Способ испытаний электрооборудования автотранспортных средств на восприимчивость к электромагнитному полю



Способ испытаний электрооборудования автотранспортных средств на восприимчивость к электромагнитному полю
Способ испытаний электрооборудования автотранспортных средств на восприимчивость к электромагнитному полю

 


Владельцы патента RU 2618835:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Поволжский государственный университет сервиса" (RU)

Изобретение относится к электрическим испытаниям на восприимчивость к электромагнитному полю. Способ испытаний электрооборудования автотранспортных средств на восприимчивость к электромагнитному полю, при котором испытуемое электрооборудование устанавливают в бортовую сеть транспортного средства и подвергают поочередно электромагнитное поле воздействиям в заданном диапазоне частот сформированными амплитудно-модулированным, импульсно-модулированным и гармоническим сигналами. Причины нарушения работоспособности электрооборудования на некоторой частоте определяют на основании анализа: максимальной амплитуды поля, максимальной амплитуды гармонического сигнала поля, действующего уровня поля, действующего уровня гармонического сигнала поля, глубины модуляции поля; скважности. Повышается достоверность выявления канала распространения электромагнитных помех. 4 ил.

 

Изобретение относится к электрическим испытаниям на восприимчивость к электромагнитному полю (ЭМП) электрооборудования автотранспортных средств (АТС), в частности к воздействию высокочастотного электромагнитного поля, и может быть использовано для выявления причин нарушения работоспособности электрооборудования, возникающих при воздействии высокочастотных электромагнитных помех.

Из патента на изобретение [1] известен способ испытаний электрооборудования АТС на восприимчивость к ЭМП, при котором испытуемое электрооборудование устанавливают в бортовую сеть АТС или как отдельные изделия, или как отдельный комплекс объединенных систем и подвергают воздействию ЭМП в заданном диапазоне частот.

Недостатком данного способа является то, что фиксируется только результат испытаний относительно заданного предельного уровня ЭМП и дается заключение соответствия электрооборудования требованиям, что не позволяет определить, какой параметр воздействующего ЭМП вызвал нарушение работоспособности.

Известен способ [2], при котором испытуемое электрооборудование устанавливают в бортовую сеть АТС или как отдельные изделия, или как отдельный комплекс объединенных систем и подвергают воздействию ЭМП.

Недостатком данного способа является то, что испытания проводятся при воздействии амплитудно-модулированного (AM) ЭМП в диапазоне частот от 20 до 800 МГц и импульсно-модулированным (ИМ) ЭМП в диапазоне частот от 800 до 2000 МГц с напряженностью ЭМП 30 В/м. При этом испытания на восприимчивость к гармоническому (немодулированному) ЭМП не производятся, что не позволяет в полной мере оценить помехоустойчивость электрооборудования.

За прототип [3] предлагаемого изобретения на полезную модель принят способ испытаний электрооборудования АТС на восприимчивость к ЭМП, при котором испытуемое электрооборудование устанавливают в бортовую сеть АТС или как отдельные изделия, или как отдельный комплекс объединенных систем и подвергают поочередно ЭМП воздействиям в заданном диапазоне частот сформированными AM, ИМ и гармоническим сигналами.

Недостатком данного решения является невозможность достоверно выявить канал распространения электромагнитных помех, наведенных в электрооборудовании воздействующим ЭМП, и какой параметр ЭМП определяет нарушение работоспособности электрооборудования.

Задачей заявляемого решения является создание способа испытаний электрооборудования АТС на восприимчивость к ЭМП, позволяющего полностью оценить его помехоустойчивость в заданном диапазоне частот , достоверно выявить канал распространения электромагнитных помех, наведенных в электрооборудовании воздействующим ЭМП, и какой параметр ЭМП определяет нарушение работоспособности и на основании результатов испытаний принять меры по эффективной защите электрооборудования от ЭМП.

Указанная задача решается способом испытаний электрооборудования АТС, при котором испытуемое электрооборудование устанавливают в бортовую сеть АТС или как отдельные изделия, или как отдельный комплекс объединенных систем и подвергают поочередно ЭМП воздействиям в заданном диапазоне частот сформированными AM, ИМ и гармоническим сигналами, а причины нарушения работоспособности электрооборудования на некоторой частоте определяют на основании анализа реализуемых условий испытаний:

EГС.max=EAM.max;

;

E'ГС.max=EИМ.max;

,

где ЕAM.max - максимальная амплитуда AM ЭМП, при которой произошло нарушение работоспособности электрооборудования;

ЕГС.max - максимальная амплитуда гармонического сигнала ЭМП, созданного после воздействия AM ЭМП;

ЕАМ.Д - действующий уровень AM ЭМП, при котором произошло нарушение работоспособности электрооборудования;

EГС.Д - действующий уровень гармонического сигнала ЭМП, созданного после воздействия AM ЭМП;

М - глубина модуляции AM ЭМП;

EИМ.max - максимальная амплитуда ИМ ЭМП, при которой произошло нарушение работоспособности электрооборудования;

Е'ГС.max - максимальная амплитуда гармонического сигнала ЭМП, созданного после воздействия ИМ ЭМП;

ЕИМ.Д - действующий уровень ИМ ЭМП, при котором произошло нарушение работоспособности электрооборудования;

Е'ГС.Д - действующий уровень гармонического сигнала ЭМП, созданного после воздействия ИМ ЭМП;

k - скважность ИМ ЭМП.

Изобретение поясняется следующими чертежами, иллюстрирующими принцип испытаний на восприимчивость к ЭМП.

На фиг. 1 схематично показаны: 1 - AM ЭМП, при котором произошло нарушение работоспособности электрооборудования; 2 - гармонический сигнал ЭМП с такой же максимальной амплитудой, как и у ранее созданного AM ЭМП; 3 - максимальная амплитуда сигнала.

На фиг. 2 схематично показаны: 1 - AM ЭМП, при котором произошло нарушение работоспособности электрооборудования; 4 - гармонический сигнал ЭМП с таким же действующим уровнем, как и у ранее созданного AM ЭМП; 5 - действующий уровень сигналов.

На фиг. 3 схематично показаны: 6 - ИМ ЭМП, при котором произошло нарушение работоспособности электрооборудования; 7 - гармонический сигнал ЭМП с такой же максимальной амплитудой, как и у ранее созданного ИМ ЭМП; 8 - максимальная амплитуда сигнала.

На фиг. 4 схематично показаны: 6 - ИМ ЭМП, при котором произошло нарушение работоспособности электрооборудования; 9 - гармонический сигнал ЭМП с таким же действующим уровнем, как и у ранее созданного ИМ ЭМП; 10 - действующий уровень сигналов.

Заявляемое техническое решение основано на том, что амплитудные параметры AM и ИМ ЭМП, при которых произошло нарушение работоспособности электрооборудования, сравниваются с гармоническим сигналом ЭМП, амплитудные параметры которого настраиваются таким образом, чтобы они в соответствующих итерациях были равны амплитудным параметрам AM и ИМ ЭМП. После сравнения делается заключение о причине нарушения работоспособности электрооборудования, которая может быть вследствие воздействия следующих параметров: максимальной амплитуды, общего усредненного уровня, модуляционной составляющей сигнала ЭМП или влияния импульсных переходных процессов. Затем анализируется электрическая схема испытуемого электрооборудования и определяется канал, который может реагировать на соответствующий составляющий параметр воздействующего ЭМП, и проводятся дополнительные мероприятия по повышению помехозащищенности данного канала.

Для реализации изобретения выполняют следующие действия:

1. Для каждого ЭМП воздействия, которое будет сформировано гармоническим, AM и ИМ сигналами, задаются требуемые параметры модуляции и тестовый уровень.

2. Задаются границы диапазона частот, в котором будут проводиться испытания электрооборудования АТС.

3. Испытания начинаются с минимальной границы заданного частотного диапазона.

4. Поочередно проводятся испытания электрооборудования АТС при ЭМП воздействиях, сформированных AM, ИМ и гармоническим сигналами на заданном тестовом уровне.

5. Если на некоторой частоте обнаруживается нарушение работоспособности электрооборудования АТС при воздействии ЭМП, сформированного AM сигналом, то находится уровень порога нарушения работоспособности, которому соответствует некоторая максимальная амплитуда и действующее значение AM сигнала. Затем для определения особенностей нарушения работоспособности АТС на этой же частоте сначала создают гармоническим сигналом ЭМП воздействие с максимальной амплитудой, как и у AM ЭМП при уровне порога помехоустойчивости. Если произошло нарушение работоспособности электрооборудования, то делается заключение о влиянии максимальной амплитуды ЭМП. В случае отсутствия нарушения работоспособности создают гармоническим сигналом ЭМП воздействие с действующим уровнем, как и у AM ЭМП при уровне порога нарушения работоспособности. Если произошло нарушение работоспособности электрооборудования, то делается заключение о влиянии общего усредненного уровня ЭМП. В случае отсутствия нарушения работоспособности делается заключение о влиянии модуляционной составляющей AM ЭМП.

6. Если на некоторой частоте обнаруживается нарушение работоспособности электрооборудования АТС при воздействии ЭМП, сформированного ИМ сигналом, то находится уровень порога нарушения работоспособности, которому соответствует некоторая максимальная амплитуда и действующее значение ИМ сигнала. Затем для определения особенностей нарушения работоспособности АТС на этой же частоте сначала создают гармоническим сигналом ЭМП воздействие с максимальной амплитудой, как и у ИМ ЭМП при уровне порога помехоустойчивости. Если произошло нарушение работоспособности электрооборудования, то делается заключение о влиянии максимальной амплитуды ЭМП. В случае отсутствия нарушения работоспособности создают гармоническим сигналом ЭМП воздействие с действующим уровнем, как и у ИМ ЭМП при уровне порога нарушения работоспособности. Если произошло нарушение работоспособности электрооборудования, то делается заключение о влиянии общего усредненного уровня ЭМП. В случае отсутствия нарушения работоспособности делается заключение о влиянии импульсных переходных процессов ИМ ЭМП.

7. По результатам испытаний анализируется электрическая схема испытуемого электрооборудования и определяется канал, который может реагировать на соответствующий составляющий параметр воздействующего ЭМП, и проводятся дополнительные мероприятия по повышению помехозащищенности данного канала.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Пат. РФ 2446409 на изобретение, МПК G01R 33/02. Способ испытаний оборудования и/или электронных систем автотранспортных средств на восприимчивость к электромагнитному полю / Николаев П.А., Горшков Б.М., Самохина Н.С. Бюл. Бюл. №9, 2012.

2. CISPR 25. Vehicles, boats and internal combustion engines - Radio disturbance characteristics - Limits and methods of measurement for the protection. Edition 3. 2008.

3. ISO 11451-1:2005. Road vehicles. Vehicle test methods for electrical disturbances from narrowband radiated electromagnetic energy. Part 1: General principles and Terminology. Licensed Copy: London South Bank University, Mon Oct 16 17: 35: 27 В ST, 2006.

Способ испытаний электрооборудования автотранспортных средств (АТС) на восприимчивость к электромагнитному полю (ЭПМ), при котором испытуемое электрооборудование устанавливают в бортовую сеть АТС или как отдельные изделия, или как отдельный комплекс объединенных систем и подвергают поочередно ЭМП воздействиям в заданном диапазоне частот сформированными амплитудно-модулированным (AM), импульсно-модулированным (ИМ) и гармоническим сигналами, отличающийся тем, что причины нарушения работоспособности электрооборудования на некоторой частоте определяют на основании анализа реализуемых условий испытаний:

где EAM.max - максимальная амплитуда AM ЭМП, при которой произошло нарушение работоспособности электрооборудования;

ЕГС.max - максимальная амплитуда гармонического сигнала ЭМП, созданного после воздействия AM ЭМП;

ЕАМ.Д - действующий уровень AM ЭМП, при котором произошло нарушение работоспособности электрооборудования;

ЕГС.Д - действующий уровень гармонического сигнала ЭМП, созданного после воздействия AM ЭМП;

М - глубина модуляции AM ЭМП;

ЕИМ.max - максимальная амплитуда ИМ ЭМП, при которой произошло нарушение работоспособности электрооборудования;

- максимальная амплитуда гармонического сигнала ЭМП, созданного после воздействия ИМ ЭМП;

ЕИМ.Д - действующий уровень ИМ ЭМП, при котором произошло нарушение работоспособности электрооборудования;

- действующий уровень гармонического сигнала ЭМП, созданного после воздействия ИМ ЭМП;

k - скважность ИМ ЭМП.



 

Похожие патенты:

Изобретение относится к магнитоизмерительной технике и может быть использовано при исследовании магнитных свойств веществ и материалов в областях физики магнитных явлений, геофизики.

Изобретение относится к электромагнетизму и может быть использовано для одновременного исследования магнитного, электронного и кристаллического микросостояния объектов.

Изобретение относится к области магнитных измерений и может быть использовано для измерений компонент и полного вектора индукции магнитного поля Земли. Сущность изобретения заключается в том, что предлагается способ определения температурных характеристик трехкомпонентного магнитометра (ТМ), в котором нагреванием или охлаждением ТМ в заданном диапазоне температур оказывают на него воздействие температуры до полного установления ее внутри ТМ для необходимого количества значений диапазона температур и при каждом значении определяют параметры характеристики преобразования ТМ ориентацией его геометрических осей относительно осей опорной системы координат.

Группа изобретений относится к автоматическому управлению трактором для контурной вспашки. Способ местоопределения тракторного агрегата заключается в том, что измеряют величину напряженности магнитного поля, сравнивают измеренное значение с компенсационным и формируют сигнал траекторного рассогласования как разность сравниваемых значений.

Изобретение относится к области магнитной защиты надводных или подводных объектов. Измерения параметров магнитного поля надводного или подводного объекта на стационарном магнитном стенде выполняют не менее чем в двух его различных фиксированных положениях относительно стенда.

Изобретение относится к управлению временем переключения устройства, включающего в себя магнитную цепь и по меньшей мере одну проводящую обмотку. Способ управления временем переключения устройства, содержащего магнитную цепь (1) и по меньшей мере одну проводящую обмотку (2), отличающийся тем, что содержит этапы, на которых получают по меньшей мере один результат измерения магнитного поля, создаваемого остаточным потоком в упомянутой магнитной цепи (1), с помощью по меньшей мере одного датчика (10а, 10b, 10с) магнитного поля, установленного в непосредственной близости к магнитной цепи (1); обрабатывают полученные результаты измерений магнитного поля для того, чтобы вывести из них остаточный поток в магнитной цепи (1), по остаточному потоку определяют оптимальное время переключения для подачи питания в устройство; причем все упомянутые этапы выполняют после отключения устройства.

Изобретение относится к геофизике. Сущность: система датчиков электрического и магнитного поля для измерения магнитотеллурического поля Земли состоит из двух пар заглубленных электродов с единой базой L.

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е.

Изобретение относится к средствам информирования и ориентации инвалидов по зрению при их передвижении по городской территории. Способ состоит в размещении на стационарных объектах стационарных радиоинформаторов и размещении на инвалидах носимых абонентских устройств, автоматической передаче носимым абонентским устройством в радиоэфир сигнала запроса, по получении которого каждый стационарный радиоинформатор, находящийся в данный момент в зоне действия абонентского устройства, передает в радиоэфир ответ, содержащий его персональные данные, а абонентское устройство поочередно получает и запоминает полученные ответы от всех стационарных радиоинформаторов, находящихся в данный момент в зоне действия этого абонентского устройства, и автоматически направляет сигнал запроса на передачу информации стационарному радиоинформатору, который по получении этого сигнала запроса передает в радиоэфир сообщение о стационарном объекте, на котором он установлен, а абонентское устройство воспроизводит полученную от этого стационарного радиоинформатора информацию в виде звуковых повторяющихся сообщений.

Изобретение относится к средствам для ориентации инвалидов по зрению. Способ информирования инвалидов о прибывающих на остановку транспортных средствах общего пользования состоит в размещении на транспортных средствах общего пользования радиомодулей, пультов водителей и звукоизлучателей и размещении на инвалидах носимых абонентских устройств, при этом абонентское устройство инвалида автоматически передает в радиоэфир сигнал запроса, после чего радиомодуль каждого транспортного средства, находящегося в данный момент в зоне действия абонентского устройства, по получении сигнала запроса передает в радиоэфир ответ на полученный сигнал запроса, абонентское устройство поочередно получает и запоминает полученные ответы от всех радиомодулей, находящихся в данный момент в зоне действия этого абонентского устройства, и автоматически направляет сигнал запроса на передачу информации радиомодулю транспортного средства, который по получении этого сигнала запроса на передачу информации передает в радиоэфир сообщение о транспортном средстве, на котором он установлен, а абонентское устройство воспроизводит полученную от этого радиомодуля информацию в виде звуковых повторяющихся сообщений, затем радиомодуль выбранного инвалидом транспортного средства передает на пульт водителя сигнал для водителя и подает команду на установленный на транспортном средстве звукоизлучатель, который воспроизводит звуковой сигнал ориентирования, по которому инвалид определяет необходимое направление движения к открытой двери транспортного средства.

Способ дистанционной диагностики механического транспортного средства. Для диагностирования выделяют подсистему механического транспортного средства и ее эксплуатационные характеристики.

Изобретение относится к области стендовых испытаний. Стенд для испытаний агрегата содержит электропривод, состоящий из электродвигателя и управляющего электродвигателем частотного преобразователя, приводной вал для подключения к электродвигателю вала испытываемого агрегата, средства для установки испытываемого агрегата на стенд, контрольно-измерительную аппаратуру, систему контроля крутящего момента и потребляемой мощности электропривода, гидравлическую систему и систему стабилизации температуры рабочей жидкости.
Изобретение относится к области инерционных испытаний автомобиля и может использоваться для осуществления контроля технического состояния и диагностики двигателей внутреннего сгорания и трансмиссий автотранспортных средств.

Изобретение относится к способу диагностики узлов транспортных средств. Для оценки основного параметра, определяющего уровень и характер нагрузки для диагностики особо ответственных узлов транспортных средств, размещают датчики, количество и сочетание которых выбирается индивидуально, на узле транспортного средства, производят измерения различных частотных сигналов, формируют входные параметры для нейронной сети, выполненной на основе технологии параллельных вычислений Nvidia CUDA, производят первоначальное обучение нейронной сети при эксплуатации объекта, оценивают уровень нагрузки на узел транспортного средства с учетом комплексного воздействия всех отдельных параметров.

Изобретение относится к акустической метрологии, в частности к способам контроля уровня шума, производимого шинами. Выполняют серию измерений уровня шума автомобиля, движущегося по мерному участку на всех передачах переднего хода с регистрацией полученных значений, включающих значения скорости и уровней шума с заданным шагом положения автотранспортного средства на мерном участке.

Устройство для диагностики и контроля состояния механизмов и других систем относится к бесконтактной диагностике технических систем и может быть использовано для контроля и диагностики дефектов в двигателях и трансмиссиях автомобилей, а также любых других технических системах.

Группа изобретений относится к области автомобилестроения. Способ заключается в том, что одновременно с однократным экстренным торможением до полной остановки автотранспортного средства производят измерение на каждом колесе диагностируемой оси распределенных продольных реакций по длине пятна контакта эластичной шины колеса автотранспортного средства на ровном сухом горизонтальном участке дороги.

Изобретение относится к области испытания узлов летательных аппаратов, в частности к стендам для испытания электромеханических приводов системы уборки-выпуска закрылков.

Группа изобретений относится к способу диагностики неполадок смонтированной функции, диагностическому инструменту для диагностики неполадок и транспортному средству.

Изобретение относится к машиностроению и может быть использовано в испытательных стендах. Нагрузочный стенд для испытаний рулевой машины содержит стационарный стол, нагрузочный рычаг с симметрично расположенными консолями, упругую ленту с фиксатором, размещённые в направляющих стаканах съемные грузы переменной массы с упругими лентами с фиксаторами, узлы крепления рулевой машины, кронштейн, два поворотных стола с осями вращения, параллельными плоскости вращения нагрузочного рычага.

Изобретение относится к метрологии, в частности к устройствам отслеживания и передачи информации о состоянии объекта контроля. Устройство содержит модуль отслеживания амплитудной характеристики состояния контактной направляющей детали, антенну PIFA, которая расположена в металлической полости, обращенной наружу и закрытой защитной крышкой из прозрачного материала, пропускающего электромагнитные волны.
Наверх