Способ аддитивного изготовления объемных микроразмерных структур из наночастиц



Способ аддитивного изготовления объемных микроразмерных структур из наночастиц
Способ аддитивного изготовления объемных микроразмерных структур из наночастиц
Способ аддитивного изготовления объемных микроразмерных структур из наночастиц
Способ аддитивного изготовления объемных микроразмерных структур из наночастиц
B33Y40/00 -
B33Y40/00 -
B33Y10/00 -
B33Y10/00 -
B22F2003/1057 - Порошковая металлургия; производство изделий из металлических порошков; изготовление металлических порошков (способы или устройства для гранулирования материалов вообще B01J 2/00; производство керамических масс уплотнением или спеканием C04B, например C04B 35/64; получение металлов C22; восстановление или разложение металлических составов вообще C22B; получение сплавов порошковой металлургией C22C; электролитическое получение металлических порошков C25C 5/00)

Владельцы патента RU 2723341:

федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" (RU)

Изобретение относится к аддитивной 3D-технологии изготовления объемных микроразмерных структур из наночастиц. Способ включает получение потока аэрозоля с наночастицами в потоке транспортного газа, нагрев аэрозоля в потоке транспортного газа с обеспечением получения наночастиц сферической формы требуемого размера, транспортировку полученного потока аэрозоля к головке с соплом, подачу в указанное сопло потока аэрозоля и защитного газа, фокусировку потока аэрозоля наночастиц, осаждение наночастиц из сфокусированного потока аэрозоля на подложку и спекание наночастиц. Используют наночастицы, полученные из металлов, металлоподобных соединений и полупроводников. Нагрев аэрозоля с наночастицами в потоке транспортного газа с обеспечением получения наночастиц сферической формы требуемого размера и спекание наночастиц на подложке проводят посредством по крайней мере одного источника лазерного излучения, длина волны которого соответствует возбуждению размерозависимого локализованного поверхностного плазмонного резонанса для модального значения спектра диаметров осаждаемых на подложку наночастиц. Обеспечивается уменьшение энергоемкости процесса и возможность применения термочувствительных подложек в пластиковой электронике. 3 з.п. ф-лы, 4 ил., 1 пр.

 

Изобретение относится к аддитивной 3D-технологии для производства преимущественно объемных микроразмерных структур из наночастиц, которые применяются в электронике, фотонике, медицинской, аэрокосмической технике и других областях.

Известен способ изготовления объемных структур из наночастиц с использованием наночернил, включающий получение потока аэрозоля с наночастицами, транспортирование потока к соплу головки, фокусировку и осаждение наночастиц из потока аэрозоля на подложку с последующим спеканием массивов осажденных наночастиц [1, 2].

Данные технические решения позволяют изготавливать объемные структуры из наночастиц. Однако при их применении возникают трудности с приготовлением наночернил, такие как подбор растворителей и стабилизаторов. При этом существуют особые требования к условиям их хранения и транспортировки.

В результате использования растворителей и стабилизаторов в наночернилах происходит загрязнение окружающей среды. После применения наночернил требуется удаление растворителей и стабилизаторов с полученных объемных структур из наночастиц. Относительно высокая стоимость наночернил приводит к удорожанию изготовления объемных структур из наночастиц. При использовании данного способа происходит засорение сопел крупными микрокаплями.

Известен способ аддитивного изготовления объемных микроразмерных структур из наночастиц, включающий получение потока аэрозоля с наночастицами в потоке транспортного газа, нагрев аэрозоля с наночастицами в потоке транспортного газа с обеспечением получения наночастиц сферической формы требуемого размера, транспортировку полученного потока аэрозоля с наночастицами к головке с соплом, подачу в указанное сопло потока аэрозоля с наночастицами и защитного газа, фокусировку потока аэрозоля наночастиц, осаждение наночастиц из сфокусированного потока аэрозоля на подложку и спекание наночастиц, при этом осаждение и спекание наночастиц на подложке проводят в атмосфере защитного газа, которую создают под соплом [3].

Данное техническое решение позволяет изготавливать объемные структуры из наночастиц. Однако при применении указанного технического решения возникают трудности в изменении температуры при нагреве аэрозоля с наночастицами в потоке транспортного газа для обеспечения получения наночастиц сферической формы требуемого размера, так как применяемые нагревательные элементы являются инерционными и требуется сравнительно большой промежуток времени, например, для уменьшения температуры нагрева. Кроме того, для спекания осажденных наночастиц на положке требуется применение мощных лазеров и при этом выделяется большое количество энергии. Это затрудняет использование сравнительно дешевых термочувствительных силиконовых подложек при изготовлении пластиковой электроники.

Результат, для достижения которого направлено данное техническое решение, заключается в уменьшении энергоемкости процесса при одновременном удешевлении изготовления изделий за счет возможности применения термочувствительных подложек в пластиковой электронике.

Указанный результат достигается за счет того, что в способе аддитивного изготовления объемных микроразмерных структур из наночастиц, включающем получение потока аэрозоля с наночастицами в потоке транспортного газа, нагрев аэрозоля с наночастицами в потоке транспортного газа с обеспечением получения наночастиц сферической формы требуемого размера, транспортировку полученного потока аэрозоля с наночастицами к головке с соплом, подачу в указанное сопло потока аэрозоля с наночастицами и защитного газа, фокусировку потока аэрозоля наночастиц, осаждение наночастиц из сфокусированного потока аэрозоля на подложку и спекание наночастиц, при этом осаждение и спекание наночастиц на подложке проводят в атмосфере защитного газа, которую создают под соплом, для получения наночастиц применяют металлы, металлоподобные соединения и полупроводники, а для процесса получения наночастиц сферической формы требуемого размера при их нагреве в потоке транспортного газа и их спекания применяют, по крайней мере, один источник лазерного излучения, длина волны которого соответствуют возбуждению размерозависимого локализованного поверхностного плазмонного резонанса для модального значения спектра диаметров осаждаемых на подложку наночастиц. При этом применяют либо один источник лазерного излучения для попеременного нагрева аэрозоля с наночастицами в потоке транспортного газа для обеспечения получения наночастиц сферической формы требуемого размера и их спекания на подложке, либо разные источники лазерного излучения для нагрева аэрозоля с наночастицами в потоке транспортного газа и их спекания на подложке. При осаждении наночастиц на подложку поддерживают температуру наночастиц меньше температуры их спекания.

Пример выполнения заявляемого технического решения поясняется чертежами, где на фиг. 1 схематически показан процесс изготовления объемных микроразмерных структур из наночастиц с применением одного источника лазерного излучения для попеременного процесса оптимизации и спекания осажденных на подвижную подложку наночастиц, на фиг. 2 - то же, но с применением двух источников лазерного излучения, одного для обеспечения получения наночастиц сферической формы требуемого размера при их осаждении на подвижную положку, другого - для спекания наночастиц на подложке, на фиг. 3 - схема, поясняющая возбуждение размерозависимого локализованного поверхностного плазмонного резонанса для модального значения спектра диаметров осаждаемых на подложку наночастиц, на фиг. 4 - график, поясняющий выбор длины волны источника лазерного излучения в зависимости от требуемого диаметра наночастиц серебра.

Способ изготовления объемных микроразмерных структур из наночастиц включает спекание наночастиц на подложке 5, получение в блоке 1 потока аэрозоля с наночастицами в импульсно-периодическом газовом разряде, сообщенного с источником 2 транспортного газа, в потоке транспортного газа, нагрев источником лазерного излучения 6 через вход 9, сообщенного с блоком 1, в блоке 8 оптимизации аэрозоля с наночастицами в потоке транспортного газа с обеспечением получения наночастиц сферической формы требуемого размера, транспортировку полученного потока через выход 10 блока 8 оптимизации аэрозоля с наночастицами к головке 3 с соплом 4 для фокусировки его на подложке 5, подают в указанное сопло поток аэрозоля с наночастицами и одновременно защитный газ с обеспечением фокусировки потока аэрозоля наночастиц на подложке и осаждают наночастицы из сфокусированного потока аэрозоля на подложку. Осаждение и спекание наночастиц на подложке ведут в атмосфере 13 защитного газа, которую создают под соплом 4 источником 11 защитного газа. Спекание осажденных наночастиц 7 ведут источником лазерного излучения 6. Оптическая ось 12 источника лазерного излучения 6 размещается соосно с соплом 4. В случае применением двух источников лазерного излучения (фиг. 2), один источник лазерного излучения 6 используют для обеспечения получения наночастиц сферической формы требуемого размера при их осаждении на подвижную положку, другой источник лазерного излучения 14 - для спекания наночастиц на подложке.

Процесс получения наночастиц сферической формы требуемого размера регулируют мощностью лазера и временем его воздействия на наночастицы.

Процесс спекания ведут в режиме возбуждения размерозависимого локализованного поверхностного плазмонного резонанса для модального значения спектра диаметров, осаждаемых на подложку наночастиц.

Локализованный поверхностный плазмон проявляется в виде усиления электромагнитного поля 15 и связанных с ним колебаний электронной плотности 16 на проводящих наночастицах 17 с размерами меньше длины волны (см. фиг. 3).

Пример осуществления способа.

Для аддитивного изготовления объемных микроразмерных структур из серебра был выбран диаметр наночастиц 85 нм. По данным, приведенным в литературных источниках [4, 5] и проведенных экспериментов, был построен график (фиг. 4), из которого следует, что наночастицы в диапазоне диаметров от 85 до 130 нм эффективно поглощают излучение с длиной волны 527 нм с максимум поглощения при диаметре наночастиц 115 нм.

Для получения потока аэрозоля с наночастицами в потоке аргона (Ar) было использовано серебро (Ag) высокой чистоты (99,99%). При этом был произведен нагрев аэрозоля с серебряными наночастицами в потоке аргона до температуры 400°С для получения наночастиц сферической формы с требуемым для изготовления микроразмерных структур медианным размером 115 нм, транспортируют полученный поток аэрозоля с наночастицами к соплу головки с диаметром выходного отверстия 100 мкм и производят подачу в указанное сопло потока аэрозоля с наночастицами с расходом 12 л/ч, которое соответствует скорости потока транспортного газа 3 мм/с, и защитного газа с расходом 12 л/ч, осуществляют фокусирование потока аэрозоля наночастиц на полимерной термочувствительной подложке, выдерживая расстоянии между соплом и подложкой 0,5 мм, и осуществляют осаждение наночастиц из сфокусированного потока аэрозоля на подложку с последующим спеканием наночастиц.

При этом осаждение и спекание наночастиц на подложке проводили в атмосфере защитного газа аргона высокой чистоты (99,99%), которую создают под соплом, при этом нагрев аэрозоля с наночастицами в потоке транспортного газа для обеспечения получения наночастиц сферической формы требуемого размера и спекание наночастиц на подложке вели лучом лазера с длиной волны 527 нм и с выходной мощностью лазера 1 Вт, ось которого совмещают с осью сфокусированного потока аэрозоля наночастиц.

Таким образом данное техническое решение позволит:

уменьшить энергоемкость процесса

удешевить изготовления изделий за счет возможности применения силиконовых подложек в пластиковой электронике.

Источники информации

1. Патент US №10068863, МПК - B05D 5/12, 09.2018

2. Патент US №9114409, МПК - B05B 7/00, 2015

3. Патент RU №2704358, МПК - B22F 3/105, 2018

4. Hlaing М. et al. Absorption and scattering cross-section extinction values of silver nanoparticles //Optical Materials. - 2016. - T. 58. - C. 439-444

5. Bilankohi S. M. Optical scattering and absorption characteristics of silver and silica/silver core/shell nanoparticles //Oriental Journal of Chemistry. - 2015. - T. 31. - №. 4. - C. 2259-2263.

1. Способ аддитивного изготовления объемных микроразмерных структур из наночастиц, включающий получение потока аэрозоля с наночастицами в потоке транспортного газа, нагрев аэрозоля с наночастицами в потоке транспортного газа с обеспечением получения наночастиц сферической формы требуемого размера, транспортировку полученного потока аэрозоля с наночастицами к головке с соплом, подачу в указанное сопло потока аэрозоля с наночастицами и защитного газа, фокусировку потока аэрозоля наночастиц, осаждение наночастиц из сфокусированного потока аэрозоля на подложку и спекание наночастиц, при этом осаждение и спекание наночастиц на подложке проводят в атмосфере защитного газа, которую создают под соплом, отличающийся тем, что используют наночастицы, полученные из металлов, металлоподобных соединений и полупроводников, при этом нагрев аэрозоля с наночастицами в потоке транспортного газа с обеспечением получения наночастиц сферической формы требуемого размера и спекание наночастиц на подложке проводят посредством по крайней мере одного источника лазерного излучения, длина волны которого соответствует возбуждению размерозависимого локализованного поверхностного плазмонного резонанса для модального значения спектра диаметров осаждаемых на подложку наночастиц.

2. Способ по п. 1, отличающийся тем, что используют один источник лазерного излучения для попеременного нагрева аэрозоля с наночастицами в потоке транспортного газа с обеспечением получения наночастиц сферической формы требуемого размера и их спекания на подложке.

3. Способ по п. 1, отличающийся тем, что используют разные источники лазерного излучения для нагрева аэрозоля с наночастицами в потоке транспортного газа с обеспечением получения наночастиц сферической формы требуемого размера и их спекания на подложке.

4. Способ по п. 1, отличающийся тем, что при осаждении наночастиц на подложку поддерживают температуру наночастиц меньшей температуры спекания.



 

Похожие патенты:

Группа изобретений относится к области медицины, а именно к стоматологии, и предназначена для получения поверхностного и объемного антимикробного эффектов и подготовки поверхности для прочного крепления адгезионной прослойки и пломбировочного материала к влагосодержащему дентину и эмали зуба.

Изобретение относится к аддитивной 3D-технологии производства объемных микроразмерных структур из наночастиц. Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур содержит сообщенный с регулируемым источником 1 транспортного газа блок 2 получения потока аэрозоля, блок 3 оптимизации наночастиц по размеру и форме, содержащий устройство для нагрева потока транспортного газа с наночастицами.

Изобретение относится к гетерогенному катализатору окисления пара-ксилола до терефталевой кислоты, состоящий из носителя, содержащего, % масс.: упорядоченный мезопористый оксид кремния типа МСМ-41 20,0-70,0; алюмосиликатные нанотрубки 30,0-80,0, и оксида металла, выбранного из ряда, включающего Mn, Со, Fe, Cu, Pd или их смесь, нанесенного на носитель в количестве 0,5-15,0% от массы катализатора, причем указанный носитель представляет собой единый структурированный композитный материал.

Изобретение относится к области получения нанопорошков кремния и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток. Способ получения нанопорошков пористого кремния, включает травление подкисленным концентрированной серной кислотой до значения рН 4 водным раствором фторида аммония NH4F исходного монокристаллического кремния в ячейке электрохимического анодного травления с контрэлектродом из нержавеющей стали, промывку полученного пористого материала в дистиллированной воде, механическое отделение от кристаллической подложки, измельчение, сушку полученного порошка в естественных условиях, при этом водный раствор фторида аммония NH4F используют концентрацией, равной 40%.

Изобретение относится к нефтедобывающей промышленности. Технический результат - снижение скин-фактора, повышение эффективности обработки и производительности нефтегазовых скважин, устранение коррозионного воздействия на элементы нефтегазодобывающего и перерабатывающего оборудования и химического загрязнения извлекаемого пластового флюида.

Изобретение относится к технологии получения малоагломерированных высокостехиометричных наноразмерных порошков прекурсора на основе иттрий-алюминиевого граната с катионами редкоземельных элементов.

Изобретение относится к химической промышленности и фармацевтике и может быть использовано при изготовлении средств ускоренной доставки твёрдого вещества, лакокрасочных и смазочных материалов, а также при очистке воздуха от взвешенных частиц.
Изобретение может быть использовано в электронике, медицине, фармакологии и строительстве. Сначала готовят смесь серной кислоты с сухим льдом в достаточном для отвердевания смеси количестве и смесь по меньшей мере одного окислителя, например калия перманганата, с сухим льдом, при этом по меньшей мере одна из указанных смесей содержит измельченный графит.

Изобретение может быть использовано при получении модифицированных пластичных смазок, эпоксидных смол, бетонов. Сначала готовят смесь кристаллического графита с жидкостью и подают её в устройство для получения графенсодержащей суспензии сдвиговой эксфолиацией частиц графита поле центробежных сил, возникающее между цилиндрическим статором 1 и вращающимся от привода вращения 3 ротором 2 с радиальными лопастями 4.

Изобретение может быть использовано при получении углеводородного топлива. Катализатор деоксигенирования компонентов биомассы в углеводороды содержит носитель и соединения никеля в качестве активного компонента.

Изобретение относится к аддитивной 3D-технологии производства объемных микроразмерных структур из наночастиц. Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур содержит сообщенный с регулируемым источником 1 транспортного газа блок 2 получения потока аэрозоля, блок 3 оптимизации наночастиц по размеру и форме, содержащий устройство для нагрева потока транспортного газа с наночастицами.
Наверх