Система импульсно-периодической зарядки на газоразрядных коммутаторах



Система импульсно-периодической зарядки на газоразрядных коммутаторах
Система импульсно-периодической зарядки на газоразрядных коммутаторах
Система импульсно-периодической зарядки на газоразрядных коммутаторах
H03K3/53 - Импульсная техника (измерение импульсных характеристик G01R; механические счетчики с электрическим входом G06M; устройства для накопления /хранения/ информации вообще G11; устройства хранения и выборки информации в электрических аналоговых запоминающих устройствах G11C 27/02; конструкция переключателей для генерации импульсов путем замыкания и размыкания контактов, например с использованием подвижных магнитов, H01H; статическое преобразование электрической энергии H02M;генерирование колебаний с помощью схем, содержащих активные элементы, работающие в некоммутационном режиме, H03B; импульсная модуляция колебаний синусоидальной формы H03C;H04L ; схемы дискриминаторов с подсчетом импульсов H03D;

Владельцы патента RU 2723440:

Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") (RU)
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") (RU)

Система импульсно-периодической зарядки на газоразрядных коммутаторах относится к высоковольтной импульсной технике и может быть использована при разработке мощных импульсно-периодических ускорителей электронов и СВЧ-генераторов на их основе. Cистема импульсно-периодической зарядки содержит электрически связанные между собой источник высокого напряжения, блок импульсно-периодической зарядки, а также формирователь высоковольтных импульсов (ФВИ) с рабочим емкостным накопителем и блок управления, причем блок импульсно-периодической зарядки представляет собой образованные буферным емкостным накопителем, промежуточным емкостным накопителем, индуктивностями, высоковольтными диодами, электропрочными газоразрядными коммутаторами два контура перезарядки - буферного емкостного накопителя на промежуточный емкостной накопитель и промежуточного емкостного накопителя на рабочий емкостной накопитель ФВИ, при этом емкость промежуточного накопителя равна рабочей емкости ФВИ. В качестве электропрочных газоразрядных коммутаторов использованы тиратроны, причем организован тиратронный модуль, представляющий собой герметичный секционированный корпус, секции которого экранированы от электромагнитных наводок, вносимых в электрические цепи при срабатывании расположенных в модуле тиратронов. Тиратрон, расположенный в первой секции, коммутирует разряд буферного емкостного накопителя на промежуточный емкостной накопитель, расположенный во второй секции, тиратрон, расположенный в третьей секции, коммутирует разряд промежуточного емкостного накопителя на рабочий емкостной накопитель ФВИ. Тиратронный модуль оснащен герметичными вводами и разъемами для обеспечения возможности подключения к источнику высокого напряжения, ФВИ и блоку управления. Обеспечена возможность заполнения корпуса модуля газом CF6 или трансформаторным маслом для увеличения электропрочности модуля. Технический результат - повышение надежности и ресурса системы импульсно-периодической зарядки. 2 ил.

 

Изобретение относится к высоковольтной импульсной технике и может быть использовано при разработке мощных импульсно-периодических ускорителей электронов и СВЧ-генераторов на их основе.

Характеристики мощных электрофизических установок, работающих в импульсно-периодическом режиме с высокой средней мощностью электронного пучка, определяются системой первичного электропитания. При создании таких комплексов весьма актуальной задачей является разработка эффективной и надежной системы импульсно-периодической зарядки (СИЗ) емкостных накопителей формирователей высоковольтных импульсов. При уровнях средней мощности пучка более сотни киловатт наиболее предпочтительным является подход с использованием предварительно заряжаемого высоковольтного буферного емкостного накопителя, энергия из которого с помощью коммутатора-прерывателя дозировано передается в емкостной накопитель формирователя высоковольтных импульсов (ФВИ).

Основным элементом в схеме с дозированным отбором энергии из буферного накопителя является коммутатор-прерыватель, функции которого в высоковольтных вариантах СИЗ выполняет разрядник с вращающимися электродами (РВЭ). Проблемами при эксплуатации РВЭ и всей СИЗ на его основе являются эффективное гашение высоковольтной дуги по окончании зарядки и небольшой ресурс из-за механического износа вращающихся деталей.

За аналог заявляемой системы импульсно-периодической зарядки по совокупности признаков, основанный на подобном принципе, выбран генератор импульсных токов с фильтровой (буферной) емкостью и индуктивной зарядной цепью электрогидравлической установки (Л.А. Юткин Электрогидравлические установки// Ленинград. -Машиностроение. - 1986.- стр. 86-90, рис 3.1д).

Недостатками системы импульсно-периодической зарядки, выбранной в качестве аналога, являются относительно невысокий уровень средней мощности, передаваемой в нагрузку, отсутствие защиты цепи от возникающего сквозного тока, то есть, при наличии закороченного коммутатора рабочего накопителя, либо РВЭ на землю, оборвать ток в цепи СИЗ, многократно превышающий номинальный, без принятия специальных мер, не представляется возможным, происходит полная разрядка буферной емкости с выгоранием или повреждением электродов. Все это значительно снижает надежность и ресурс установки.

Следует особо отметить, для повышения среднего уровня мощности, передаваемой в нагрузку с помощью системы импульсно-периодической зарядки на основе дозированного отбора энергии с использованием разрядника с вращающимся электродом, и увеличения надежности функционирования СИЗ в этом режиме, необходим ряд усовершенствований, минимизирующий последствия некорректной работы элементов.

За прототип, наиболее близкий к заявляемой системе импульсно-периодической зарядки на газоразрядных коммутаторах по совокупности признаков, выбрана система импульсно-периодической зарядки в соответствии с патентом РФ №2660171, опубликовано 05.07.2018, патентообладатель ФГУП «РФЯЦ-ВНИИЭФ».

Прототип содержит источник высокого напряжения, буферный емкостной накопитель, две индуктивности, два высоковольтных диода, разрядник (РВЭ) с двумя группами неподвижных пространственно-разнесенных и расположенных в параллельных плоскостях электродов и двумя расположенными друг над другом вращающимися электродами с трех-штыревыми контактами каждый, промежуточный емкостной накопитель, генератор (формирователь) высоковольтных импульсов с рабочим емкостным накопителем, образующие два контура перезарядки - буферного емкостного накопителя на промежуточный емкостной накопитель и промежуточного емкостного накопителя на рабочий емкостной накопитель ФВИ (при этом емкость промежуточного накопителя равна рабочей емкости ФВИ).

Система импульсно-периодической зарядки, выполненная по схеме прототипа, работает следующим образом: источник высокого напряжения относительно медленно заряжает буферный емкостной накопитель. Перед окончанием зарядки асинхронный двигатель с регулятором оборотов раскручивает вал с вращающимися электродами. По окончании процесса зарядки буферной емкости и достижения требуемой частоты вращения вала блок управления формирует импульс на замыкание быстродействующего защитного реле, которое подключает буферную емкость к неподвижному вводу РВЭ через высоковольтную диодную сборку и индуктивность. При этом полярность подключения диода допускает протекание тока из буферной емкости в рабочую, но препятствует обратному течению. При сближении штыря (штыревого контакта) подвижного электрода первой группы с первым неподвижным электродом первой группы происходит пробой и на подвижном электроде появляется высокий потенциал, что, в свою очередь, приводит к пробою со второго штыря (штыревого контакта) подвижного электрода этой группы на второй неподвижный, который связан с промежуточным емкостным накопителем. Начинается зарядка емкости промежуточного накопителя. По окончании процесса зарядки дуга в межэлектродных промежутках РВЭ гаснет, ток становится равным нулю. После того, как штыри (штыревые контакты) подвижного электрода первой группы отходят от неподвижных электродов, начинается сближение штырей подвижного электрода второй группы с неподвижными электродами второй группы. Первый неподвижный электрод второй группы находится под высоким потенциалом. Происходит пробой и на подвижном электроде второй группы появляется высокий потенциал, что, в свою очередь, приводит к пробою со второго штыря подвижного электрода этой группы на второй неподвижный, к которому подключена емкость нагрузки. Начинается зарядка рабочей емкости. По окончании процесса зарядки дуга в межэлектродных промежутках РВЭ гаснет, ток становится равным нулю, подвижный электрод отходит от неподвижных. По окончании цикла заряд-заряд - разряд с неподвижными электродами первой группы начинает сближаться следующая пара подвижных электродов первой группы и цикл повторяется. При этом средняя коммутируемая мощность ограничивается только эрозионной стойкостью электродов разрядника и возможностями двигателя, обеспечивающего вращение электродов.

Недостатками системы импульсно-периодической зарядки, выбранной в качестве прототипа, являются:

- невозможность создания полностью герметичного корпуса разрядника из-за наличия соединенных с двигателем вращающихся элементов и вследствие этого утечки электроизолирующего газа обеспечивающего эффективное гашение дуги и электрическую прочность, что существенно снижает надежность системы;

- невысокий ресурс вращающихся с большой скоростью деталей, что приводит к их механическому износу, и как следствие изменение зазоров между электродами;

- для необходимости обеспечить электрическую прочность, корпус РВЭ и его подвижные электроды должны быть разнесены на значительные расстояния. Исходя из схемы подключения, элементы СИЗ размещаются вокруг разрядника. Все это приводит к увеличению массогабаритных характеристик системы.

Техническая проблема состоит в совершенствовании схемы построения системы импульсно-периодической зарядки (СИЗ) на базе дозированного отбора энергии из высоковольтного буферного накопителя путем замены механического РВЭ на электровакуумные газоразрядные коммутаторы -тиратроны, что позволит повысить надежность системы, уменьшить ее массогабаритные характеристики.

Ожидаемым техническим результатом предполагаемого решения является повышение надежности и ресурса работы СИЗ при обеспечении компактности.

Технический результат достигается тем, что в отличие от известной системы импульсно-периодической зарядки на газоразрядных коммутаторах, содержащей электрически связанные между собой источник высокого напряжения, блок импульсно-периодической зарядки, а также формирователь высоковольтных импульсов (ФВИ) с рабочим емкостным накопителем и блок управления, причем блок импульсно-периодической зарядки представляет собой образованные буферным емкостным накопителем, промежуточным емкостным накопителем, индуктивностями, высоковольтными диодами, электропрочными газоразрядными коммутаторами два контура перезарядки - буферного емкостного накопителя на промежуточный емкостной накопитель и промежуточного емкостного накопителя на рабочий емкостной накопитель ФВИ, при этом емкость промежуточного накопителя равна рабочей емкости ФВИ, в предложенной системе в качестве электропрочных газоразрядных коммутаторов использованы тиратроны, причем организован тиратронный модуль, представляющий собой герметичный секционированный корпус, секции которого экранированы от наводок, вносимых в электрические цепи при срабатывании расположенных в модуле тиратронов, причем тиратрон, расположенный в первой секции, коммутирует разряд буферного емкостного накопителя на промежуточный емкостной накопитель, расположенный во второй секции, тиратрон, расположенный в третьей секции, коммутирует разряд промежуточного емкостного накопителя на рабочий емкостной накопитель ФВИ, тиратронный модуль оснащен герметичными вводами и разъемами для обеспечения возможности подключения к источнику высокого напряжения, ФВИ и блоку управления, при этом обеспечена возможность заполнения корпуса модуля газом CF6 или трансформаторным маслом для увеличения электропрочности модуля.

Тиратроны традиционно используются для быстрой импульсной коммутации энергии емкостных накопителей в наносекундном и микросекундном диапазонах длительностей, что является существенным преимуществом по сравнению с РВЭ. Авторами впервые предложено использовать преимущества тиратронов в компактной, герметичной двухконтурной схеме СИЗ, значительно повышающей живучесть системы. Тиратрон является надежным, отпаянным прибором, с достаточным ресурсом по количеству импульсов коммутируемого заряда. Объем и масса одного тиратрона примерно в 10 раз меньше РВЭ. Следствием замены РВЭ на тиратроны явилась возможность организовать СИЗ в виде компактного модуля, разделенного на секции перегородками, выполняющими роль экранов от электромагнитных наводок.

На фиг.1 приведена схема заявляемой системы импульсно-периодической зарядки, где:

1 - источник высокого напряжения;

2 - буферный емкостной накопитель (БН);

3, 7 - высоковольтный диод;

4, 8 - времязадающая индуктивность;

5, 9 - тиратроны;

6 - промежуточный емкостной накопитель (ПН);

10 - формирователь высоковольтных импульсов (ФВИ);

где Ср - рабочий емкостной накопитель (РН); К - коммутатор; R -сопротивление.

Алгоритм работы СИЗ на управляемых тиратронах определяется наличием двух контуров перезарядки: буферного емкостного накопителя на промежуточный емкостной накопитель и промежуточного емкостного накопителя на рабочий емкостной накопитель ФВИ. Зарядка каждого контура происходит после срабатывания тиратрона. При замыкании первого контура тиратроном 5 по закону (1-cosωt) через времязадающую индуктивность 4 происходит зарядка промежуточного емкостного накопителя 6 от буферного емкостного накопителя 2, заряженного от источника высокого напряжения 1, причем из-за большой разности в величинах емкостей напряжение на ПН в штатном режиме будет примерно в два раза (без учета потерь) выше, чем на БН. Колебательному процессу между БН и ПН препятствует высоковольтная диодная сборка 3.

Идентично работает и второй контур перезаряда энергии промежуточного емкостного накопителя в емкостной накопитель формирователя высоковольтных импульсов (ФВИ). Так как емкости ПН и ФВИ равны, при перезарядке величина напряжения останется прежней. При замыкании второго контура тиратроном 9 по закону (1-cosωt) через индуктивность 8 происходит переброс энергии из конденсаторов ПН в конденсаторы ФВИ. Колебательному процессу между ПН и ФВИ препятствует высоковольтная диодная сборка 7.

После срабатывания коммутатора К рабочий емкостной накопитель Ср ФВИ разряжается на нагрузку R и цикл зарядки повторяется.

Заявленная система импульсно-периодической зарядки на газоразрядных коммутаторах (управляемых тиратронах) реализована на практике. Все компоненты СИЗ размещаются в герметичном металлическом корпусе.

На фиг. 2 изображен тиратронный модуль заявленной системы

импульсно-периодической зарядки, где:

3, 7 - высоковольтный диод;

4, 8 - времязадающая индуктивность;

5, 9-тиратроны;

6 - промежуточный емкостной накопитель (ПН);

11 - первая секция модуля;

12 - вторая секция модуля;

13 - третья секция модуля.

Тиратронный модуль представляет собой компактный герметичный секционированный корпус, секции которого экранированы от электромагнитных наводок, вносимых в электрические цепи при срабатывании расположенных в модуле тиратронов (например типа ТДИ), причем тиратрон 5, расположенный в первой секции 11, коммутирует разряд буферного емкостного накопителя на промежуточный емкостной накопитель 6, расположенный во второй секции 12, тиратрон 9, расположенный в третьей секции 13, коммутирует разряд промежуточного емкостного накопителя на рабочий емкостной накопитель ФВИ, тиратронный модуль оснащен герметичными вводами и разъемами для обеспечения возможности подключения к источнику высокого напряжения, ФВИ и блоку управления, представляющего собой компактный высоковольтный импульсный генератор, разработанный для управления тиратронами, при этом обеспечена возможность заполнения корпуса модуля газом CF6 или трансформаторным маслом, что увеличивает электропрочность всей СИЗ по сравнению с ранее используемой на основе с РВЭ.

Работоспособность системы импульсно-периодической зарядки на газоразрядных коммутаторах проверена во время использования в составе мощного СВЧ-генератора. При габаритах на треть меньших по сравнению с прототипом, ресурс установки увеличился более чем в два раза. Применение тиратронного модуля позволило исключить вероятность электрических пробоев в токоведущих цепях системы, что значительно увеличило ее надежность.

Таким образом, построение мощной высоковольтной системы импульсно-периодической зарядки емкостных накопителей по предлагаемой схеме позволит повысить надежность и ресурс ее работы, сделает СИЗ более компактной и мобильной по сравнению с существующей на разряднике с вращающимися электродами.

Система импульсно-периодической зарядки на газоразрядных коммутаторах, содержащая электрически связанные между собой источник высокого напряжения, блок импульсно-периодической зарядки, а также формирователь высоковольтных импульсов (ФВИ) с рабочим емкостным накопителем и блок управления, причем блок импульсно-периодической зарядки представляет собой образованные буферным емкостным накопителем, промежуточным емкостным накопителем, индуктивностями, высоковольтными диодами, электропрочными газоразрядными коммутаторами два контура перезарядки - буферного емкостного накопителя на промежуточный емкостной накопитель и промежуточного емкостного накопителя на рабочий емкостной накопитель ФВИ, при этом емкость промежуточного накопителя равна рабочей емкости ФВИ, отличающаяся тем, что в качестве электропрочных газоразрядных коммутаторов использованы тиратроны, причем организован тиратронный модуль, представляющий собой герметичный секционированный корпус, секции которого экранированы от наводок, вносимых в электрические цепи при срабатывании расположенных в модуле тиратронов, причем тиратрон, расположенный в первой секции, коммутирует разряд буферного емкостного накопителя на промежуточный емкостной накопитель, расположенный во второй секции, тиратрон, расположенный в третьей секции, коммутирует разряд промежуточного емкостного накопителя на рабочий емкостной накопитель ФВИ, тиратронный модуль оснащен герметичными вводами и разъемами для обеспечения возможности подключения к источнику высокого напряжения, ФВИ и блоку управления, при этом обеспечена возможность заполнения корпуса модуля газом CF6 или трансформаторным маслом для увеличения электропрочности модуля.



 

Похожие патенты:

Изобретение относится к высоковольтной импульсной технике и предназначено для генерирования импульсов высокого напряжения с коротким фронтом. Техническим результатом является повышение стабильности работы генератора высоковольтных импульсов и уменьшение массогабаритных характеристик генератора высоковольтных импульсов.

Изобретение относится к цифровой схемотехнике, автоматике и промышленной электронике. Технический результат заключается в повышении нагрузочной способности триггерного двухступенчатого R-S триггера.

Изобретение относится к области вычислительной техники. Технический результат заключается в уменьшении погрешности формирования временных интервалов при изменении длительности суммарной задержки многоотводной линии задержки вследствие влияния технологических факторов и условий эксплуатации, уменьшении объёма оборудования и придании свойства масштабируемости.

Изобретение относится к области вычислительной техники. Технический результат заключается в расширении функциональных возможностей формирователя за счет обеспечения возможности менять временные параметры генерируемых импульсов.

Изобретение относится к импульсной технике. Технический результат: формирование высоковольтных сильноточных импульсов с устойчивым передним фронтом выходных импульсов.

Изобретение относится к импульсной и вычислительной технике. Технический результат - сокращение сложности реализации формирователя парафазного сигнала с нулевым спейсером при сохранении самосинхронности его работы с самосинхронным окружением с более высоким быстродействием.

Изобретение относится к импульсной и вычислительной технике и может использоваться при построении самосинхронных комбинационных, триггерных, регистровых и вычислительных устройств, систем цифровой обработки информации.

Изобретение относится к области импульсной и цифровой техники. Технический результат - повышение надежности за счет введения в каждый формирователь выходных импульсов блока ограничителей тока и за счет применения малого количества составных узлов и расширение функциональных возможностей в части возможности наращивания каналов генерирования импульсов путем дублирования узла, образованного буферным регистром, первым и вторым формирователями выходных импульсов и четырьмя выходными разрядами ПЗУ и возможности независимого задания в каждом канале генерирования импульсов произвольных значений скважности и сдвига фазы выходных импульсов путем соответствующего программирования ПЗУ и выбора варианта реализации формирователя выходных импульсов и возможности независимого в каждом канале генерирования импульсов наращивание мощности выходных импульсов путем дублирования первого и второго формирующих элементов и блока ограничителей тока.

Изобретение относится к способам цифрового формирования модулированных импульсных сигналов для управления ключевыми генераторными устройствами ультразвукового диапазона.

Изобретение относится к области генерирования импульсов. Технический результат достигается за счет автоматической подстройки частоты при использовании в цифровых многопроцессорных системах в качестве широкодиапазонного перестраиваемого генератора тактовой частоты.

Клистрон // 2723439
Изобретение относится к сверхвысокочастотной (СВЧ) технике и может быть использовано при разработке мощных генераторов СВЧ-излучения для целей радиолокации, навигации и ускорителей элементарных частиц.
Наверх