Способ защиты овощных культур от инфекций, вызываемых вирусами



Способ защиты овощных культур от инфекций, вызываемых вирусами
Способ защиты овощных культур от инфекций, вызываемых вирусами

Владельцы патента RU 2720423:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Новосибирский государственный аграрный университет" (RU)

Изобретение относится к области защиты растений, в частности к способу применения биологически активных веществ для защиты овощных культур от вирусов. Способ защиты овощных культур от инфекций, вызванных вирусами, включает опрыскивание раствором, содержащим 300-600 л воды температурой 30-45°С и pH 6-8, внеклеточный фермент продуцента штамма Serratia marcescens в концентрации 400-3200 тыс. ед./м2 и активатор фермента MgSO4 в количестве 0,1-0,8 г/м2 листовых пластин растений. Обработку растений проводят от четырех раз и более в течение одного периода вегетации. Предлагаемый способ защиты растений обеспечивает не только защиту растений от вирусных заболеваний, но и профилактику вирусиндуцированных заболеваний, адаптированную под условия производства и обладающую экологической безопасностью, а также обеспечивает предотвращение распространения вспышек вирусных инфекций в условиях защищенного грунта. 2 табл., 4 пр.

 

Изобретение относится к области защиты растений, в частности к способу применения биологически активных веществ для защиты овощных культур от вирусов и предотвращению распространения вспышек вирусных инфекций в условиях защищенного грунта.

Способ заключается в обработке овощных культур препаратом из эндонуклеаз с активатором методом опрыскивания.

Аналогом изобретения является способ применения панкреатической рибонуклеазы, обладающей гидролитическими свойствами в отношении фитопатогенных вирусов, способностью инактивировать вирусы, замедлять или предотвращать размножение вирусов [1].

Недостатком применения панкреатической рибонуклеазы в качестве противовирусного средства защиты растений являются высокие затраты на получение фермента в производственных масштабах, несоизмеримые с недополученной прибылью от поражения вирусной инфекцией.

Известен аналог - способ применения средства защиты растений от вирусных инфекций и профилактики заболеваний, обладающий широким спектром действия, высокой эффективностью защиты, экологической безопасностью и безвредностью для человека, животных, растений. В качестве ингибитора развития вирусов - средства защиты растений от вирусных инфекций и профилактики заболеваний используют продуцируемый бактериями Bacillus pumilus внеклеточный фермент - бактериальную рибонуклеазу Bacillus pumilus [2].

Недостатком данного способа является отсутствие возможности промышленного применения, а также наличие результатов исследований только по ингибирующей способности вируса.

Наиболее близким к заявленному способу, является способ применения бактериальной нуклеазы Serratia marcescens для защиты картофеля от вирусов [3].

Недостатком данного способа в качестве способа защиты растений от вирусов являются трудоемкость наработки, отсутствие способа промышленного производства, использовании необходимых для получения бактериальной нуклеазы Serratia marcescens трансгенных растений, а также недостаточной изученностью проблемы безопасности применения трансгенных растений и дороговизной осуществления технологии. Отмечено наличие условной патогенности применяемого продуцента фермента штамма бактерий Serratia marcescens.

Эти недостатки существенно ограничивают область применения для защиты растений, используемых для получения продуктов питания.

Технической задачей предлагаемого изобретения является разработка способа защиты растений от вирусных инфекций и профилактики вирусиндуцированных заболеваний, адаптированного под условия производства, оказывающего высокоэффективную защиту от вирусов, обладающего экологической безопасностью.

Это достигается опрыскиванием листовых пластин рабочим раствором, который содержит воду 300-600 мл, внеклеточный фермент продуцента Serratia marcescens в концентрации 400-3200 тыс. ед./м и активатор фермента MgSO4 в количестве 0,1-0,8 г/м. Воду нагревают до 30-45 градусов, рн 6-8.

В качестве противовирусного средства использовали продуцируемый бактериями Serratia marcescens внеклеточный фермент - бактериальную эндонуклеазу Serratia marcescens, очищенную способом, указанным в ТУ 9382-016-00479979-96-2 ООО «Диафарм», отличающуюся от прототипа отсутствием токсичности [4], полученную без применения трансгенных растений, нарабатываемую в достаточных для производственных масштабов количестве, отличающуюся от аналогов степенью очистки и наличием ферментов, оказывающих гидролитическое действие не только на ДНК/РНК, но и на липопротеиды, в частности на оболочку вирусов. Активацию фермента производили катионами магния [5].

Отличительной особенностью настоящего изобретения являются подходы к способам обработки, в частности расчет кратности и концентрации обработок с учетом степени распространения вирусной инфекции в тепличном комплексе, с применением молекулярно-генетических методов контроля вирусной нагрузки, как в помещениях (оборудование, инвентарь, вспомогательные материалы, стены, настилы), так и в растениях. Определена концентрация катионов магния, которая необходима для активации фермента.

Технический результат достигается следующим образом. Скрининг на наличие/отсутствие вирусов: вирус зеленой крапчатой мозаики (ВЗКМО) и вирус обычной мозаики (ВОМ) производили раз в две недели. В качестве исследуемого материала использовали верхушки растений и смывы с поверхностей помещений. После выявления РНК вирусов в исследуемом материале до проявления вирусной инфекции исследования производили еженедельно. От момента выявления РНК в исследуемом материале, до появления признаков инфекции был инкубационный период вируса, который в среднем составлял 3 недели. Появление первых признаков вирусной инфекции на верхушках растений в виде скручиваний, звездчатости, мозаичности, укороченных междоузлий, условно считали первым после появления признаков вирусной инфекции. Далее последующими контрольными точками считали еженедельные визуальные скрининговые обследования на наличие вирусной инфекции.

Известно, что при устойчивости организма к вирусным инфекциям, эпидемия развивается в начале по прямой, а затем экспоненциально (Fig. 1) [6, 7].

Отличительной чертой настоящего изобретения является учет данных по распространению инфекции, с учетом которых выстраивался способ противовирусной обработки. Такой подход позволяет рассчитывать концентрацию противовирусного препарата с учетом накопления вирусной инфекции как в помещении тепличного комплекса, так и непосредственно в растениях, а также спрогнозировать необходимое количество препарата с учетом цикла репликации вируса в соответствии с математической моделью распространения эпидемического процесса.

Представленная в таблице методика расчета концентрации и кратности применения препарата позволяет контролировать распространение вирусной инфекции на разных этапах развития эпидемического процесса. Расчет ограничен 7 неделями, далее применение средств защиты с целью борьбы с вирусными инфекциями малоэффективны и экономически не целесообразны, ввиду развития экспоненциальной стадии эпидемии, которую сложно купировать и остановить распространение инфекции.

Обработку проводят от четырех раз и более в течение одного периода вегетации.

Заявляемое техническое решение характеризуется примерами.

Пример 1. Эксперименты по оценке действия предложенного способа противовирусной обработки проводили на базе лаборатории энзимного анализа и ДНК-технологий ФГБОУ ВО Новосибирский ГАУ, а также в одном из тепличных комплексов Новосибирской области в производственных условиях.

Вирусную нагрузку оценивали молекулярно-генетическими методами, с применение количественной тест-системы с флуоресцентными метками. На начало эксперимента было обнаружено 17 растений с признаками инфекции.

Обработку производили еженедельно методом опрыскивания. Применяли препарат концентрацией 4 млн. ед. акт. на 600 л воды, активировали эндонуклеазу MgSO4 1 кг [5].

При начале обработок с 3 недели после появления первых визуальных признаков инфекции можно ингибировать распространение вируса (Fig. 2), при этом инфекционный процесс не переходит в экспоненциальную стадию.

Применение противовирусной обработки ферментом Serratia marcescens сразу после обнаружения первых признаков развития вирусной инфекции, позволяет купировать эпидемический процесс и прогнозировать дальнейшее его развитие по линейной модели.

Пример 2. Исследования проводили в производственных условиях в тепличном комплексе с применением интенсификации производства, в частности интерплантинга.

При начале обработки заявленным способом через 4 недели после появления вирусной инфекции, используя концентрацию 8 млн. ед. акт. активировали эндонуклеазу MgSO4 - 2 кг [5].

При начале обработок в экспоненциальной стадии течения инфекции необходимо увеличение концентрации фермента, а также начальной активности за счет добавления большего количества активатора. Быстрое экспоненциальное распространение инфекции имеет тенденцию к переходу в линейное после четырех применений препарата, что говорит о сдерживании эпидемического распространения, но при этом достаточно быстрых темпах развития очагов инфекции.

Во втором севообороте без смены культуры, редко, удается избежать вспышек инфекции. Своевременное применение препарата позволит не только купировать распространение инфекции, но и сохранить урожай с наименьшими затратами на защиту от инфекций.

Пример 3. Применение препарата до появления признаков инфекции, с учетом достижения максимально допустимой вирусной нагрузки.

Опыт проводили в производственных условиях с применением интенсификации, в частности интерплантинга. Начало опыта было заложено в первом севообороте. Контрольный участок обрабатывался препаратами в соответствии с технологическим процессом комплекса. Опытный участок еженедельно обрабатывали Serratia marcescens 8 млн. ед. акт., активировали эндонуклеазу катионами магния (Mg2+) в количестве 2 кг. До обработки производили отбор проб для определения вирусной нагрузки. После 3 обработок на контрольном и опытном участках были обнаружены следы вируса (ВЗКМО). После 4 обработок количество вирусных копий в смывах с рабочих поверхностей и настила общей площадью 20 см2 составило -0,068×106 копий.

Далее вирусная нагрузка возрастала, как в смывах, так в листах растений, однако признаков вирусной инфекции не было визуализировано. Скорость распространения инфекции, кривая распространения в период времени, как в контрольном, так и в опытном участках.

Пример 4.

Опыт проводили в лабораторных условиях с применением интенсификации, в частности интерплантинга. Начало опыта было заложено в первом севообороте. Контрольный участок обрабатывался препаратами в соответствии с технологическим процессом комплекса. Опытный участок еженедельно обрабатывали Serratia marcescens, до обработки производили отбор проб для определения вирусной нагрузки. После 3 обработок на контрольном и опытном участках были обнаружены следы вируса (ВЗКМО). После 4 обработок количество вирусных копий в смывах с рабочих поверхностей и настила общей площадью 20 см2 составило -0,068×106 копий.

Таким образом, разработанный способ противовирусной обработки овощных культур в производственных условиях, с применением представленной схемы обработки и кратности применения препарата, позволяет купировать распространение инфекционного процесса, снизить вирусную нагрузку на обрабатываемом участке. При применении препарата в профилактических целях до появления визуальных признаков инфекции, позволяет добиться полной ремиссии инфекционного процесса. При применении препарата по разработанному способу листовые пластины верхнего яруса отрастают визуально полностью здоровыми. Листовые пластины среднего яруса не содержат вируса (ПЦР), однако при этом не полностью восстанавливают здоровый вид, при визуальной оценке на некоторых листьях был отмечен хлороз.

Известно, что бактерии Serratia marcescens продуцируют фермент гидролизующий РНК/ДНК вирусов, кроме того, они продуцируют ряд других ферментов, которые гидролизуют оболочку вирусов, состоящую как правило из липопротеидов, то есть сложных белков, не являются токсиноми для человека и животных. Данный штамм бактерий Serratia marcescens ранее применяли для профилактики и борьбы с вирусами в пчеловодстве. Заявленный способ отличается областью применения, кратностью применения фермента эндонуклеазы продуцента Serratia marcescens, концентрацией активатора фермента MgSO4, а также кратностью применения, периодами между обработками препаратом и способом внесения препарата.

Заявленный способ защиты овощных культур от вирусных инфекций заключается в следующем: внеклеточный фермент эндонуклеазу с активатором применяют в производственных условиях с интерплантингом при выращивании овощных культур с применением гидропоники; в производственных условиях без применения интерплантинга с применением гидропоники (Таблица 1), в условиях ведения частного подсобного хозяйства при выращивании в грунте и в домашних условиях при выращивании рассады (Таблица 2). Фермент и активатор фермента применяют в количестве и концентрации указанных в таблицах 1, 2, в которых представлена схема расчета концентрации фермента миллионов единиц активности (МЕА), рассчитывают необходимое количество активатора фермента, в качестве которого применяют MgSO4, достигая купирование распространения инфекции, восстановление листовых пластин овощных культур, сохранения сортности плодов.

Перед разведением фермента (активностью 2 МЕА) и активатора фермента, предварительно наливают 10 л воды, температура которой от 37 до 50°С; измеряют рН, оптимальным считается рН 8, допустимым 6-9. Три флакона с ферментом вскрывают и вносят леофилизированный фермент в заранее приготовленную воду. После чего к нему добавляют активатор фермента в соответствии с Таблицей 1, размешивают концентрированный раствор до полного растворения MgSO4. Затем полученный концентрированный раствор выливают в 600 л емкость.

Предварительного разведения для фермента концентрацией менее 500 тысяч активных единиц не требуется.

Фермент концентрацией 50 тысяч единиц активности вносят к 3 л воды температура которой от 37 до 50°С, измеряют рН, оптимальным считается рН 8, допустимым 7-9. После чего к нему добавляют активатор фермента в соответствии с Таблицей 2, размешивают концентрированный раствор до полного растворения MgSO4.

Обработку осуществляют методом опрыскивания в кратности и концентрациях, приведенных в таблице 2.

Оптимальные условия работы противовирусного препарата: оптимальное внесение дополнительных веществ, препаратов и т.п.допустимо через один полив (то есть следующий полив за внесенным ферментов не предполагает дополнительных препаратов, после него можно вносить предусмотренные технологией выращивания препараты); время действия препарата ограничивается следующим поливом растения, предусмотренным технологией выращивания); кратность обработки препаратом - еженедельно.

При обработке площади меньшей, чем указано в Таблице 1, расчет препарата и катионов магния производится пропорционально - с сохранением концентраций в объеме воды.

При обработке площади меньшей, чем указано в Таблице 2 расчет препарата и активатора производится пропорционально - с сохранением концентраций в объеме воды.

Расчет концентрации Serratia marcescens на 300 мл воды для обработки 5 м2 рассады составляет 5 тыс. ед. акт. с добавлением 1 г активатора MgSO4. Расчет препарата и катионов магния производится пропорционально - с сохранением концентраций в объеме воды.

1. Мартынова Р.В. Ингибирующее действие панкреатической рибонуклеазы на фитопатогенные вирусы // Биологические исследования на Дальнем Востоке. Владивосток: ДВНЦ АН СССР, 1975. - С. 149-152.

2. Шарипова М.Р., Балабан Н.П., Марданова A.M., Тойменцева А.А. Применение фермента рибонуклеазы bacillus pumilus в качестве ингибитора фитопатогенных вирусов. Патент 2542480 RU от 20.05.2015.

3. Леонова Н.С., Салганик Р.И. Применение бактериальной эндонуклеазы для оздоровления картофеля от вирусов / Сибирский вестник сельскохозяйственной науки, 1991, №5, С. 25-28.

4. Benedik М.J., Strych U. Serratia marcescens and its extracellular nuclease // FEMS Microbiology Letters 165 (1998) 1-13.

5. Романова Ю.Д., Губская В.П., Нуретдинов И.А. и др. О механизме регуляции активности эндонуклеазы Serratia Marcescens катионами магния. Ю.Д. Романова, В.П. Губская, И.А Нуретдинов, А.А. Сусарова, М.Н. Филимонова // Ученые записки Казанского государственного университета, 2008 Том 150, кн. 2. С. 176-185.

6. Бароян О.В., Рвачев Л.А. Математика и эпидемиология. М., «Знание», 1977.

7. Боев. Б.В. Современные этапы математического моделирования процессов развития и распространения инфекционных заболеваний // Эпидемиологическая кибернетика: модели, информация, эксперименты. М., 1991, С. 111-114.

Способ защиты овощных культур от инфекций, вызываемых вирусами, при котором листовые пластины растений опрыскивают раствором, содержащим 300-600 л воды температурой 30-45°С и рН 6-8, внеклеточный фермент эндонуклеазу продуцента Serratia marcescens в концентрации 400-3200 тыс. ед./м2 и активатор фермента MgSO4 в количестве 0,1-0,8 г/м2, обработку проводят от четырех раз и более в течение одного периода вегетации.



 

Похожие патенты:

Группа изобретений относится к биотехнологии. Предложены микробная композиция и способ повышения урожайности растений.

Заявленная группа изобретений относится к биотехнологии, получению биопрепаратов, используемых в сельском хозяйстве для повышения продуктивности растений. Предложены композиция для повышения урожайности, содержащая микробный консорциум, депонированный в АТСС под регистрационным номером РТА -12751, способ биодеградации хитин-содержащего биологического материала и способ повышения урожайности сельскохозяйственных растений.

Изобретение относится к области биотехнологии, а именно к индукционным средам для получения иммунологически поляризованной популяции мезенхимальных стволовых клеток из нестимулированной популяции мезенхимальных стволовых клеток, иммунологически поляризованным популяциям мезенхимальных стволовых клеток и лечению заболеваний у субъекта.

Группа изобретений относится к сельскому хозяйству, а именно к выращиванию кукурузы. Способ выращивания кукурузного растения включает выбор поля, на котором кукуруза выращивалась в предыдущем году и которое имеет ожидаемое снижение урожайности кукурузы, посадку семян кукурузы и применение комбинации Trichoderma virens и Bacillus subtilis вар.

Изобретение относится к области биотехнологии. Изобретение представляет собой способ ускоренного снятия периода покоя посредством стимуляции пробуждения и дружных всходов свежеубранных миниклубней картофеля, включающий помещение их в водный раствор, содержащий роданистый калий и тиомочевину по 0,02 г/л, индолилуксусную, гиберрелиновую и янтарную кислоты по 0,02 г/л, а также меланинподобные вещества из дрожжей Nadsoniella nigra в количестве 1,0-3,0 г/л, и характеризующийся тем, что миниклубни в растворе подвергаются действию ультразвука с частотой 22-44 кГц, плотностью акустической мощности 0,3-1,0 Вт/см3 в течение 15-360 с.

Изобретение относится к биотехнологии. Предложен штамм микроспоридии Nosema pyrausta М-1 ВИЗР, обладающий повышенной вирулентностью для подавления численности лугового мотылька.

Изобретение относится к области биотехнологии. Изобретение представляет собой штамм энтомопатогенного гриба Beauveria bassiana IC 1530-25-1, способ, включающий предпосадочную обработку клубней картофеля биопрепаратом и биопрепарат.
Изобретение относится к области биотехнологии. Изобретение представляет собой способ защиты картофеля от проволочника, заключающийся во внесении отпугивающего препарата.

Изобретение относится к биотехнологии. Предложен штамм гриба Stagonospora cirsii, являющийся продуцентом гербарумина I и стагонолида А.

Группа изобретений относится к биотехнологии и включает кристаллообразующий штамм бактерий Brevibacillus laterosporus ВКПМ В-13186 и варианты его применения. Предлагаемый штамм является спорообразующим и обладает широким спектром антагонистической активности против различных видов организмов, что позволяет использовать его как эффективный биоцид.

Изобретение относится к сельскому хозяйству и может быть использовано для борьбы с сорной растительностью в посевах зерновых культур. Гербицидная композиция содержит в качестве действующего вещества гербицидно эффективное количество трибенурон-метила, третичный алкиламин, в котором по меньшей мере один алкильный радикал содержит не менее восьми атомов углерода, поверхностно-активное вещество и дополнительно соли угольной кислоты, представляющие собой карбонат натрия, карбонат калия, гидрокарбонат натрия, индивидуально или в комбинации друг с другом.
Наверх