Способ экономии запаса электроэнергии автономного необитаемого подводного аппарата

Изобретение относится к способам использования автономных необитаемых подводных аппаратов (АНПА), а точнее к способам обеспечения их энергоэффективности. Способ использования АНПА, позволяющий экономить запас электроэнергии АНПА, оборудованного навигационной системой и гидроакустической системой освещения обстановки (ГСОО), работающей в активном и пассивном режимах, заключается в том, что с использованием счислимых навигационной системой координат АНПА и цифровой карты система управления (СУ) АНПА периодически определяет расстояние до ближайшего неподвижного навигационного препятствия впереди по курсу от своего текущего места, с тем же периодом СУ вычисляет время, в течение которого АНПА может двигаться без использования активного режима работы ГСОО, и следит за динамикой изменения значения времени, пока оно остается больше нуля, в противном случае СУ вычисляет период излучения зондирующих сигналов в активном режиме работы ГСОО и дает команду на включение активного режима ГСОО, при обнаружении неподвижного препятствия СУ рассчитывает параметры маневра уклонения и в нужный момент дает команду на его выполнение, одновременно с описанными действиями СУ рассчитывает интервал времени между последовательными включениями пассивного режима ГСОО и в соответствии с этим интервалом периодически дает команды на включение пассивного режима работы ГСОО. Технический результат – повышение энергоэффективности использования АНПА, сокращение расхода заряда аккумуляторной батареи АБ за счет сокращения времени работы ГСОО в активном и пассивном режимах без сокращения качества работы ГСОО. 1 ил.

 

Изобретение относится к способам использования автономных необитаемых подводных аппаратов (АНПА), а точнее к способам обеспечения их энергоэффективности.

При задании выполнения миссии АНПА на большом удалении от базы остро стоит вопрос экономного расходования энергии его аккумуляторной батареи (АБ) (либо другого источника энергии). Одной из наиболее энергозатратных систем АНПА является гидроакустическая система освещения обстановки (ГСОО), которая при движении АНПА по заданному маршруту обеспечивает навигационную безопасность АНПА, т.е. своевременное обнаружение неподвижных и подвижных навигационных препятствий и выдачу данных по ним в систему управления (СУ) АНПА. Поскольку неподвижные навигационные препятствия, как правило, не излучают гидроакустические шумы и сигналы, их обнаружение возможно только в активном режиме работы ГСОО. Подвижные навигационные препятствия (подводные лодки, надводные корабли, АНПА) могут обнаруживаться как в активном, так и в пассивном режиме работы ГСОО. Поскольку работа и того, и другого режима работы ГСОО сопряжена с расходованием запаса электроэнергии АБ, актуален поиск путей уменьшения времени их работы.

В качестве прототипа выберем систему освещения ближней обстановки (СОБО) подводной лодки, описанную в работе [Корякин Ю.А., Смирнов С.А., Яковлев Г.В. Корабельная гидроакустическая техника. Состояние и актуальные проблемы. - СПб.: Наука, 2004], одной из задач которой является обнаружение неподвижных и подвижных навигационных препятствий в активном и пассивном режимах работы. Пассивный и активный режимы в СОБО работают непрерывно, период излучения зондирующих сигналов (ЗС) в активном режиме рассчитывается по формуле:

где ΔТЗС - период излучения ЗС;

Rш - выбранная шкала освещаемой дальности;

Сзв - среднегоризонтальная скорость распространения ЗС в текущих гидроакустических условиях.

Решаемая техническая проблема - повышение энергоэффективности использования АНПА.

Технический результат - сокращение расхода заряда АБ за счет сокращения времени работы ГСОО в активном и пассивном режимах без сокращения качества работы гидроакустической системы освещения обстановки.

Указанный технический результат достигается тем, что работа ГСОО адаптируется к текущим характеристикам маршрута по критерию минимума потребляемой электроэнергии. Источниками информации для адаптации являются:

- цифровая навигационная карта маршрута, заложенная в память СУ АНПА;

- текущие счислимые координаты АНПА;

- вычисленное исходя из характеристик района и навигационных средств АНПА текущее максимальное отклонение истинного места АНПА от счислимого, ΔRmax;

- вычисленная исходя из измеренного вертикального распределения скорости звука среднегоризонтальная скорость распространения ЗС, Сзв;

- минимальное расстояние до навигационного препятствия, на котором АНПА должен начать маневр расхождения с ним, Rmin;

- вычисленная для текущих гидроакустических условий минимальная дистанция обнаружения опасных подвижных объектов Dобн/min и максимальная скорость сближения с ними Vсбл/max.

Применительно к активному режиму работы ГСОО адаптация осуществляется следующим образом:

1) С использованием цифровой карты периодически (раз в 5-10 минут) определяется расстояние Rпр впереди по курсу АНПА до ближайшего неподвижного навигационного препятствия (береговая черта, опасные возвышенности подводного рельефа и др.).

2) С тем же периодом вычисляется время ΔТАР, в течение которого АНПА может плыть без использования активного режима работы ГСОО:

где VАНПА - текущая скорость АНПА. Иллюстрация формулы (2) приведена на фиг. 1, из которой видно, что АНПА может сближаться с навигационным препятствием до расстояния Rmin (с учетом возможной ошибки определения текущего места АНПА).

3) Если ΔТАР>0, АНПА движется без использования активного режима работы ГСОО.

4) Как только величина ΔТАР приблизилась к нулю, СУ АНПА по формуле

где Rш/max - максимальная шкала освещаемой дальности в активном режиме работы ГСОО, рассчитывает период излучения ЗС и дает команду на включение активного режима работы ГСОО на максимальной шкале освещаемой дальности.

5) При обнаружении препятствия система управления рассчитывает параметры маневра уклонения и в нужный момент дает команду на его выполнение.

Применительно к пассивному режиму работы ГСОО экономия электроэнергии достигается за счет периодического прослушивания окружающего пространства в течение нескольких минут. Интервал времени между последовательными включениями пассивного режима рассчитывается по формуле:

Проведенный расчет показал, что на типовых протяженных маршрутах движения АНПА экономия использования электроэнергии, расходуемой на обеспечение работы ГСОО, за счет применения заявляемого способа составляет до 80%.

Таким образом, заявленный технический результат - сокращение расхода заряда АБ за счет сокращения времени работы ГСОО в активном и пассивном режимах без сокращения качества работы гидроакустической системы освещения обстановки - можно считать достигнутым.

Способ использования автономного необитаемого подводного аппарата (АНПА), позволяющий экономить запас электроэнергии АНПА, оборудованного навигационной системой и гидроакустической системой освещения обстановки (ГСОО), работающей в активном и пассивном режимах, отличающийся тем, что с использованием счислимых навигационной системой координат АНПА и цифровой карты система управления (СУ) АНПА периодически определяет расстояние Rпр до ближайшего неподвижного навигационного препятствия впереди по курсу от своего текущего места, с тем же периодом СУ по формуле где ΔRmax - максимально возможное отклонение истинного места АНПА от счислимого, Rmin - минимальное расстояние до навигационного препятствия, на котором АНПА должен начать маневр расхождения с ним, VАНПА - текущая скорость АНПА, вычисляет время ΔТАР, в течение которого АНПА может двигаться без использования активного режима работы ГСОО, и следит за динамикой изменения значения времени ΔТАР, пока оно остается больше нуля, в противном случае СУ по формуле где Rш/max - максимальная шкала освещаемой дальности в активном режиме работы ГСОО, вычисляет период излучения зондирующих сигналов в активном режиме работы ГСОО ΔТЗС и дает команду на включение активного режима ГСОО, при обнаружении неподвижного препятствия СУ рассчитывает параметры маневра уклонения и в нужный момент дает команду на его выполнение, одновременно с описанными действиями СУ по формуле где Dобн/min - минимальная дистанция обнаружения опасных подвижных объектов, Vсбл/max - максимальная скорость сближения с опасными подвижными объектами, рассчитывает интервал времени ΔТпас между последовательными включениями пассивного режима ГСОО и в соответствии с этим интервалом периодически дает команды на включение пассивного режима работы ГСОО.



 

Похожие патенты:

Изобретение относится к области гидроакустики и может быть использовано для разработки систем классификации, определения координат и параметров движения шумящих в море объектов в инфразвуковом диапазоне частот.

Изобретение относится к комбинированному способу для содействия пилотированию и обнаружения стрельбы, а также к бортовому оборудованию для летательного аппарата.

Способ обнаружения подводного источника широкополосного шума относится к области гидроакустики и может использоваться в системах шумопеленгования и контроля подводной обстановки.

Изобретение относится к области гидроакустики и может быть использовано для распознавания морских судов по их шумоизлучению. В предлагаемом способе принимают шумовой сигнал движущегося судна комбинированным приемником градиента давления, оцифровывают, фильтруют, выполняют спектральный анализ методом БПФ, формируют спектры суммарного процесса сигнал плюс помеха S+N для полного набора 16 информативных параметров, характеризующих звуковое поле, формируют спектры помехи N для полного набора 16 информативных параметров, формируют отношение сигнал-помеха S/N для полного набора 16 информативных параметров, выбирают в компараторе дискретные составляющие, которым соответствуют максимальные значения отношения S/N из 16 возможных, определяют гармонический ряд лопастных частот fmax(nz), n=1,2,3 и т.д., которым соответствуют максимальные значения отношения S/N на выходе компаратора, а минимальную из них принимают за первую лопастную частоту fл(z), находят в спектре сигнала на выходе компаратора минимальную разностную частоту f(nz)-f(nz-1), которую принимают за первую вальную частоту fв(1)=f(nz)-f(nz-1), n=1,2,3 и т.д., вычисляют ориентировочное значение числа лопастей винта по формуле z0(i)=fл/fв, формируют набор эталонных спектров S(i)=cos(2πfz(i)/fmax), где S(i) - эталонный спектр для гипотезы о количестве лопастей номер i, содержащий вально-лопастный звукоряд, характерный для количества лопастей винта z(i), вычисляют для каждого S(i) его меру сходства K(i) со спектром исследуемого сигнала, строят график функции R(φ)=K(i)cos(φz0(i)), φ=(0, 2π) для найденного ориентировочного значения числа лопастей винта z0(i)=fл/fв и, если результирующая фигура подобна контуру винта с z0(i) лопастями, то делают вывод о том, что у наблюдаемого шумящего объекта количество лопастей равно z0(i).

Изобретение относится к области гидроакустики и может быть использовано в пассивной гидролокации в зоне излучения источника с круговым (сферическим, цилиндрическим) волновым фронтом, а также в атмосферной акустике и пассивной радиолокации.

Настоящее изобретение относится к области гидроакустики и предназначено для классификации сигналов шумоизлучения обнаруженных объектов, в том числе и сигналов шумоизлучения, вызванных источниками биоакустики.

Изобретение относится к области подводной навигации, а именно к определению местоположения подводного объекта посредством гидроакустической навигационной системы, и может быть использовано для определения навигационных характеристик (азимута, угла места, дальности, наклонного расстояния) подводного объекта.

Изобретение относится к области подводной навигации, а именно к определению местоположения подводного объекта посредством гидроакустической навигационной системы, и может быть использовано для определения навигационных характеристик (азимута, угла места, дальности, наклонного расстояния) подводного объекта.

Изобретение относится к измерительной технике, в частности к определению местоположения стрелка на местности при движении объекта обстрела с использованием звука от выстрела, и предполагает его использование при передвижениях войск и техники на железнодорожном и автомобильном транспорте, при движении в строю.

Изобретение относится к области гидроакустики, может быть использовано при решении задач обработки сигнала морских объектов пассивными гидроакустическими средствами и предназначено для разделения обнаруженных объектов на два класса: приповерхностные и подводные.

Изобретение относится к области создания автономных необитаемых подводных аппаратов (АНПА), а точнее их систем управления. Автономный необитаемый подводный аппарат (АНПА) содержит интегрированную систему управления (ИСУ), включающую объединенные в нее технические средства и подсистемы, а именно двигательно-рулевую, погружения-всплытия, навигации, гидроакустического освещения обстановки, гидроакустической связи и радиосвязи. Все упомянутые технические средства и подсистемы оснащены собственными средствами управления и информационно связаны друг с другом посредством сети обмена данными. В интегрированную систему управления включена подсистема планирования, подключенная к сети обмена данными. Достигается повышение эффективности управления АНПА при сокращении стоимости разработки алгоритмов управления АНПА и реализующего их программного обеспечения. 2 з.п. ф-лы, 3 ил.
Наверх