этом случае анодное растворение плутония прекращается.

Известен способ, описанный в патенте РФ на изобретение №2171506 (МПК G21C 19/46, C01G 43/00, C01G 56/00, опубл. 27.07.2001). Изобретение относится к способу и устройству для растворения порошка, состоящего из смеси оксидов урана, плутония и/или смешанных оксидов урана и плутония. Порошок растворяют в растворе азотной кислоты с применением двухвалентного серебра, полученного электролизом. Способ включает две стадии, которые проводят последовательно в одном и том же устройстве для растворения. Реагирующий раствор циркулирует в замкнутом контуре: на первой, непрерывной, стадии растворяется оксид урана и поток раствора, содержащий растворенный оксид, отводят; на второй, периодической, стадии электролитически растворяется оксид плутония, накопленный во время первой стадии.

В указанном способе авторы изобретения экспериментально подтвердили малую растворимость РuО2. Максимальная концентрация, полученная по данному способу, составила 50 г/л по плутонию (значение получено из расчета растворения 3,25 кг в объеме 65 л).

К недостаткам указанного способа, в части второй стадии растворения, относится следующее: относительная сложность осуществления, обусловленная применяемой конструкцией: применение механического перемешивающего устройства - мешалки, а также фильтра.

Известен электролизер для растворения оксидов металлов (патент RU 2404130, МПК C01G 56/00, C01G 43/00, С25С 7/00, опубл. 20.11.2010). В описании изобретения раскрыт способ растворения оксидов урана и/или плутония, взятый за прототип. В электролизер заливают раствор азотной кислоты, вводят серебро в виде металла или нитрата, засыпают диоксид плутония (урана) либо продукты, содержащие их оксиды. На анод и катод подают электрический ток, а в пульсационную камеру импульсы. Процесс ведут либо до пропускания расчетного количества тока, либо до заданной концентрации целевого элемента в растворе. Периодически, по мере изменения концентраций реагирующих компонентов в электролизере, добавляют растворяемые элементы, а также азотную кислоту для корректировки кислотности раствора.

Основным недостатком прототипа является то, что в способе не предусмотрена подпитка католита концентрированной азотной кислотой для минимизации процесса выделения взрывоопасного водорода. В процессе растворения диоксида плутония происходит разложение азотной кислоты в катодном пространстве (католите), приводящее к электролизу воды, сопровождающемуся выделением водорода. Так же, необходимо отметить, отсутствие сведений по режимам (критериям) реализации процессов приведенных в описании, в частности: отсутствие частоты и длительности импульса сжатого воздуха, осуществляющего перемешивание электролита для поддержания растворяющихся частиц во взвешенном состоянии; периодичность и критерии подгрузки очередной порции порошка оксидов в случае необходимости получения высококонцентрированных растворов; концентрацию и объем азотной кислоты, используемой для подпитки катодного пространства электролизера.

Задачей изобретения является разработка технологичного способа растворения диоксида плутония с получением концентрированного раствора.

Техническим результатом является высокая концентрация плутония в конечном растворе, что дает возможность сократить объемы РАО, образуемых при последующем экстракционном аффинаже плутония.

Технический результат достигается в способе растворения диоксида плутония, включающем загрузку в электролизер ядерно-безопасного исполнения снабженный пульсационной камерой раствора азотной кислоты, диоксида плутония, серебра в виде металла или нитрата, подачу на анод и катод электрического тока, а в пульсационную камеру импульсов, добавление по мере изменения концентраций реагирующих компонентов в электролизере диоксида плутония и азотной кислоты в анолит, после каждой загрузки диоксида плутония проводят подпитку католита концентрированной азотной кислотой 630 г/л по 10 мл, импульсы в пульсационную камеру подают с периодом 0,9 секунды и длительностью 0,4 секунды, добавление реагирующих компонентов производят после подтверждения полного растворения ранее добавленных.

Способ осуществляют следующим образом.

Пример 1.

На электрохимическое растворение подавали сухой порошок диоксида плутония массой, рассчитанной на одну загрузку. Загрузку порошка производили через загрузочный штуцер с помощью воронки. Для исключения потерь плутония, загрузочную воронку промывали исходным раствором. Данную операцию проводили в растворе объемом до 4,96 л, содержащем 210-320 г/л HNO3 и 5-10 г/л серебра при температуре не выше 30°С с интенсивным перемешиванием пульсационным воздухом в течение 6-10 часов. Серебро вводили в раствор в виде нитрата серебра. Проводили доукрепление католита добавлением раствора азотной кислоты с концентрацией 630 г/л HNO3. Критерием доукрепления католита азотной кислотой, является наличие водорода в отходящих газах свыше 0,2% об (водород контролировали непрерывно). Генерация двухвалентного серебра в электролизере осуществлялась с токовой нагрузкой до 25 А.

Пульсацию осуществляли с периодом 0,9 секунды и длительностью 0,4 секунды. Результаты экспериментов представлены в таблице 1.

По окончании процесса растворения, провели выдержку раствора плутония в течение 10 часов, при перемешивании пульсационным воздухом. Питание электродов во время выдержки было отключено. Выход по плутонию составил 87%.

С целью полного растворения плутония провели дополнительное (контрольное) растворение в течение 10 часов. Контрольное растворение проводили раствором, в объеме 2,46 л, содержащем 300 г/л азотной кислоты и 5 г/л серебра. По результатам контрольного растворения суммарный выход по плутонию составил 100%, что показывает возможность технологической организации полного растворения диоксида плутония при данных параметрах процесса.

Пример 2.

Для получения максимально возможной концентрации Рu в растворе провели растворение четырех навесок диоксида плутония в одном объеме раствора. Навески загружали в реактор-электролизер последовательно - каждую следующую навеску загружали при получении результата анализа концентрации плутония в отобранной пробе. Растворение проводили в растворе объемом 4,2 л, содержащем 310 г/л HNO3 и 10 г/л серебра. После каждой загрузки диоксида плутония проводили подпитку католита концентрированной азотной кислотой 630 г/л по 10 мл. Растворение проводили при интенсивном перемешивании пульсационным воздухом с периодом пульсации 0,9 секунды и длительностью 0,4 секунды. Отбор проб проводили через каждые 2-3 часа с обесточиванием электролизера. Отмечено, что длительная остановка процесса растворения, более 30 минут, приводит к уменьшению выхода по плутонию на каждой последующей стадии (загрузке) процесса. Параметры процесса растворения второй операции представлены в таблице 2.

Конечный раствор темно-коричневого цвета, не прозрачный, без осадка. Полученный раствор с концентрацией плутония 173,0 г/л выдерживали более двух суток, по результатам наблюдений наличие осадка нерастворенного плутония не обнаружено.

К достоинствам описанного способа растворения диоксида плутония с получением концентрированного раствора относятся: относительная простота организации процесса растворения в одну-две стадии; относительно мало энергозатратный процесс; технологически приемлемое время проведения процесса; комнатная температура проведения процесса; отсутствие посторонних мешающих экстракции компонентов; отсутствие коррозионно-опасных реагентов; высокая концентрация плутония в конечном растворе, что дает возможность сократить объемы РАО, образуемых при последующем экстракционном аффинаже плутония.

Способ растворения диоксида плутония, включающий загрузку в электролизер ядерно-безопасного исполнения, снабженный пульсационной камерой, раствора азотной кислоты, диоксида плутония, серебра в виде металла или нитрата, подачу на анод и катод электрического тока, а в пульсационную камеру импульсов, добавление по мере изменения концентраций реагирующих компонентов в электролизере диоксида плутония и азотной кислоты в анолит, отличающийся тем, что после каждой загрузки диоксида плутония проводят подпитку католита концентрированной азотной кислотой 630 г/л по 10 мл, импульсы в пульсационную камеру подают с периодом 0,9 секунды и длительностью 0,4 секунды, добавление реагирующих компонентов производят после подтверждения полного растворения ранее добавленных.



 

Похожие патенты:

Изобретение относится к способу получения порошка оксида по меньшей мере одного металла, при этом степень окисления каждого металла составляет от (III) до (VI). Способ включает в себя последовательно в следующем порядке: а) проведение реакции водного раствора, содержащего, для каждого металла, по меньшей мере одну соль с катионом этого металла, с соединением, содержащим гидроксид, b) отделение полученного осадка, с) приведение в контакт отделенного осадка с органическим протонным полярным растворителем, d) удаление органического протонного полярного растворителя путем вакуумной сушки осадка.

Изобретение относится к способу получения порошка, включающего твердый раствор диоксида урана и диоксида по меньшей мере одного другого актинида и/или лантанида, который подходит для использования в изготовлении ядерного топлива.

Изобретение относится к ядерной технологии, в частности к аналитическому обеспечению процесса переработки облученного ядерного топлива, и раскрывает способ совместного спектрофотометрического определения нептуния, америция и плутония.

Изобретение относится к экстракционным системам, предназначенным для извлечения радионуклидов из карбонатно-щелочных растворов, в частности америция и европия, и может найти применение в аналитической химии, а также при переработке жидких радиоактивных отходов.
Изобретение относится к радиохимической технологии и может быть использовано при переработке отработавшего ядерного топлива и производстве смешанного уран-плутониевого топлива.

Изобретение относится к способу получения оксихлорида и/или оксида актинида(ов), и/или лантанида(ов) из хлорида актинида(ов), и/или лантаноида(ов), присутствующего в среде, содержащей по крайней мере одну расплавленную соль типа хлорида.

Изобретение относится к радиохимической промышленности и ядерной энергетике и направлено на получение смешанного диоксида (U,Pu)O2, которое может быть использовано для изготовления ядерного смешанного уран-плутониевого МОКС-топлива реакторов ВВЭР-1000 и реакторов на быстрых нейтронах (БН-600, БН-800) атомных станций.
Изобретение может быть использовано для дезактивации сложнообогащаемого цирконового концентрата Зашихинского месторождения, содержащего примесь кремния в виде кварца и полевых шпатов.

Изобретение относится к радиохимической промышленности и ядерной энергетике, направлено на получение смешанного диоксида (U,Pu)O2 и может быть использовано для изготовления ядерного смешанного уран-плутониевого МОКС-топлива реакторов ВВЭР-1000 и реакторов на быстрых нейтронах (БН-600, БН-800) атомных станций.

Изобретение относится к способу приготовления оксалатов актиноидов. Способ включает осаждение одного актиноида или соосаждение большего числа актиноидов в форме частиц оксалата в псевдоожиженном слое приведением в контакт водного раствора, содержащего актиноид или актиноиды, с водным раствором щавелевой кислоты или соли щавелевой кислоты и сбор частиц оксалата.
Наверх