Датчик абсолютных виброперемещений

Изобретение относится к виброизмерительной технике. Пьезоэлектрический акселерометр датчика абсолютных виброперемещений содержит собственный корпус, который размещен в корпусе датчика, имеющего внутренний объем, превышающий объем корпуса акселерометра не менее чем в 5 раз таким образом, что между корпусом датчика и корпусом пьезоэлектрического акселерометра расположен объемный трехслойный термо-виброзащитный безрезонансный в рабочем диапазоне частот наполнитель, состоящий из трех слоев, имеющих, соответственно, 1, 6, 10 единиц твердости по Шору и занимающих, соответственно, 20, 70, 10% объема между корпусом датчика и корпусом пьезоэлектрического акселерометра, представляющий собой сборку из слоев силиконового термополимера и полиуретана, обеспечивающий полное поглощение энергии высокочастотной вибрации и ударов за счет указанных соотношений слоев комбинированного наполнителя, электронный блок размещен в автономном экране и связан с входным интерфейсом внешнего устройства двухэкранным кабелем с обеспечением двухконтурного экранирования. Технический результат – возможность измерения виброперемещения в частотном диапазоне от 0,4 до 200-500 Гц с амплитудой от 3-10 до 1000 мкм, при одновременном воздействии случайных ударов и высокочастотных вибрационных нагрузок, превышающих реально существующие на гидроагрегатах и любом роторном оборудовании. 1 ил.

 

Изобретение относится к виброизмерительной технике и может быть использовано для мониторинга, диагностики и аварийной защиты роторного оборудования.

Известны аналоги-датчики PS400.317 и GPS 400.610Мс пьезоэлектрическими чувствительными элементами и выносным электронным блоком, позволяющие измерять низкочастотные виброперемещения.

Недостатками аналогов являются отсутствие возможности измерения колебаний с частотами ниже 2 Гц, большие погрешности при измерении более низких частот (до 0,7 Гц). Кроме того, эти датчики не позволяют вести измерения при одновременном интенсивном воздействии вибрации и ударов, характерных для современной промышленности.

Более близким аналогом к предлагаемому техническому решению является датчик абсолютных виброперемещений - RU 2146806, 21.05.1999, принятый в качестве прототипа, содержащий корпус, расположенные внутри пьезорезистивный акселерометр (чувствительный элемент), электронную схему, обеспечивающую преобразование виброускорений в виброперемещение, демпфер с близким к оптимальному демпирующим коэффициентом с оптимальной до 500 Гц АЧХ, а крепление акселерометра внутри корпуса осуществлено через виброизолятор с собственной частотой на 15-40% превышающей собственную частоту акселерометра. Существенным недостатком прототипа является низкая вибро-ударопрочность и помехозащищенность от промышленных шумов и наводок, обусловленные примененными схемотехническими решениями и конструктивным исполнением.

Техническим результатом настоящего изобретения является создание устройства, позволяющего измерять виброперемещение в частотном диапазоне от 0,4 Гц до 200-500 Гц с амплитудой от 3-10 мкм до 1000 мкм, при одновременном воздействии случайных ударов и высокочастотных вибрационных нагрузок, превышающих реально существующие на гидроагрегатах и любом роторном оборудовании (высокочастотная вибрация до 500 g, ударов до 1000 g).

Технический результат достигается в датчике абсолютных виброперемещений, содержащем корпус, расположенные внутри корпуса пьезоэлектрический акселерометр, электронный блок, обеспечивающий преобразование виброускорений в виброперемещение, пьезоэлектрический акселерометр имеет собственный корпус, который размещен в корпусе датчика, имеющего внутренний объем, превышающий объем корпуса акселерометра не менее, чем в 5 раз таким образом, что между корпусом датчика и корпусом пьезоэлектрического акселерометра расположен объемный трехслойный термо-виброзащитный безрезонансный в рабочем диапазоне частот наполнитель, состоящий из трех слоев, имеющих, соответственно, 1, 6, 10 ед. твердости по Шору и занимающих, соответственно, 20, 70, 10% объема между корпусом датчика и корпусом пьезоэлектрического акселерометра, представляющий собой сборку из слоев силиконового термополимера и полиуретана, обеспечивающий полное поглощение энергии высокочастотной вибрации и ударов за счет указанных соотношений слоев комбинированного наполнителя, электронный блок размещен в автономном экране и связан с входным интерфейсом внешнего устройства двухэкранным кабелем с обеспечением двухконтурного экранирования.

На фиг. 1 изображен датчик абсолютных виброперемещений.

Датчик абсолютных виброперемещений содержит корпус 1, расположенные внутри корпуса пьезоэлектрический акселерометр 2, электронный блок 3, обеспечивающий преобразование виброускорений в виброперемещение, пьезоэлектрический акселерометр 2 имеет собственный корпус 4, который размещен в корпусе 1 датчика таким образом, что между корпусом датчика 1 и корпусом 4 пьезоэлектрического акселерометра расположен трехслойный термо-виброзащитный безрезонансный в рабочем диапазоне частот наполнитель 5, электронный блок 3 размещен в экранирующей оболочке 6 и связан с внешним устройством 7 двухэкранным кабелем 8 с обеспечением двухконтурного экранирования.

Рассмотрим пример конкретной реализации датчика абсолютных виброперемещений. Корпус датчика 1 изготовлен из латуни. Пьезоэлектрический акселерометр 2 представляет из себя биморфный пьезоэлемент 2, который установлен на бобышку 9 в корпусе акселерометра 4. Пьезоэлемент 2 связан двухжильным экранированным кабелем 10 с электронным блоком 3. Электронный блок 3 представляет из себя плату, на которой размещены узлы интегрирования, фильтрации, усиления и преобразования напряжения в ток. Корпус 4 пьезоэлектрического акселерометра выполнен из алюминиевого сплава. Трехслойный термо-виброзащитный безрезонансный в рабочем диапазоне частот наполнитель 5 представляет из себя сборку из слоев силиконового термополимера и полиуретана различной плотности и вязкости, которым заполняют пространство между корпусом датчика 1 и корпусом 4 акселерометра 2. Экранирующая оболочка 6 электронного блока 3 выполнена из медной фольги и связана с внешним устройством 7 двухэкранным кабелем. Экранирование 11 кабеля 8 выполнено в виде слоя медной оплетки и внешнего бронерукава. Выходной интерфейс обеспечивает передачу значения, вычисленного электронным блоком 3 перемещения на внешние устройства, для которых данное перемещение является входным сигналом, например, на сигнализатор превышения вибрации. Корпус 4 пьезоэлектрического акселерометра 2 размещен в корпусе 1, который имеет внутренний объем, превышающий объем корпуса 4 акселерометра 2 не менее, чем в 5 раз. При меньшем объеме корпуса 1 не обеспечивается поглощение высокочастотных и ударных воздействий на чувствительный элемент 2, что приводит к его некачественной работе. Увеличение соотношения объемов корпусов 1 и 4 нецелесообразно из-за увеличения габаритов датчика, что не желательно.

Рассмотрим датчик абсолютных виброперемещений в работе. В рассматриваемом примере датчик применяется для контроля наличия опасного уровня вибрации в гидрогенераторной турбине. Датчик абсолютных виброперемещений устанавливают на корпусе турбины. Вибрация корпуса турбины передается на пьезоэлемент 2. В результате этого пьезоэлемент 2 деформируется, создавая разность потенциалов между точками контакта с проводниками 10. Электронный блок 3 считывает разность потенциалов, образующуюся на контактах кабеля 10 с пьезоэлементом 2, и вычисляет пропорциональную этой разности потенциалов величину перемещения.

Благодаря наличию трехслойного термо-виброзащитного безрезонансного в рабочем диапазоне частот наполнителя 5, поглощающеего высокочастотные вибрации и удары, пьезоэлемент 2 воспринимает только вибрации с частотами до 200-500 Гц, а еще наличие двухконтурной системы заземления позволяет расширить нижнюю границу частотного диапазона до 0,4 Гц и измерять колебания с амплитудой от 3-10 мкм до 1000.

Датчик абсолютных виброперемещений, содержащий корпус, расположенные внутри корпуса пьезоэлектрический акселерометр, электронный блок, обеспечивающий преобразование виброускорений в виброперемещение, отличающийся тем, что пьезоэлектрический акселерометр имеет собственный корпус, который размещен в корпусе датчика, имеющего внутренний объем, превышающий объем корпуса акселерометра не менее чем в 5 раз таким образом, что между корпусом датчика и корпусом пьезоэлектрического акселерометра расположен объемный трехслойный термо-виброзащитный безрезонансный в рабочем диапазоне частот наполнитель, состоящий из трех слоев, имеющих, соответственно, 1, 6, 10 единиц твердости по Шору и занимающих, соответственно, 20, 70, 10% объема между корпусом датчика и корпусом пьезоэлектрического акселерометра, представляющий собой сборку из слоев силиконового термополимера и полиуретана, обеспечивающий полное поглощение энергии высокочастотной вибрации и ударов за счет указанных соотношений слоев комбинированного наполнителя, электронный блок размещен в автономном экране и связан с входным интерфейсом внешнего устройства двухэкранным кабелем с обеспечением двухконтурного экранирования.



 

Похожие патенты:

Способ измерения крутящего момента спирали (1), изготовленной, в частности, из подходящего для микрообработки материала, в котором захват (500) устанавливает колодку (2) на направляющую (12) для установки на вершине (19) имитирующей оси (10) в форме обелиска для первого центрирования колодки (2), причем эта спираль может скользить под действием собственного веса по направляющей (12), переходящей в стержень (11) в форме усеченного конуса, который завершает самоцентрирование колодки (2) на оси (DO) инструмента, и для удержания этой спирали (1) без создания напряжений в стержне (11), причем имитирующая ось (10) содержит передающие движение средства (100), взаимодействующие без проскальзывания с внутренним контуром колодки (2) для ее относительного приведения во вращение, при этом удерживающий инструмент (20) удерживает наружный виток (6) спирали (1) для измерения крутящего момента спирали (1) посредством вращения основного инструмента и/или удерживающего инструмента (20) вокруг оси (DO) без создания напряжений в спирали (1).

Изобретение относится к токоприемникам для транспортных средств, а точнее к контролю качества взаимодействия контактного провода и токоприемников. Способ акустической регистрации нарушений токосъема заключается в том, что регистрируют звуковые волны от дуговых, искровых или иных разрядных или тепловых процессов, в том числе перегрузочных искрений, возникающих при нарушениях токосъема.

Изобретение относится к метрологии, в частности к инфразвуковым микробарометрам. Инфразвуковой микробарометр состоит из корпуса, содержащего приемную и опорную камеры.

Изобретение относится к электротехнике, а именно к способу контроля посадочного натяга обода ротора электрической машины. Способ содержит ввод до установки клиньев, после расклиновки и в процессе эксплуатации электрической машины с торцевой поверхности закладных клиньев упругих волн, измерение временных задержек упругих волн для каждого клина и расчет величины (P) - относительного изменения разности временных задержек распространения упругих волн в клине.

Предложен способ остронаправленного приема звуковых сигналов в телесном угле не больше 15°. На жесткой линейной штанге размещают 4 микрофона.

Изобретение относится к электрическим испытаниям на восприимчивость к электромагнитному полю. Способ испытаний электрооборудования автотранспортных средств на восприимчивость к электромагнитному полю, при котором испытуемое электрооборудование устанавливают в бортовую сеть транспортного средства и подвергают поочередно электромагнитное поле воздействиям в заданном диапазоне частот сформированными амплитудно-модулированным, импульсно-модулированным и гармоническим сигналами.

Изобретение относится к метрологии, в частности к устройствам отслеживания и передачи информации о состоянии объекта контроля. Устройство содержит модуль отслеживания амплитудной характеристики состояния контактной направляющей детали, антенну PIFA, которая расположена в металлической полости, обращенной наружу и закрытой защитной крышкой из прозрачного материала, пропускающего электромагнитные волны.

Изобретение относится к метрологии, в частности к средствам измерения крутильных колебаний валопроводов. Система мониторинга крутильных колебаний содержит измерительные информационные элементы, выполненные в виде зубцов расположенного на валу зубчатого диска, информационный элемент отметчика оборотов, выполненный в виде дополнительного диска с одиночным зубцом или с одиночной впадиной, неподвижные бесконтактные датчики, а также аппаратно-программный блок.

Изобретение относится к акустике, в частности к способам остронаправленного приема звука. Способ остронаправленного приема звуковых волн, в котором прием осуществляют четырьмя микрофонами, расположенными на жесткой линейной основе.

Изобретение относится к измерительной технике и может быть использовано при эксплуатации и ремонте энергетических турбоагрегатов. Система диагностирования технического состояния контролируемого вала или валопровода содержит закрепленные на валу два контактных датчика абсолютной вибрации и по меньшей мере одно устройство согласования сигналов указанных датчиков, подключенное к считывающему устройству.
Наверх