Катализатор для гидротермального сжижения биомассы растительного происхождения

Изобретение относится к катализаторам для гидротермального сжижения биомассы растительного происхождения и может быть использовано при получении альтернативных жидких моторных топлив. Катализатор для гидротермального сжижения биомассы растительного происхождения содержит оксид циркония, оксид титана, оксид олова, оксид ванадия, фосфат алюминия, мелкодисперсный оксид алюминия при следующем соотношении компонентов, мас.%: оксид циркония 1,0-40,0; оксид титана 0,5-5,0; оксид олова 0,5-5,0; оксид ванадия 0,1-10,0; фосфат алюминия 1,0-5,0; мелкодисперсный оксид алюминия - остальное, до 100 в сульфатированной форме. Технический результат - обеспечение повышения активности катализатора по отношению к сероорганическим соединениям исходного сырья за счет перевода указанных соединений в водорастворимую форму. 4 пр.

 

Настоящее изобретение относится к катализаторам для гидротермального сжижения биомассы растительного происхождения и может быть использовано при получении альтернативных жидких моторных топлив.

Гидротермальное сжижение биомассы или так называемый «мокрый пиролиз» - процесс получения жидких компонентов моторных топлив из биомассы растительного происхождения. Данный процесс в отличие от традиционного пиролиза позволяет значительно экономить энергетические затраты за счет отсутствия необходимости проведения тщательной осушки сырья. В качестве сырья для проведения процесса может быть использована биомасса микроводорослей, цианобактерий или водной растительности. Основным продуктом процесса гидротермального сжижения является бионефть - сложная смесь органических соединений, среди которых ароматические углеводороды, алканы нормального и изостроения, спирты, фенолы, серо- и азотсодержащие соединения.

Процесс гидротермального сжижения проводят в закрытом реакторе-автоклаве, нагревая загруженную биомассу до 300-400°С с последующей выдержкой при максимальной температуре. В ходе процесса в реакторе образуются газообразные продукты, водная фаза, бионефть и твердый остаток. Полученная бионефть может быть использована непосредственно для получения энергии, например, в процессе сжигания совместно с нефтяным мазутом, либо разделена на топливные компоненты: бензиновую и дизельную фракцию, которые в дальнейшем могут быть использованы как добавки к нефтяным топливам. И в том и в другом случае существуют ограничения на содержание в бионефти серы. При сгорании серосодержащих веществ образуются оксиды серы, которые не только способствуют усилению коррозии печного оборудования и теплообменников, но и отрицательно сказываются на окружающей среде.

Для снижения содержания серы в бионефти проводят ее облагораживание в среде водорода, однако это требует сложного аппаратурного оформления и наличия катализатора, содержащего благородный металл.

Использование катализатора непосредственно в процессе гидротермального сжижения позволяет увеличить выход бионефти, снизить температуру процесса, а также повысить качество получаемой бионефти.

Известен катализатор, предназначенный для гидротермального сжижения биомассы микроводорослей (CN 105797730, 2016). Указанный гетерогенный катализатор состоит из носителя - порошкообразной глины и активного компонента - оксида никеля. При этом, указанный катализатор недостаточно эффективен, поскольку имеет низкое значение удельной поверхности, которое не превышает 10-15 м2/г. Последнее приводит к затруднению транспорта компонентов биомассы к активному компоненту катализатора и, как следствие, к повышенному содержанию высококипящей углеводородной составляющей в целевой бионефти. Кроме того, отсутствие изомеризующей активности используемого катализатора приводит к низкому качеству целевого продукта. Содержание серы в целевом продукте превышает 1,0%, поскольку катализатор обладает низкой активностью по отношению к серосодержащим соединениям исходного сырья. Таким образом, известный катализатор недостаточно эффективен.

Наиболее близким к заявленному изобретению является катализатор для гидротермального сжижения (RU 2668423, 2018). Указанный гетерогенный катализатор содержит оксид стронция или оксид титана, или оксид олова, или их смесь, мелкодисперсный алюмосодержащий оксидный носитель, включающий фосфаты или арсенаты алюминия во фторированной и/или сульфатированной форме. При проведении процесса гидротермального сжижения в присутствии указанного катализатора повышается содержание бензиновой фракции за счет повышенного значения удельной поверхности катализатора, а наличие изомеризующей функции данного катализатора способствует повышению октанового числа бензиновой фракции, содержащейся в полученной бионефти. Кроме того, использование описываемого катализатора приводит к улучшению низкотемпературных свойств дизельной составляющей получаемой бионефти, обусловленное также повышенным содержанием в последней углеводородов изостроения.

Однако, полученная с использованием указанного катализатора бионефть содержит большое количество серы - выше 1,0% масс, что снижает ее качество и требует проведения дополнительных стадий гидроочистки. Таким образом, указанный катализатор недостаточно эффективен.

Техническая проблема описываемого технического решения заключается в повышении эффективности катализатора для гидротермального сжижения биомассы растительного происхождения.

Указанная проблема решается описываемым катализатором для гидротермального сжижения биомассы растительного происхождения, содержащим оксид циркония, оксид титана, оксид олова, оксид ванадия, фосфат алюминия, мелкодисперсный оксид алюминия при следующем соотношении компонентов, % масс:

- оксид циркония 1,0-40,0
- оксид титана 0,5-5,0
- оксид олова 0,5-5,0
- оксид ванадия 0,1-10,0
- фосфат алюминия 1,0-5,0
- мелкодисперсный оксид алюминия остальное, до 100

в сульфатированной форме.

Достигаемый технический результат заключается в обеспечении повышения активности катализатора по отношению к сероорганическим соединениям исходного сырья за счет перевода указанных соединений в водорастворимую форму.

Сущность изобретения заключается в следующем.

Описываемый катализатор получают следующим образом. Смешивают, взятые в расчетном количестве, мелкодисперсный оксид алюминия в качестве носителя, прекурсор оксида ванадия, оксид циркония, оксид титана, оксид олова, поливиниловый спирт или другие водорастворимые полимеры в качестве порообразующего компонента и ортофосфорную кислоту для образования связующего компонента - фосфата алюминия.

В качестве мелкодисперсного алюмосодержащего носителя возможно использовать алюмосодержащие оксидные материалы, например, оксид алюминия, каолин, отходы производства галлуазита.

В качестве прекурсора оксида ванадия используют соли метаванадиевой кислоты, предпочтительно, ванадат аммония.

Полученную смесь формуют путем продавливания через экструдер, сушат при температуре 110-150°С до удаления влаги, а затем прокаливают при температуре 400-600°С в течение 5-10 часов.

Затем прокаленную смесь переводят в сульфатированную форму с использованием серной кислоты с целью введения сульфат-иона.

Для этого прокаленную массу обрабатывают разбавленной серной кислотой. После чего прокаливают обработанную массу при 200-250°С.

В результате получают катализатор, содержащий, % масс.:

- оксид циркония 1,0-40,0
- оксид титана 0,5-5,0
- оксид олова 0,5-5,0
- оксид ванадия 0,1-10,0
- фосфат алюминия 1,0-5,0
- мелкодисперсный оксид алюминия остальное, до 100

в сульфатированной форме.

При этом содержание сульфат-ионов в катализаторе составляет 1-20% (в пересчете на серный ангидрид) относительно прокаленной смеси.

Эффективность катализатора оценивают следующим образом.

Биомассу микроводорослей, цианобактерий или водной растительности, предназначенную для гидротермального сжижения, измельчают и смешивают с катализатором. Количество катализатора составляет 1-10% от веса биомассы. Полученную смесь помещают в автоклав с мешалкой, нагревают до температуры 250-400°С со скоростью 5-50°С/мин и выдерживают при заданной температуре в течение 10-60 мин. Затем автоклав охлаждают до комнатной температуры. Полученный продукт разделяют на органическую, водную фазы и твердый остаток. При этом серосодержащие соединения, содержащиеся в исходном сырье, за счет перевода их в водорастворимую форму, аккумулируются в водной фазе.

Органическую фазу, представляющую собой сырую бионефть, обезвоживают и определяют в ней содержание серы методом рентгенофлуоресцентного анализа.

Ниже представлены примеры, иллюстрирующие изобретение, но не ограничивающее его.

Пример 1.

Мелкодисперсный оксид алюминия массой 15,0 г, 1,0 г прекурсора оксида ванадия - ванадата аммония, оксид циркония массой 2,0 г., оксид титана массой 1,0 г и оксид олова массой 1,0 г тщательно смешивают при растирании в керамической ступке. К полученному порошку добавляют 120,0 г 10%-ного водного раствора поливинилового спирта с молекулярной массой 6000 г/моль и 0,38 г 85%-ной ортофосфорной кислоты, после чего тщательно перемешивают до образования плотной консистенции. Затем полученную смесь формуют путем продавливания через экструдер. Образованную смесь сушат при температуре 130°С до удаления влаги, после чего прокаливают при 500°С в течение 8 часов в токе воздуха. При этом формируется смесь, содержащая оксид циркония, оксид ванадия, оксид титана, оксида олова, фосфат алюминия и мелкодисперсный оксид алюминия. Количество полученной прокаленной смеси составляет 20,0 г.

Полученную прокаленную смесь переводят в сульфатированную форму пропитыванием 10%-ным раствором серной кислоты массой 50 г и сушкой в закрытой печи при температуре 250°С. При этом содержание сульфат-иона составляет 20,0% (в пересчете на серный ангидрид) от массы прокаленной смеси.

Получают катализатор следующего состава, % масс:

- оксид циркония 10,0
- оксид титана 5,0
- оксид олова 5,0
- оксид ванадия 4,0
- фосфат алюминия 2,0
- мелкодисперсный оксид алюминия 74,0

в сульфатированной форме.

Масса полученного катализатора составляет 24,0 г.

Эффективность катализатора оценивают, используя биомассу цианобактерий Anabaena Variabilis массой 150 г. Биомассу и полученный катализатор в количестве 11,25 г помещают в автоклав с мешалкой. Нагревают до 300°С со скоростью 35°С/мин при интенсивном перемешивании, после чего выдерживают в течение 30 минут. Затем автоклав охлаждают до комнатной температуры. Образовавшийся твердый остаток отделяют путем фильтрования. Полученную жидкую фазу разделяют на водную и органическую фазу на делительной воронке. Органическую фазу, представляющую собой сырую бионефть, сушат и определяют в ней содержание серы методом рентгенофлуоресцентного анализа.

В описываемом примере выход бионефти составляет 43% от сухого веса взятой биомассы. Содержание серы в бионефти - 0,05%.

Пример 2

Мелкодисперсный оксид алюминия массой 37,0 г, 0,1 г прекурсора оксида ванадия - ванадата аммония, оксид циркония массой 20,0 г., оксид титана массой 2,5 г и оксид олова массой 0,25 г тщательно смешивают при растирании в керамической ступке. К полученному порошку добавляют 300,0 г 10%-ного водного раствора поливинилового спирта с молекулярной массой 6000 г/моль и 0,5 г 85%-ной ортофосфорной кислоты, после чего тщательно перемешивают до образования плотной консистенции. Затем полученную смесь формуют путем продавливания через экструдер. Образованную смесь сушат при температуре 130°С градусов до удаления влаги, после чего прокаливают при 500°С в течение 8 часов в токе воздуха. При этом формируется смесь, содержащая оксид циркония, оксид ванадия, оксид титана, оксид олова, фосфат алюминия и мелкодисперсный оксид алюминия. Количество полученной прокаленной смеси составляет 50,0 г.

Полученную прокаленную смесь переводят в сульфатированную форму пропитыванием 10%-ным раствором серной кислоты массой 31 г и сушкой в закрытой печи при температуре 250°С. При этом содержание сульфат-иона составляет 5,0% (в пересчете на серный ангидрид) от массы прокаленной смеси.

Получают катализатор следующего состава, % масс:

- оксид циркония 20,0
- оксид титана 5,0
- оксид олова 0,5
- оксид ванадия 0,1
- фосфат алюминия 1,0
- мелкодисперсный оксид алюминия 73,4

в сульфатированной форме.

Масса полученного катализатора составляет 52,5 г.

Эффективность катализатора оценивают, используя биомассу цианобактерий Mastigocladus laminosus массой 150 г. Биомассу и полученный катализатор в количестве 7,5 г помещают в автоклав с мешалкой. Нагревают до 250°С со скоростью 5°С/мин при интенсивном перемешивании, после чего выдерживают в течение 60 минут. Затем автоклав охлаждают до комнатной температуры. Образовавшийся твердый остаток отделяют путем фильтрования. Полученную жидкую фазу разделяют на водную и органическую фазу на делительной воронке. Органическую фазу, представляющую собой сырую бионефть, сушат и определяют в ней содержание серы методом рентгенофлуоресцентного анализа.

В описываемом примере выход бионефти составляет 42% от сухого веса взятой биомассы. Содержание серы в бионефти - 0,05% масс.

Пример 3

Мелкодисперсный оксид алюминия массой 32,5 г, 5,1 г прекурсора оксида ванадия - ванадата аммония, оксид циркония массой 0,4 г., оксид титана массой 0,2 г и оксид олова массой 2,0 г тщательно смешивают при растирании в керамической ступке. К полученному порошку добавляют 240,0 г 10%-ного водного раствора поливинилового спирта с молекулярной массой 6000 г/моль и 1,9 г 85%-ной ортофосфорной кислоты, после чего тщательно перемешивают до образования плотной консистенции. Затем полученную смесь формуют путем продавливания через экструдер. Образованную смесь сушат при температуре 110°С градусов до удаления влаги, после чего прокаливают при 600°С в течение 5 часов в токе воздуха. При этом формируется смесь, содержащая оксид циркония, оксид ванадия, оксид титана, оксид олова, фосфат алюминия и мелкодисперсный оксид алюминия. Количество полученной прокаленной смеси составляет 40,0 г.

Полученную прокаленную смесь переводят в сульфатированную форму пропитыванием 1%-ным раствором серной кислоты массой 50 г и сушкой в закрытой печи при температуре 200°С. При этом содержание сульфат-иона составляет 1,0% (в пересчете на серный ангидрид) от массы прокаленной смеси.

Получают катализатор следующего состава, % масс:

- оксид циркония 1,0
- оксид титана 0,5
- оксид олова 5,0
- оксид ванадия 10,0
- фосфат алюминия 5,0
- мелкодисперсный оксид алюминия 78,5

в сульфатированной форме.

Масса полученного катализатора составляет 40,5 г.

Эффективность катализатора оценивают, используя биомассу водного растения Ceratophyllum submersum массой 150 г. Биомассу и полученный катализатор в количестве 1,5 г помещают в автоклав с мешалкой. Нагревают до 400°С со скоростью 40°С/мин при интенсивном перемешивании, после чего выдерживают в течение 10 минут. Затем автоклав охлаждают до комнатной температуры. Образовавшийся твердый остаток отделяют путем фильтрования. Полученную жидкую фазу разделяют на водную и органическую фазу на делительной воронке. Органическую фазу, представляющую собой сырую бионефть, сушат и определяют в ней содержание серы методом рентгенофлуоресцентного анализа.

В описываемом примере выход бионефти составляет 40% от сухого веса взятой биомассы. Содержание серы в бионефти - 0,06% масс.

Пример 4

Мелкодисперсный оксид алюминия массой 28,0 г, 5,1 г прекурсора оксида ванадия - ванадата аммония, оксид циркония массой 12,0 г., оксид титана массой 0,25 г и оксид олова массой 0,25 г тщательно смешивают при растирании в керамической ступке. К полученному порошку добавляют 300,0 г 10%-ного водного раствора поливинилового спирта с молекулярной массой 6000 г/моль и 1,0 г 85%-ной ортофосфорной кислоты, после чего тщательно перемешивают до образования плотной консистенции. Затем полученную смесь формуют путем продавливания через экструдер. Образованную смесь сушат при температуре 135°С градусов до удаления влаги, после чего прокаливают при 550°С в течение 6 часов в токе воздуха. При этом формируется смесь, содержащая оксид циркония, оксид ванадия, оксид титана, оксид олова, фосфат алюминия и мелкодисперсный оксид алюминия. Количество полученной прокаленной смеси составляет 50,0 г.

Полученную прокаленную смесь переводят в сульфатированную форму пропитыванием 10%-ным раствором серной кислоты массой 38 г и сушкой в закрытой печи при температуре 225°С. При этом содержание сульфат-иона составляет 6,0% (в пересчете на серный ангидрид) от массы прокаленной смеси.

Получают катализатор следующего состава, % масс:

- оксид циркония 40,0
- оксид титана 0,5
- оксид олова 0,5
- оксид ванадия 2,0
- фосфат алюминия 2,0
- мелкодисперсный оксид алюминия 55,0

в сульфатированной форме.

Масса полученного катализатора составляет 56,2 г.

Эффективность катализатора оценивают, используя биомассу микроводоросли Scenedesmus sp. массой 150 г. Биомассу и полученный катализатор в количестве 7,5 г помещают в автоклав с мешалкой. Нагревают до 300°С со скоростью 30°С/мин при интенсивном перемешивании, после чего выдерживают в течение 20 минут. Затем автоклав охлаждают до комнатной температуры. Образовавшийся твердый остаток отделяют путем фильтрования. Полученную жидкую фазу разделяют на водную и органическую фазу на делительной воронке. Органическую фазу, представляющую собой сырую бионефть, сушат и определяют в ней содержание серы методом рентгенофлуоресцентного анализа.

В описываемом примере выход бионефти составляет 41% от сухого веса взятой биомассы. Содержание серы в бионефти - 0,07% масс.

Как следует из приведенных в примерах данных, описываемый катализатор позволяет получить бионефть, содержащую 0,05-0,07% масс серы при сохранении достаточно высокого выхода указанной бионефти.

Использование состава катализатора, содержащего компоненты в иных концентрациях, не выходящих за рамки заявленных, приводит к аналогичным результатам, а в концентрациях, отличных от заявленных, не приводит к желаемым результатам.

Катализатор для гидротермального сжижения биомассы растительного происхождения, содержащий оксид циркония, оксид титана, оксид олова, оксид ванадия, фосфат алюминия, мелкодисперсный оксид алюминия при следующем соотношении компонентов, мас.%:

- оксид циркония 1,0-40,0
- оксид титана 0,5-5,0
- оксид олова 0,5-5,0
- оксид ванадия 0,1-10,0
- фосфат алюминия 1,0-5,0
- мелкодисперсный оксид алюминия остальное, до 100

в сульфатированной форме.



 

Похожие патенты:
Изобретение относится к катализаторам для гидротермального сжижения биомассы растительного происхождения и может быть использовано при получении альтернативных жидких моторных топлив.
Изобретение относится к катализаторам для гидротермального сжижения биомассы растительного происхождения и может быть использовано при получении альтернативных жидких моторных топлив.

Изобретение относится к катализатору, к способу получения катализатора и его применению в риформинге. Катализатор риформинга содержит подложку, по меньшей мере один благородный металл M, содержание которого составляет от 0,02 до 2 мас.% от массы катализатора, олово, фосфор и церий.

Изобретение относится к катализатору, к способу получения катализатора и его применению в риформинге. Катализатор риформинга содержит подложку, по меньшей мере один благородный металл M, содержание которого составляет от 0,02 до 2 мас.% от массы катализатора, олово, фосфор и церий.

Предлагаемая группа изобретений относится к области химии, касается способа получения композитного термостабильного катализатора каркасного строения для дегидратации метанола в диметиловый эфир в инертной атмосфере.

Настоящее изобретение относится к способу превращения циклогексанола в циклогексанон, заключающемуся в реакции спирта в присутствии катализатора и кислорода с образованием кетона, при этом катализатор содержит микропористый каркас хлорпирофосфата меди, включающий в себя множество наночастиц благородного металла, и катализатор представляет собой либо: (i) монометаллический катализатор на основе благородного металла, где благородный металл выбран из платины, палладия или золота; либо (ii) биметаллический катализатор на основе благородного металла, выбранный из: (a) платины и палладия; и (b) платины и золота.

Настоящее изобретение относится к способу превращения циклогексанола в циклогексанон, заключающемуся в реакции спирта в присутствии катализатора и кислорода с образованием кетона, при этом катализатор содержит микропористый каркас хлорпирофосфата меди, включающий в себя множество наночастиц благородного металла, и катализатор представляет собой либо: (i) монометаллический катализатор на основе благородного металла, где благородный металл выбран из платины, палладия или золота; либо (ii) биметаллический катализатор на основе благородного металла, выбранный из: (a) платины и палладия; и (b) платины и золота.

Изобретение относится к способам приготовления катализатора для процесса гидроочистки прямогонной дизельной фракции. Способ приготовления катализатора NiMo/Аl2О3 для процесса гидроочистки прямогонной дизельной фракции содержит активный компонент, в состав которого входят окислы никеля, молибдена и фосфора, диспергированные на алюмооксидном носителе, способ заключается в пропитке гранул алюмооксидного носителя раствором для пропитки с последующей сушкой, раствор для пропитки готовят последовательным растворением ортофосфорной кислоты, оксида молибдена (VI), гидроксида и/или оксида никеля и диэтиленгликоля в дистиллированной воде.

Изобретение относится к способам приготовления катализаторов, предназначенных для получения дизельного топлива с низким содержанием серы. Описан способ приготовления катализатора, заключающийся в пропитке носителя водным раствором, одновременно содержащим биметаллические комплексные соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и Со2[H2P2Mo5O23] с последующей сушкой и сульфидированием катализатора.

Изобретение относится к способам приготовления катализаторов, предназначенных для получения дизельного топлива с низким содержанием серы. Описан способ приготовления катализатора, заключающийся в пропитке носителя водным раствором, одновременно содержащим биметаллические комплексные соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] и Со2[H2P2Mo5O23] с последующей сушкой и сульфидированием катализатора.
Изобретение относится к катализаторам для гидротермального сжижения биомассы растительного происхождения и может быть использовано при получении альтернативных жидких моторных топлив.
Наверх