Прибор акустический скважинный с встроенной системой диагностирования

Изобретение относится к области нефтепромысловой геофизики и может быть использовано в процессе акустического каротажа скважин. Заявлен прибор акустический скважинный с встроенной системой диагностирования, содержащий систему излучателей и приемников акустических сигналов, блок телеметрии, содержащий АЦП с блоком анализа данных, микроконтроллер, и наземный блок управления. Прибор дополнительно оснащен блоком диагностики в виде независимых датчиков по числу излучателей и приемников акустических сигналов, каждый из которых установлен на одном валу в непосредственной близости со своим излучателем и приемником акустических сигналов, и блоком анализа данных, входящим в состав скважинного блока управления и связанным посредством микроконтроллера с независимыми датчиками. Технический результат - повышение точности контроля и передачи измеряемых параметров в реальном режиме времени, а также процесса диагностики скважинного акустического прибора в реальном режиме времени и повышение надежности и эффективности проведения геофизических исследований. 3 ил.

 

Устройство относится нефтепромысловой геофизике, а именно к аппаратуре акустического каротажа скважин.

Известно устройство для реализации способа дистанционного тестирования для приборов акустического каротажа в полевых условиях (патент РФ №2521144, G01V 1/40, 2013.), обеспечивающее сравнительный анализ спектральных характеристик акустических зондов, получаемых в процессе работы скважинного прибора, с эталонными показателями спектральных характеристик предварительного тестирования прибора, хранящихся в базе данных. По результатам сравнительного анализа полученных спектральных характеристик с протоколами базы данных компьютера делается вывод о возможных неполадках в работе зондов прибора.

Известное устройство обеспечивает возможность дистанционного контроля работы скважинных зондов в процессе работы и экстренного принятия мер в случае их неполадки. К недостатку следует отнести недостаточную точность измерения параметров, поскольку на контролируемые акустические сигналы оказывают влияние скважинные шумы. А на сигналы, передаваемые по геофизическому кабелю, оказывают влияние параметры самого кабеля и окружающей скважинной среды.

Задачей настоящего изобретения является повышение точности контроля и передачи измеряемых параметров в реальном режиме времени, а также процесса диагностики скважинного акустического прибора в реальном режиме времени и повышение надежности и эффективности проведения геофизических исследований.

Поставленная задача решается следующим образом.

В приборе акустическом скважинном с встроенной системой диагностирования, содержащем систему излучателей и приемников акустических сигналов, блок телеметрии, блок АЦП, микроконтроллер и наземный блок управления, дополнительно установлены блоки диагностики в виде идентичных независимых датчиков по числу излучателей и приемников акустических сигналов, каждый из которых установлен на одном валу в непосредственной близости со своим излучателем и приемником акустических сигналов и блок анализа данных, входящего в состав скважинного блока управления и связанного посредством микроконтроллера с независимыми датчиками.

Существенным отличием предложенной конструкции от известных устройств является следующее:

- оснащение каждого из излучателей и приемников акустических сигналов своим независимым датчиком позволяет непосредственно в процессе геофизических исследований обеспечить контроль и коррекцию работы излучателей и приемников акустических сигналов и своевременное принятие необходимых мер при сбое работы излучателя и/или приемника, повышая тем самым достоверность работы устройства;

- наличие дополнительного блока анализа данных, входящего в состав скважинного блока управления, позволяет посредством микроконтроллера проводить цикличный опрос каждого из независимых датчиков с заданным интервалом времени, осуществляя тем самым диагностику работы прибора акустического скважинного в реальном режиме времени без влияния на конечный результат параметров геофизического кабеля (как у прототипа), что также повышает точность измерений

- установка каждого из независимых датчиков на одном валу в непосредственной близости со своим излучателем и приемником акустического сигнала позволяет избежать влияния акустических шумов на чистоту контролируемых акустических сигналов и тем самым повышает точность измерений.

- возможность применения независимого датчика как в режиме излучения, так и в режиме приема акустических сигналов позволяет в случае сбоя работы какого либо из излучателей или приемников акустических сигналов продублировать работу вышедшего из строя излучателя (приемника) независимым датчиком, установленным с ним на одном валу, что расширяет функциональные возможности применяемого блока диагностики и обеспечивает надежность работы прибора акустического скважинного с встроенной системой диагностирования.

В совокупности указанные признаки соответствуют критерию изобретения «существенные отличия»

Наличие в предложенной конструкции прибора акустического скважинного с встроенной системой диагностирования дополнительных независимых датчиков, устанавливаемых на одном валу в непосредственной близости с излучателями и приемниками акустических сигналов, не вносит существенных изменений в конструкцию прибора, сохраняя надежность конструкции. При этом для ее практической реализации не требуется специальных материалов и оборудования, что соответствует критерию изобретения «промышленная применимость».

На фиг 1 приведен вариант прибора акустического скважинного с встроенной системой диагностирования.

На фиг. 2 приведен вариант структурной схемы работы акустического скважинного прибора с встроенной системой диагностики.

На фиг. 3 показан независимый датчик со своим излучателем акустического сигнала.

Предложенный прибор акустический скважинный с встроенной системой диагностирования (далее - устройство) содержит корпус, в котором установлены излучатель 1 и приемники 2 акустических сигналов, независимые датчики 3-4 и скважинный блок управления 5, связанный с наземным блоком управления 15 (фиг. 1).

Датчики 3 и 4 идентичны и выполнены на основе пьезоэлементов, и в зависимости от электрической схемы подключения могут использоваться в качестве излучателей либо в качестве приемников акустических сигналов. Каждый из датчиков 3-4 установлен на одном валу 6 в непосредственной близости со своим излучателем 1 или приемником 2 и закреплен на нем посредством корпуса с гайкой 7 (фиг. 2). При этом датчик 3, установленный на валу с излучателем 1, работает как излучатель, а датчики 4, установленные на валах с приемниками 2, работают как приемники акустических сигналов.

Излучатель 1, приемники 2 и независимые датчики 3, 4 электрически связаны с скважинным блоком управления 5, в состав которого входят усилитель нормирующий УН 8, коммутатор высоковольтный KB 9, аналого-цифровой преобразователь АЦП 10, формирователь высокого напряжения ФВН 11, микроконтроллер МК 12, блок анализа данных БАД 13 с записанными в нем нормированными значениями излучателя 1 и приемников 2, блок телеметрии БТ 14. (фиг. 3)

Устройство работает следующим образом.

В процессе работы на скважине оператором с наземного блока управления 15 подается сигнал активации основного режима работы устройства. От наземного блока управления 15 сигнал по каналу связи поступает на блок телеметрии 14 скважинного блока управления 5. Блок телеметрии 14 запускает работу основных систем устройства и одновременно передает команду на микроконтроллер 12, который включает в работу формирователь высокого напряжения 11 и коммутатор высоковольный 9, который в свою очередь подает высоковольтное напряжение на преобразователи АЦП 10. Излучатель 1 в постоянном режиме генерирует упругие волны, а приемники 2 принимают отраженные волновые пакеты, которые после обработки нормирующим усилителем 8 через АЦП 10 поступают на микроконтроллер 12, где фиксируются и передаются в наземный блок управления 15. В заданный период времени работы устройства по сигналу от микроконтроллера 12, формирователь высокого напряжения И подает высоковольтное напряжение на независимый датчик 3. Генерируемый датчиком 3 волновой пакет поступает на нормирующий усилитель 7, преобразовывается и через микроконтроллер 12 поступает в блок анализа данных 13. Блок анализа данных 13 усредняет и анализирует полученные данные, сравнивая их с нормированными значениями излучателя 1 и приемников 2. В случае отклонения полученных данных от нормированных значений с блока анализа данных 13 на микроконтроллер 12 поступает сигнал о возможной неисправности. Микроконтроллер 12 формирует команду на блок телеметрии 14, связанный с наземным блоком управления 15. На наземный блок управления 15 поступают информация, на основе которой оператор может внести коррекцию в работу блока телеметрии 14 - усилить или ослабить уровень приема сигнала посредством нормирующего усилителя 8 или изменить амплитуду высоковольтного напряжения с помощью формирователя высокого напряжения 11.

При этом возможность использования идентичных независимых датчиков блока диагностики как в качестве излучателей, так и в качестве приемников акустических сигналов, в случае существенного отклонения параметров какого либо излучателя 1 или приемника 2 акустических сигналов от нормируемых значений, позволяет оператору по команде с наземного бока управления 15 обеспечить возможность дублирования работы неисправного излучателя 1 или приемника 2 закрепленным с ним на одном валу независимым датчиком, что существенно расширяет функциональные возможности блока диагностики и повышает надежность работы устройства в целом..

Таким образом, наличие в конструкции прибора акустического скважинного с встроенной системой диагностирования дополнительного блока диагностики повышает точность автоматического контроля работы устройства и обеспечивает быструю коррекцию его работы в реальном режиме времени, упрощает работу оператора и исключает влияние «человеческого фактора» на результаты измерений, в отличие от аналога.

На основании изложенного считаем, что поставленная задача изобретения решена в полном объеме.

Прибор акустический скважинный с встроенной системой диагностирования, содержащий систему излучателей и приемников акустических сигналов, блок телеметрии, содержащий АЦП с микроконтроллером, и наземный блок управления, отличающийся тем, что он дополнительно оснащен блоком диагностики в виде независимых датчиков по числу излучателей и приемников акустических сигналов, каждый из которых установлен на одном валу в непосредственной близости со своим излучателем и приемником акустических сигналов, и блоком анализа данных, входящим в состав скважинного блока управления и связанным посредством микроконтроллера с независимыми датчиками.



 

Похожие патенты:

Изобретение относится к акустическим датчикам и может быть использовано в приборах акустического каротажа. Техническим результатом является обеспечение возможности влияния на дисперсионные характеристики распространяющейся волны в элементарной ячейке акустической линзы в более широком диапазоне частот.

Изобретение относится к нефтегазодобывающей и горной промышленности, в частности к устройствам и способам для геофизических исследований и специальных работ в вертикальных, наклонно-направленных и горизонтальных скважинах.

Изобретение относится к нефтедобывающей промышленности и может быть использовано преимущественно для повышения эффективности контроля за разработкой мелкозалегающих залежей сверхвязкой нефти или битума методами теплового, химического, механического воздействия на пласт-коллектор.

Изобретение относится к бурению скважин и может быть использовано для контроля расположения пробуриваемой скважины относительно целевой скважины. В частности, предложена скважинная дальномерная система, содержащая: первый оптический волновод, размещенный в первой скважине формации, причем первый оптический волновод расположен вдоль части осевой длины первой скважины; по меньшей мере второй оптический волновод, расположенный вдоль по меньшей мере той же самой осевой длины первой скважины, что и первый оптический волновод; и источник звука, размещенный во второй скважине и акустически связанный с указанной формацией.

Изобретение относится к области геофизики и может быть использовано при проведении скважинных сейсморазведочных работ. Оптоволоконный датчик для скважинной сейсморазведки содержит оптоволоконный кабель, опускаемый в скважину, и по меньшей мере одну группу резонаторов, расположенную на оптоволоконном кабеле.

Изобретение относится к области геофизики. Заявлен переключатель, приводимый в действие перепадом давления, содержащий механизм, реагирующий на давление, для обеспечения реакции на давление в ответ на перепад давления и исполнительный привод устройства, выполненный для взаимодействия с механизмом, реагирующим на давление, и для использования реакции на давление механизма, реагирующего на давление, для приведения устройства в действие.

Изобретение относится к области геофизики и может быть использовано в процессе акустического каротажа. Согласно заявленному предложению предложен изолятор автономного прибора акустического каротажа, содержащий наружный несущий корпус, выполненный из стеклопластиковой трубы со стальными окончаниями, а также поглотитель упругих колебаний, состоящий из чередующихся элементов с контрастным волновым сопротивлением в виде резиновых и металлических шайб.

Изобретение относится к области геофизики и может быть использовано в процессе акустического каротажа в процессе бурения нефтяных и газовых скважин. Заявлен изолятор прибора акустического каротажа в процессе бурения, который содержит несущую трубу из стеклопластика со стальными окончаниями, размещенную между блоками излучателя и приемной антенны.

Устройство относится к измерительной технике, представляет собой акустический преобразователь и предназначено для геофизических исследований скважин, в частности в аппаратуре акустического каротажа.

Использование: относится к области геофизики и может быть использовано для регистрации волновых процессов в вертикальных и наклонных скважинах при сейсмическом профилировании.

Изобретение относится к измерительной технике, в частности к сейсмометрии, и может быть использовано для сейсмического мониторинга. Заявлен трехкомпонентный скважинный сейсмометр, содержащий в герметичном корпусе с подпружиненными стабилизаторами, блок арретирования, генератор, первый и второй каналы приема горизонтальных составляющих сигналов и третий канал приема вертикальной составляющей сигналов.
Наверх