Устройство компенсации погрешности измерения ультразвукового локатора



Устройство компенсации погрешности измерения ультразвукового локатора
Устройство компенсации погрешности измерения ультразвукового локатора
Устройство компенсации погрешности измерения ультразвукового локатора
Устройство компенсации погрешности измерения ультразвукового локатора
G01N29/36 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)

Владельцы патента RU 2703836:

федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» (RU)

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что устройство компенсации погрешности измерения ультразвукового локатора содержит блок управления и индикации, который соединен с первым и вторым генераторами. Первый генератор соединен с первым датчиком излучения и приема, который соединен с первым усилителем, к которому последовательно подключены первое пороговое устройство, первый блок формирования, первый блок измерения временного интервала, блок управления и индикации. Второй генератор соединен с вторым датчиком излучения и приема, который соединен со вторым усилителем, к которому последовательно подключены второе пороговое устройство, второй блок формирования временного интервала, второй блок измерения временного интервала, блок управления и индикации. К первому и второму пороговому устройствам подключен источник опорного напряжения. Блок управления и индикации подключен к первому и второму блокам формирования временного интервала. Блок временной регулировки усиления подключен к первому и второму усилителям и к блоку управления и индикации. Технический результат: снижение погрешности измерения, обусловленной наличием недостаточной амплитуды отраженного сигнала. 2 ил.

 

Изобретение относится к области определения местоположения или обнаружения объектов с использованием отражения ультразвуковых волн, а именно к измерению дальности косвенным путем и может быть использовано в горнодобывающей промышленности для определения глубины скважин, в судоходстве для контроля глубины морского дна, в рыболовстве для обнаружения косяков рыб.

Известно устройство компенсации погрешности ультразвукового локатора [RU 2544310 С1, МПК G01N 29/36 (2006.01), опубл. 20.03.2015], выбранное в качестве прототипа, содержащее два независимых канала, каждый из которых содержит генератор ультразвуковых сигналов, подключенный к излучателю, и последовательно соединенные приемник, усилитель, пороговое устройство, блок формирования временного интервала, блок измерения временного интервала, при этом к первому и второму пороговому устройству подключен источник опорного напряжения, а к первому и второму блоку измерения временных интервалов подключен кварцевый генератор. Третий блок измерения временного интервала подключен к первому пороговому устройству, к кварцевому генератору и блоку управления, который связан с первым и вторым генератором, с первым и вторым блоком формирования временного интервала, с первым и вторым блоком измерения временного интервала и с блоком индикации.

Это устройство имеет низкую точность измерения и ограниченный диапазон дистанций.

Техническим результатом изобретения является создание устройства, обеспечивающего снижение погрешности измерений и увеличение диапазона дистанций при волноводном распространении ультразвуковых колебаний.

Предложенное устройство компенсации погрешности измерения ультразвукового локатора также как в прототипе содержит блок управления и индикации, который соединен с первым и вторым генераторами, при этом к первому усилителю последовательно подключены первое пороговое устройство, первый блок формирования, первый блок измерения временного интервала, блок управления и индикации, к второму усилителю последовательно подключены второе пороговое устройство, второй блок формирования временного интервала, второй блок измерения временного интервала, блок управления и индикации, причем к первому и второму пороговому устройствам подключен источник опорного напряжения, а блок управления и индикации подключен к первому и второму блокам формирования временного интервала.

Согласно изобретению первый генератор соединен с первым датчиком излучения и приема, который соединен с первым усилителем, второй генератор соединен с вторым датчиком излучения и приема, который соединен с вторым усилителем, блок временной регулировки усиления подключен к первому и второму усилителям и к блоку управления и индикации.

Использование блока временной регулировки усиления позволяет задать амплитуду ультразвукового сигнала на выходе усилителей одинаковой для обеих частот и на основе этого более точно определить временную координату принятого сигнала ультразвуковой волны, что в свою очередь уменьшает погрешность измерения ультразвукового локатора и увеличивает диапазон измеряемых дистанций.

На фиг. 1 представлена схема устройства компенсации погрешности измерения ультразвукового локатора.

На фиг. 2 представленная диаграмма, иллюстрирующая работу устройства.

Устройство компенсации погрешности измерения ультразвукового локатора (фиг. 1) содержит блок управления и индикации 1 (БУИ), который соединен с первым 2 (Г1) и вторым 3 (Г2) генераторами. Выход первого генератора 2 (Г1) соединен с первым датчиком излучения и приема 4 (ИП1). Выход второго генератора 3 (Г2) соединен с вторым датчиком излучения и приема 5 (ИП2). Первый датчик 4 (ИП1) соединен с первым усилителем 6 (У1). Второй датчик 5 (ИП2) соединен и со вторым усилителем 7 (У2). Блок временной регулировки усиления 8 (ВРУ) подключен к первому 6 (У1) и второму 7 (У2) усилителям и к блоку управления 1 (БУИ). Первый усилитель 6 (У1) связан с входом первого порогового устройства 9 (ПУ1), к другому входу которого подключен источник опорного напряжения 10 (ИОН). Второй усилитель 7 (У2) связан с входом второго порогового устройства 11 (ПУ2), к другому входу которого подключен источник опорного напряжения 10 (ИОН). Выход первого порогового устройства 9 (ПУ1) подключен к входу первого блока формирования временного интервала 12 (БФВИ1), к другому входу которого подключен блок управления и индикации 1 (БУИ). Выход второго порогового устройства 11 (ПУ2) подключен к входу второго блока формирования временного интервала 13 (БФВИ2), к другому входу которого подключен блок управления и индикации 1 (БУИ). Выход первого блока формирования временного интервала 12 (БФВИ1) подключен к входу первого блока измерения временного интервала 14 (БИВИ1), выход которого подключен к блоку управления и индикации 1 (БУИ). Выход второго блока формирования временного интервала 13 (БФВИ2) подключен к входу второго блока измерения временного интервала 15 (БИВИ2), выход которого подключен к блоку управления и индикации 1 (БУИ).

Блок управления и индикации 1 (БУИ) может быть выполнен на микроконтроллере ATMEGA64 фирмы ATMEL и семисегментных индикаторах типа DA56-11SRWA, фирмы KINGBIHT. Генераторы 2 (Г1) и 3 (Г2) могут быть выполнены по схеме с разрядом накопительной емкости на тиристорах типа КУ104Г. Датчики излучения и приема 4 (ИП1) и 5 (ИП2) могут быть стандартными, например, фирмы Мурата МА40 и МА25. Усилители 6 (У1) и 7 (У2) могут быть выполнены на операционных усилителях, например, К544УД2. Блок временной регулировки усиления 8 (ВРУ) может быть выполнен на цифро-аналоговом преобразователе, входящем в состав микроконтроллера, например, ATMEGA64 фирмы ATMEL. В качестве пороговых устройств 9 (ПУ1) и 11 (ПУ2) можно использовать компараторы К521СА3. Блоки формирования временного интервала 12 (БФВИ1) и 13 (БФВИ2) могут быть выполнены на стандартных микросхемах К1554ТМ2. Блоки измерения временного интервала 14 (БИВИ1), 15 (БИВИ2) могут быть выполнены на стандартных микросхемах, например, К1554ИЕ7. Источник опорного напряжения 10 (ИОН) выбран типовым REF 192 фирмы ANALOG DEVICES в стандартном включении.

При измерении расстояния в трубе были установлены отражатель в виде металлической пластины и на расстоянии 500 мм от него датчики излучения и приема 4 (ИП1) и 5 (ИП2). Частота излучения первого датчика 4 (ИП1) составляла 25 кГц, период Т1=40 мкс, а длина волны λ1=13,2 мм. Частота излучения второго датчика 5 (ИП2) составляла 40 кГц, период Т2=25 мкс, длина волны λ2=8,25 мм. Скорость распространения ультразвука в воздухе С=330 м/с.

Блок управления и индикации 1 (БУИ) вырабатывал импульс запуска для первого генератора 2 (Г1), этим же импульсом первый блок формирования временного интервала 14 (БФВИ1) установился в состояние логической 1. Первый генератор 2 (Г1) возбуждал первый датчик излучения и приема 4 (ИП1), который излучал ультразвуковые колебания с периодом Т1=40 мкс. Излученные ультразвуковые колебания распространялись по воздушной среде, принимались первым датчиком излучения и приема 4 (ИП1), усиливались первым усилителем 6 (У1), коэффициент усиления которого плавно увеличивался с помощью блока временной регулировки усиления 8 (ВРУ). С выхода первого усилителя 6 (У1) сигнал поступал на вход первого порогового устройства 9 (ПУ1). На второй вход первого порогового устройства 9 (ПУ1) подавалось напряжение U от источника опорного напряжения 10 (ИОН). Как только напряжение на выходе первого усилителя 6 (У1) превысило напряжение U, выход первого порогового устройства 9 (ПУ1) переключился в состояние логической 1, которая установила первый блок формирования временного интервала 12 (БФВИ1) в состояние логического нуля (точка t1 на фиг. 2). Таким образом, на выходе первого блока формирования временного интервала 12 (БФВИ1) сформировался импульс, длительность которого равна времени:

где t0 - начальный момент времени излучения ультразвуковых волн,

t1 - время срабатывания первого порогового устройства 9 (ПУ1).

Этот импульс поступил в первый блок измерения временного интервала 14 (БИВИ1). Длительность импульса, измеренного первым блоком измерения временного интервала 14 (БИВИ1) составила:

Данные о длительности этого импульса поступили в блок управления и индикации 1 (БУИ).

Затем блок управления 1 (БУ) вырабатывал импульс запуска для второго генератора 3 (Г2), этим же импульсом второй блок формирования временного интервала 13 (БФВИ2) установился в состояние логической единицы. Второй генератор 3 (Г2) возбуждал второй датчик излучения и приема 5 (ИП2), который излучил ультразвуковые колебания с периодом Т2=25 мкс. Излученные ультразвуковые колебания распространялись по той же воздушной среде и принимались вторым датчиком излучения и приема 5 (ИП2), усиливались вторым усилителем 7 (У2), коэффициент усиления которого плавно увеличивался с помощью блока временной регулировки усиления 8 (ВРУ), который обеспечил одинаковую амплитуду сигналов на выходе первого усилителя 6 (У1) и второго усилителя 7 (У2) для обеих частот. С выхода второго усилителя 7 (У2) сигнал поступил на вход второго порогового устройства 11 (ПУ2). На второй вход второго порогового устройства 11 (ПУ2) подавалось напряжение U от источника опорного напряжения 10 (ИОН). Как только напряжение на выходе второго усилителя 7 (У2) превысило напряжение U, выход второго порогового устройства 11 (ПУ2) переключился в состояние логической 1, которая установила второй блок формирования временного интервала 13 (БФВИ2) в состояние логического нуля (точка t2 на фиг. 2). Таким образом, на выходе второго блока формирования временного интервала 13 (БФВИ2) сформировался импульс, длительность которого равна времени:

где t0 - начальный момент времени излучения ультразвуковых волн,

t2 - время срабатывания второго порогового устройства 11 (ПУ2).

Этот импульс поступил во второй блок измерения временного интервала 15 (БИВИ2). Длительность этого импульса составила:

Данные об этой длительности поступили в блок управления и индикации 1 (БУИ), который рассчитал время распространенияпринятых ультразвуковых волн:

где Δt1 - длительность импульса, измеренного первым блоком измерения временного интервала 14 (БИВИ1),

Δt2 - длительность импульса, измеренного вторым блоком измерения временного интервала 15 (БИВИ1),

Т1 - период ультразвуковых колебаний первого датчика излучения и приема 4 (ИП1),

Т2 - период ультразвуковых колебаний второго датчика излучения и приема 5 (ИП2).

Используя это значение времени распространения принятых ультразвуковых волнблок управления и индикации 1 (БУИ) определил расстояние до отражателя:

Ошибка измерения составила:

Таким образом, экспериментально установлено, что погрешность измерения составила λ2/16.

Устройство компенсации погрешности измерения ультразвукового локатора, содержащее блок управления и индикации, который соединен с первым и вторым генераторами, к первому усилителю последовательно подключены первое пороговое устройство, первый блок формирования, первый блок измерения временного интервала, блок управления и индикации, к второму усилителю последовательно подключены второе пороговое устройство, второй блок формирования временного интервала, второй блок измерения временного интервала, блок управления и индикации, при этом к первому и второму пороговому устройствам подключен источник опорного напряжения, а блок управления и индикации подключен к первому и второму блокам формирования временного интервала, отличающееся тем, что первый генератор соединен с первым датчиком излучения и приема, который соединен с первым усилителем, второй генератор соединен с вторым датчиком излучения и приема, который соединен со вторым усилителем, блок временной регулировки усиления подключен к первому и второму усилителям и к блоку управления и индикации.



 

Похожие патенты:

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что осуществляют излучение и прием ультразвуковых волн на двух частотах с разными периодами, измерение временных интервалов между излученными и принятыми ультразвуковыми волнами, определение расстояния до отражателя путем умножения скорости распространения ультразвука в контролируемой среде на время его распространения, при этом при усилении принятых ультразвуковых волн амплитуду сигналов задают одинаковой для обеих частот, а после измерения временных интервалов между излученными и принятыми ультразвуковыми волнами на двух частотах, определяют время распространения принятых ультразвуковых волн в соответствии с заданным выражением, полученное значение используют при определении расстояния до отражателя.

Использование: для ультразвуковой дефектоскопии. Сущность изобретения заключается в том, что устройство (100) ультразвуковой дефектоскопии содержит ультразвуковой решеточный зонд (10), имеющий ультразвуковые элементы (11); вычислитель (33) расчетного времени прихода отраженных-формой волн для вычисления расчетного времени прихода отраженных-формой волн для расчетной отраженной-формой волны на основе расчетной скорости звука в объекте (1) испытаний; экстрактор (34) фактического времени прихода отраженных-формой волн для получения фактического времени прихода отраженных-формой волн на основе фактической отраженной-формой волны; вычислитель (35) разности времен прихода отраженных-формой волн для вычисления разности посредством вычитания фактического времени прихода отраженных-формой волн из расчетного времени прихода отраженных-формой волн в качестве разности времен прихода отраженных-формой волн и вычислитель (32) времени задержки для вычисления времен задержки для взаимного сдвига времен передачи ультразвуковых волн и приема ультразвуковых волн ультразвуковыми элементами (11) с учетом разностей времен прихода отраженных-формой волн.

Изобретение относится к в способу мониторинга структурных, фазовых и химических преобразований в приповерхностном слое обрабатываемых объектов в вакуумных камерах под воздействием электронно-пучковых импульсов и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин.

Использование: для контроля конструкций из полимерных композиционных материалов (ПКМ). Сущность изобретения заключается в том, что осуществляют ввод ультразвуковых колебаний в материал одного из соединяемых листов, либо в материал листа в соединении «лист - заполнитель», регистрацию сигналов, отраженных от дефектов в листе, от дефектов в клеевом слое и от границ раздела «лист - клеевой слой», «клеевой слой - лист», «клеевой слой - заполнитель» с помощью ультразвукового дефектоскопа, снабженного прямым совмещенным пьезоэлектрическим широкополосным преобразователем и двухстробовой системой автоматической сигнализации дефектов (АСД), при этом наличие дефекта в листе определяется по величине амплитуды ультразвукового сигнала, отраженного от несплошности внутри листа, а наличие дефекта в клеевом слое определяется по величине амплитуды сигнала, отраженного от клеевого слоя в месте расположения дефекта клеевого слоя, относительно положения соответствующих стробов АСД, устанавливаемых при настройке дефектоскопа на образце, имеющем искусственные дефекты листа и клеевого слоя, причем обнаружение указанных дефектов производится при регистрации амплитуд ультразвуковых сигналов, отраженных от дефекта в листе и от дефекта клеевого слоя, которая осуществляется при одном акте сканирования поверхности одного из соединяемых листов, либо листа в соединении «лист - заполнитель», при этом положение, временная длительность и уровень по шкале амплитуд дефектоскопа первого из двух стробов АСД устанавливается при настройке на искусственном дефекте листа, а второго строба - на искусственном дефекте клеевого слоя, выполненных в образцах.

Группа изобретений относится к контейнерам для хранения и транспортировки радиоактивных материалов. Контейнер для ядерного материала содержит корпус, выполненный из металла, и крышку, выполненную из того же металла.

Использование: для ультразвукового неразрушающего контроля. Сущность изобретения заключается в том, что дефектоскоп, с несколькими независимыми каналами, с помощью ультразвуковой антенной решетки (АР) излучает и принимает ультразвуковые колебания, отцифровывает их и формирует изображение в виде сектора, при этом элементы АР делятся на группы с количеством элементов, равным количеству независимых каналов дефектоскопа, производится излучение и прием так, чтобы каждая группа элементов АР последовательно излучила и приняла эхосигналы, в соответствии с ранее рассчитанными задержками, затем эхосигналы, зарегистрированные в каждом из измерений, складываются когерентно, вычисляется огибающая и формируется итоговое изображение в виде сектора.

Изобретение относится к ультразвуковой толщинометрии, дополненной измерениями магнитным методом. Способ заключается в том, что измеряют время распространения сдвиговой ультразвуковой волны и процентное содержание магнитной фазы в деформированном материале изделия из стали аустенитного класса и, используя предварительно полученные данные о скорости распространения ультразвуковой волны, процентном содержании магнитной фазы в неповрежденном материале изделия и коэффициенты, полученные при испытании тестовых образцов изделия, рассчитывают толщину деформированного материала.

Изобретение относится к метрологии. Способ измерения частотной зависимости коэффициента отражения звука заключается в расположении излучателя, исследуемой поверхности и приемника в гидроакустическом бассейне, возбуждении излучателя линейно частотно-модулированным сигналом с заданными параметрами, регистрации мгновенных значений тока в цепи излучателя и выходного напряжения приемника, определении комплексной частотной зависимости передаточного импеданса, подавлении в полученной зависимости осцилляций, обусловленных влиянием отраженных сигналов, скользящим комплексным взвешенным усреднением с использованием взвешивающих функций, получении комплексной частотной зависимости передаточного импеданса пары излучатель-приемник и зависимости, в которой сохранена осцилляция, обусловленная первым по времени прихода отражением, и подавлены осцилляции от второго и более поздних по времени прихода отражений, определении частотной зависимости комплексного коэффициента отражения с учетом временных задержек облучающего сигнала и сигнала, отраженного исследуемой поверхностью, и коэффициента пропускания пространственного фильтра, реализуемого обработкой скользящим комплексным взвешенным усреднением.
Изобретение относится к области неразрушающего контроля с использованием контактной жидкости, которая применяется при низких температурах в железнодорожном транспорте.

Данное устройство имеет отношение к области ультразвукового контроля материалов из металла и предназначено для контроля рельсов, прутков, квадратной заготовки и труб.
Наверх