Тест-система для идентификации днк тканей крыс и мышей в сухих кормах и мясных полуфабрикатах

Изобретение относится к области биотехнологии. Изобретение представляет собой тест-систему для идентификации ДНК ткани крыс (Rattus) и мышей (Mus musculus) в сухих кормах и мясных полуфабрикатах, включающую буфер для проведения полимеразной цепной реакции, смесь для ее проведения, состоящую из дезоксинуклеозидтрифосфатов, олигонуклеотидных праймеров и флуоресцентных зондов, специфичных для участка генома животного и для внутреннего контрольного образца; смесь ферментов из ДНК полимеразы с антителами, ингибирующих активность фермента, TAQ POLYMERASE, внутренний контрольный образец в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, отрицательный контрольный образец, представляющий собой смесь рекомбинантных плазмидных ДНК, содержащую фрагмент генома животного и фрагмент генома бактериофага Т4 с нуклеотидной последовательностью: T4F TACATATAAATCACGCAAAGC - прямой праймер, T4R TAGTATGGCTAATCTTATTGG - обратный праймер, Т4Р FAM ACATTGGCACTGACCGAGTTC BHQ1 - зонд, согласно изобретению для внутреннего контрольного образца используют фаголизат бактериофага Т4, а для положительного контрольного образца используют фрагменты геномов нативного бактериофага Т4 и крыс (Rattus) и мышей (Mus musculus) взятых в объемном соотношении 1:1:1 со следующей нуклеотидной последовательностью: Rat-F: 5'-GCCTTCCTACCATTCCTGCAT-3' - прямой праймер, Rat-R: 5'-AGGAGGTTGGCTACTAGGAT-3' - обратный праймер, Rat-P: 5'-FAM-ACGCAGCTTAACATTCCGCCCA-3'-BHQ1 - зонд, Mus-F: 5'-GTTGCTTTGTCTACTGAG-3' - прямой праймер, Mus-R: 5'-ACCTGAAACATTGGAGTA-3' - обратный праймер, Mus-P: РАМ-5'-TCGCAGTCATAGCCACAGCA-3-BHQ1 - зонд. Изобретение позволяет расширить функциональные возможности, повысить точность идентификации видовой принадлежности. 5 табл.

 

Изобретение относится к ветеринарной микробиологии, в частности к методам определения видовой принадлежности мяса с помощью полимеразной цепной реакции.

Известно использование тест-системы при проведении ПЦР в реальном времени для определения ДНК тканей животных в мясном продукте (CN 108624659 A, кл. C12G 1/6851, 2018 г.).

Также известно техническое решение содержащее набор идентификации ДНК животных, входящих группу: мышь, крыса, собака, кошка и др. в кормах и мясных продуктах (патент РФ №2560579, C12Q 1/68, 2015 г.), включающий буфер для проведения полимеразной цепной реакции, смесь для ее проведения состоящая из дезоксинуклеозидтрифосфатов, олигонуклеотидных праймеров и флуоресцентных зондов специфичные для участка генома животного и для внутреннего контрольного образца; смесь ферментов из ДНК полимеразы с антителами, ингибирующих активность фермента, TAQ POLYMERASE, внутренний контрольный образец и другие контрольные образцы.

Однако известный набор используется для полимеразной цепной реакции с электрофоретической детекцией, в которой нуклеотидная последовательность непосредственно читается по электрофореграмме. Длина фрагмента, который может быть расшифрован этим методом, ограничивается разрешающей способностью метода гель-электрофореза, что влияет на точность диагностирования видовой принадлежности ткани животного в кормах и мясных продуктах.

Наиболее близким по технической сущности является техническое решение (патент РФ №2680094, кл. C12Q 1/68, G01N 33/569, 2019 г.), включающий буфер для проведения полимеразной цепной реакции, смесь для ее проведения, состоящая из дезоксинуклеозидтрифосфатов, олигонуклеотидных праймеров и флуоресцентных зондов специфичные для участка генома животного и для внутреннего контрольного образца; смесь ферментов из ДНК полимеразы с антителами, ингибирующих активность фермента, TAQ POLYMERASE, внутренний контрольный образец в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, отрицательный контрольный образец, представляющий собой смесь рекомбинантных плазмидных ДНК, содержащих фрагмент генома животного и фрагмент генома бактериофага Т4 с нуклеотидной последовательностью:

T4F TACATATAAATCACGCAAAGC - прямой образец

T4R TAGTATGGCTAATCTTATTGG - обратный образец

Т4Р FAM ACATTGGCACTGACCGAGTTC BHQ1 - зонд, взятых в объемном соотношении 1:1.

Недостатком известного технического решения является отсутствие возможности выявления ДНК тканей животных в кормах и пищевых продуктах, недостаточная точность из-за использования суспензии бактериофага, которая требует предварительную обработку, включая центрифугирование, концентрирование и перевод в определенный буферный раствор, что влечет за собой значительную трудоемкость и финансовые затраты, а также использование генома бактериофага Т4 с возможными повреждениями, после исследования, что также влияет на точность выявления объекта.

Техническим результатом является расширение функциональных возможностей и повышение точности идентификации видовой принадлежности тканей животных, упрощение процесса подготовки и уменьшение стоимости этого процесса.

Технический результат достигается тем, что в тест-системе идентификации видовой принадлежности тканей крыс и мышей в сухих кормах и мясных полуфабрикатах, включающей буфер для проведения полимеразной цепной реакции, смесь для ее проведения, состоящая из дезоксинуклеозидтрифосфатов, олигонуклеотидных праймеров и флуоресцентных зондов специфичные для участка генома животного и для внутреннего контрольного образца; смесь ферментов из ДНК полимеразы с антителами, ингибирующих активность фермента, TAQ POLYMERASE, внутренний контрольный образец в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, отрицательный контрольный образец представляющий собой смесь рекомбинантных плазмидных ДНК, содержащих фрагмент генома животного и фрагмент генома бактериофага Т4 с нуклеотидной последовательностью:

T4F TACATATAAATCACGCAAAGC - прямой образец

T4R TAGTATGGCTAATCTTATTGG - обратный образец

Т4Р FAM ACATTGGCACTGACCGAGTTC BHQ1 - зонд, взятых в объемном соотношении 1:1, согласно изобретению для внутреннего контрольного образца используют фаголизат бактериофага Т4, а для положительного контрольного образца - фрагменты геномов нативного бактериофага Т4 и тканей крыс (Rattus) и мышей (Mus muscuius) со следующей нуклеотидной последовательностью:

Rat-F: 5'-GCCTTCCTATCATTCCTGCAT-3' прямой праймер

Rat-R: 5'-AGGAGGTTGGCTACTAGGAT-3' обратный праймер

Rat-P: 5'-FAM-ACGCAGCTTAACATTCCGCCCA-3'-BHQ1 зонд

Mus-F: 5'-GTTGCTTTGTCTACTGAG-3' прямой праймер

Mus-R: 5' ACCTGAAACATTGGAGTA-3' обратный праймер

Mus-P: FAM-5'-TCGCAGTCATAGCCACAGCA-3-BHQ1 - зонд, взятых в объемном соотношении 1:1:1.

Новизна заявляемой тест-системы состоит в том, что обеспечивает возможность идентификации видовой принадлежности тканей крыс и мышей с помощью полимеразной цепной реакции (ПЦР) с флуоресцентной детекцией в режиме реального времени, с использованием в контрольных образцах разных видов бактериофага Т4, что в свою очередь расширяет функциональные возможности и позволяет с высокой точностью определить наличие их ингредиентов в продовольственном сырье, кормах и мясных продуктах.

Признаки, отличающие заявляемое техническое решение от прототипа, направлены на достижение технического результата и не выявлены при изучении данной и смежной областей науки и техники и, следовательно, соответствуют критерию «изобретательский уровень».

Заявляемую тест-систему рекомендовано использовать в специализированных ветеринарных, санитарно-эпидемиологических, животноводческих, сельскохозяйственных предприятиях, что соответствует критерию «промышленная применимость».

Тест-система идентификации видовой принадлежности тканей крыс и мышей в сухих кормах и мясных полуфабрикатах реализуется следующим образом.

Для исследования кормов, продовольственного сырья и пищевых продуктов на содержание ДНК тканей крыс (Rattus) и мышей (Mus musculus) проводят полимеразную цепную реакцию с флуоресцентной детекцией с применением термоциклера типа Rotor-Gene Q при соответствующих температурно-временных режимах амплификации и измеряют накопление флуоресцентных сигналов по каналам соответствующих флуоресцентных красителей: JOE/Yellow для специфического сигнала ткани крыс (Rattus); FAM/Geen - ткани мышей (Mus musculus) и Cy5/Red - для внутреннего контрольного образца. Интерпретацию результатов проводят на основании наличия или отсутствия пересечения кривой флуоресценции с пороговой линией, если кривые накопления флуоресцентного сигнала выходят до 35 цикла, то результат реакции считается положительным, а если кривые не пересекают пороговую линию или пересекают ее после 35 цикла, то результат реакции - отрицательный.

Для повышения точности идентификации тканей животных для внутреннего контрольного образца используют фаголизат бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, если концентрация копий нуклеотидных последовательностей отклоняется в большую или меньшую сторону, то наблюдаются повторности сомнительных образцов. Для положительного контрольного образца используют смесь содержащую фрагменты геномов ткани крыс (Rattus), мышей (Mus musculus) и нативного бактериофага Т4 взятых в соотношении 1:1:1 со следующими нуклеотидными последовательностями:

Rat-F: 5'-GCCTTCCTACCATTCCTGCAT - прямой праймер

Rat-R: 5'-AGGAGGTTGGCTACTAGGAT-3' - обратный праймер

Rat-Р: 5'-FAM - ACGCAGCTTAACATTCCGCCCA-3'-BHQ1 - зонд

Mus-F: 5'-GTTGCTTTGTCTACTGAG-3' - прямой праймер

Mus-R: 5'-ACCTGAAACATTGGAGTA-3' - обратный праймер

Mus-P: FAM-5'-TCGCAGTCATAGCCACAGCA-3-BHQ1 - зонд.

T4F TACATATAAATCACGCAAAGC - прямой праймер

T4R TAGTATGGCTAATCTTATTGG - обратный праймер

Т4Р CY5 ACATTGGCACTGACCGAGTTC - зонд.

Использование для разных видов контроля различные формы материала бактериофага Т4: фаголизата и фрагмента генома нативного бактериофага со специфическими к нему праймерами и зондом обусловлено тем, что это позволяет контролировать корректное прохождение реакции в каждой пробирки, а также контролируется этап выделения ДНК из образцов. Кроме того, использование фаголизата бактериофага Т4, представляющего собой суспензию бактериофага, полученную после лизиса зараженных фагом клеток ткани, повышает воспроизводимость, чувствительность и упрощает процесс идентификации тканей крыс и мышей в продуктах, а использование нативного бактериофага, т.е. неповрежденного при исследовании, улучшает синтез ДНК, что также улучшает качество процесса идентификации.

При конструировании праймеров и зонда основными требованиями были: степень гомологии (комплементарность) с выбранным участком гена; отсутствие самокоплементарных участков внутри олигонуклеотидов и комплементарности друг другу, чтобы не допускать возникновения устойчивых вторичных структур (димеров); близость значений температуры отжига праймеров.

Конструирование специфических праймеров и зонда осуществляли с помощью компьютерных программ на основании анализа нуклеотидных последовательностей референтных штаммов и изолятов, опубликованных на ресурсе GenBank и подбора условий для проведения ПЦР в реальном времени с применением разработанных праймеров и зонда, несущего флуорофор и тушитель, и комплементарного части амплифицируемого со специфическими праймерами фрагмента.

Праймеры, специфичные для ДНК крыс (Rattus) были подобраны на основе нуклеотидной последовательности митохондриального гена цито-хрома (Rattus norvegicus mitochondrion, complete genome Sequence ID: KM577634, Length: 16302) на участке между 15000 и 15300 нуклеотидами. Код доступа нуклеотидной последовательности в GeneBank NCBI: KM577634.1.

Праймеры были спроектированы с использованием Primer Express Software v3.0 (Applied Biosystems) и исследованы на специфичность с использованием программы BLAST на сервере NCBI. Для детекции продуктов амплификации был подобран олигонуклеотидный флуоресцентно-меченный зонд Rat-P (комплементарный участку нуклеотидной последовательности, фланкированной позициями для праймеров Rat-F и Rat-R). На 5'-конец зонда Rat-P добавлен флуоресцентный краситель карбоксифлуоресцеин (FAM).

Разработанные нуклеотидные последовательности для использования в ПЦР: Rat-F: 5'-GCCTTCCTACCATTCCTGCAT-3' - прямой праймер

Rat-R: 5'-AGGAGGTTGGCTACTAGGAT-3' - обратный праймер

Rat-Р: 5'-FAM - ACGCAGCTTAACATTCCGCCCA-3'-BHQ1 - зонд.

Используя программу "Oligo 6.0" описаны основные свойства рассчитанных олигонуклеотидов, определившие возможность их использования в ПЦР. Ни одна из выбранных последовательностей не обнаружена в геномах каких либо животных и птиц (исключая Rattus) и любых видов растений, которые потенциально могут быть использованы при производстве сухих кормов и мясных продуктов.

Праймеры, специфичные для ДНК мышей (Mus musculus) были подобраны на основе нуклеотидной последовательности митохондриального гена цитохрома (LOCUS KX519423 897 bp DNA linear ROD 24-MAY-2017, Mus musculus isolate 2015030501 cytochrome b (Cytb) gene, partial cds; mitochondrial) на участке между 500 и 700 нуклеотидами. Код доступа нуклеотидной последовательности в GeneBank NCBI: KX519423.1

Праймеры были спроектированы с использованием Primer Express Software v3.0 (Applied Biosystems) и исследованы на специфичность с использованием программы BLAST на сервере NCBI. Для детекции продуктов амплификации был подобран олигонуклеотидный флуоресцентно-меченный зонд Mus-P (комплементарный участку нуклеотидной последовательности, фланкированной позициями для праймеров Mus-F и Mus-R). На 5'-конец зонда Mus-P добавлен флуоресцентный краситель карбоксифлуоресцеин (FAM). Mus-F: 5'-GTTGCTTTGTCTACTGAG-3' - прямой праймер

Mus-R: 5'-ACCTGAAACATTGGAGTA-3' - обратный праймер

Mus-P: FAM-5'-TCGCAGTCATAGCCACAGCA-3-BHQ1 - зонд.

Используя программу "Oligo 6.0" описаны основные свойства рассчитанных олигонуклеотидов, определившие возможность их использования в ПЦР.

Ни одна из выбранных последовательностей не обнаружена в геномах каких-либо животных и птиц (исключая Mus musculus) и любых видов растений, которые потенциально могут быть использованы при производстве кормов и пищевых продуктов.

В качестве внутреннего контроля использовался бактериофаг Т4, имеющий геномную ДНК порядка 169 тысяч пар нуклеотидов (Enterobacteria phage Т4Т, complete genome GenBank: HM137666.1). В результате анализа был выбран участок между 400 и 500 нуклеотидами, содержащий уникальные нуклеотидные последовательности, рассчитаны первичные структуры олигонуклеотидных праймеров, фланкирующих выбранный участок генома. Праймеры были спроектированы с использованием Primer Express Software v3.0 (Applied Biosystems) и исследованы с использованием BLAST, чтобы подтвердить их специфичность.

Для детекции продуктов амплификации подобран олигонуклеотидный флуоресцентно-меченный зонд Т4Р, комплементарный участку нуклеотидной последовательности, ограниченной позициями отжига праймеров T4F и T4R. Зонд был помечен красителем Су5. Используя программу "Oligo 6.0" описаны основные свойства рассчитанных олигонуклеотидов, определившие возможность их использования в ПЦР.

Разработанные нуклеотидные последовательности для использования в ПЦР: T4F TACATATAAATCACGCAAAGC - прямой праймер

T4R TAGTATGGCTAATCTTATTGG - обратный праймер

Т4Р CY5 ACATTGGCACTGACCGAGTTC - зонд.

Пример конкретного использования тест-системы для идентификации видовой принадлежности тканей крыс и мышей в сухих кормах и мясных продуктах.

Для подтверждения эффективности тест-системы были использованы сухие корма в виде рыбной и мясной муки; сырые и термически обработанные мясные продукты, т.е. мясные полуфабрикаты.

От пробы плотной консистенции отбирают на исследование общую пробу весом 10-50 г. Гранулированную или консервированную продукцию перед исследованием (10-20 г) растирают в ступке до гомогенного состояния.

Лабораторные пробы (20-40 мг) отбирают на исследование в одноразовые микропробирки вместимостью 1,5 мл в двух повторах. Отобранные лабораторные пробы направляют на выделения ДНК.

Исследование проводят с помощью набора реагентов «ПЦР-ГРЫЗУНЫ-ФАКТОР». Набор состоит из комплекта реагентов для проведения мультиплексной ПЦР (комплект №1) и комплекта контрольных образцов (комплект №2). Набор выпускается в двух вариантах: 1) Для анализа 55 образцов (включая контрольные образцы)

2) Для анализа 110 образцов (включая контрольные образцы).

Наборы используют в соответствии с инструкцией по применению набора реагентов «ПЦР-ГРЫЗУНЫ-ФАКТОР» для определения видовой принадлежности тканей животных видов Rattus (крыс) и Mus musculus (мышей) методом полимеразной цепной реакции (ПЦР) с флуоресцентной детекцией в режиме реального времени. ТУ 21.10.60-173-51062356-2019, http://www.vetfaktor.ru/.

Состав набора приведен в Таблицах 1 и 2.

Исследования состоит из трех этапов:

• экстракция нуклеиновая кислота (НК);

• проведение реакции ПЦР РВ;

• учет результатов анализа.

Для экстракции (выделение) НК из исследуемых проб отбирают необходимое количество одноразовых пробирок объемом 1,5 мл, включая отрицательный контроль выделения. Во все пробирки с исследуемыми образцами, включая пробирку для отрицательный контрольный образец (ОКО), вносят по 10 мкл внутренний контрольный образец (ВКО) для крыс и мышей (ГРЫЗУНЫ) в качестве которого используют фаголизат бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл.

Следующий этап это подготовка образцов к проведению ПЦР.

Общий объем реакционной смеси - 25 мкл, объем ДНК-пробы - 10 мкл.

Успешное прохождение реакции контролируют с помощью положительного контрольного образца (ПКО) ГРЫЗУНЫ, ВКО ГРЫЗУНЫ и ДНК буфера. В качестве ПКО используют смесь содержащую фрагменты геномов ткани крыс (Rattus), ткани мышей (Mus musculus) и нативного бактериофага Т4 со следующей нуклеотидной последовательностью:

Rat-F: 5'-GCCTTCCTACCATTCCTGCAT-3' - прямой праймер

Rat -R: 5'-AGGAGGTTGGCTACTAGGAT-3' - обратный праймер

Rat-Р: 5'-FAM-ACGCAGCTTAACATTCCGCCCA-3'-BHQ1 - зонд

Mus-F: 5'-GTTGCTTTGTCTACTGAG-3' - прямой праймер

Mus-R: 5'-ACCTGAAACATTGGAGTA-3' - обратный праймер

Mus-P: FAM-5'-TCGCAGTCATAGCCACAGCA-3-BHQ1 - зонд,

T4F TACATATAAATCACGCAAAGC - прямой праймер

T4R TAGTATGGCTAATCTTATTGG - обратный праймер

Т4Р FAM ACATTGGCACTGACCGAGTTC BHQ1 - зонд, взятых в соотношении 1:1:1.

В отдельной пробирке смешать компоненты набора из расчета на каждую реакцию:

5 мкл ПЦР СМЕСЬ ГРЫЗУНЫ;

10 мкл ПЦР БУФЕР ГРЫЗУНЫ;

0,5 мкл TAQ POLYMERASE

Перемешивают смесь на вортексе и сбрасывают капли кратковременным центрифугированием.

Отбирают необходимое количество пробирок для амплификации ДНК исследуемых и контрольных проб. Вносят по 15 мкл приготовленной реакционной смеси.

Помещают подготовленные для проведения ПЦР пробирки в ячейки амплификатора и используют программное обеспечение прибора. Далее проводят ПЦР РВ с флуоресцентной детекцией.

Параметры температурно-временного режима амплификации на приборе «Rotor-Gene Q» представлены в таблице 3.

Интерпретация результатов анализа.

Полученные данные - кривые накопления флуоресцентного сигнала анализируются с помощью программного обеспечения используемого прибора для проведения ПЦР в соответствии с инструкцией производителя к прибору.

Учет результатов ПЦР РВ проводится по наличию или отсутствию пересечения кривой флуоресценции с установленной на соответствующем уровне пороговой линией (что соответствует наличию или отсутствию значения порогового цикла «Ct» для исследуемого образца).

Результат считается достоверным в случае корректного прохождения положительных и отрицательных контролей амплификации и экстракции ДНК в соответствии с таблицей 4.

Появление любого значения Ct в таблице 4 результатов для отрицательного контроля этапа экстракции ВК- на каналах FAM/Green и JOE/Yellow и для отрицательного контроля этапа ПЦР К- на любом из каналов свидетельствует о наличии контаминации реактивов или образцов. В этом случае результаты анализа для всех проб считаются недействительными. Требуется повторить анализ всех проб, а также предпринять меры по выявлению и ликвидации источника контаминации.

Образцы, для которых значение Ct по каналу Cy5/Red отсутствует или превышает 35 цикл (и при этом не получен положительный результат на каналах JOE/Yellow и/или FAM/Green) требуют повторного проведения исследования с этапа экстракции ДНК. Задержка в значениях пороговых циклов для исследуемых образцов указывает на присутствие ингибиторов в пробе(ах) или на ошибки при экстракции ДНК или при постановке реакции ПЦР РВ.

В образце обнаружена ДНК ткани Rattus крыс, если наблюдается экспоненциальный рост сигнала на канале JOE/Yellow, при этом значения Ct контрольных образцов находятся в пределах нормы (Табл. 4). В образце обнаружена ДНК ткани Mus musculus мышей, если наблюдается экспоненциальный рост сигнала на канале FAM/Green, при этом значения Ct контрольных образцов находятся в пределах нормы (Табл. 4).

Если для исследуемого образца по каналам JOE/Yellow и/или FAM/Green значение Ct определяется позднее 37 цикла при корректном прохождении положительных и отрицательных контролей, образец исследуется повторно с этапа экстракция ДНК. Если при повторной постановке Ct более 37 результат считается отрицательным (содержание целевой ДНК ниже предела обнаружения метода).

Образец считается отрицательным (ДНК Rattus и/или Mus musculus не обнаружена) если не определяется значение Ct (не наблюдается рост специфического сигнала) на канале FAM/Green и/или JOE/Yellow при этом значения Ct контрольных образцов находятся в пределах нормы (Табл. 4), а значение Ct по каналу Cy5/Red менее 35.

Для исследуемых образцов (сухой корм и мясные полуфабрикаты) предел точности содержания ткани крыс и мышей представлен в таблице 5.

Для доказательства эффективности использования ПЦР с флуоресцентной детекцией в режиме реального времени проводился сравнительный анализ чувствительности заявляемой тест-системы с прототипом, в котором использовался метод ПЦР с использованием внутреннего контроля в виде суспензии бактериофага, а в заявляемом - использовался фаголизат бактериофага и геном нативного бактериофага. Оказалось чувствительность ПЦР в заявляемой тест-системе при обнаружении примеси тканей крыс и мышей в кормах и в мясных фаршах примерно выше в 1,5 раза. Трудоемкость и стоимость процесса определения ДНК тканей грызунов в кормах и фаршах снизилась на 3,2-3,7%.

Тест-система для идентификации ДНК ткани крыс и мышей в сухих кормах и мясных полуфабрикатах, включающая буфер для проведения полимеразной цепной реакции, смесь для ее проведения, состоящую из дезоксинуклеозидтрифосфатов, олигонуклеотидных праймеров и флуоресцентных зондов, специфичных для участка генома животного и для внутреннего контрольного образца; смесь ферментов из ДНК полимеразы с антителами, ингибирующих активность фермента, TAQ POLYMERASE, внутренний контрольный образец в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, отрицательный контрольный образец, представляющий собой смесь рекомбинантных плазмидных ДНК, содержащую фрагменты генома животного и бактериофага Т4 с нуклеотидной последовательностью:

T4F TACATATAAATCACGCAAAGC - прямой праймер,

T4R TAGTATGGCTAATCTTATTGG - обратный праймер,

Т4Р FAM ACATTGGCACTGACCGAGTTC BHQ1 - зонд,

взятые в объемном соотношении 1:1, отличающаяся тем, что для внутреннего контрольного образца используют фаголизат бактериофага Т4, а для положительного контрольного образца используют фрагменты геномов нативного бактериофага Т4 и крыс и мышей со следующей нуклеотидной последовательностью:

Rat-F: 5'-GCCTTCCTACCATTCCTGCAT-3' - прямой праймер,

Rat-R: 5'-AGGAGGTTGGCTACTAGGAT-3' - обратный праймер,

Rat-Р: 5'-FAM-ACGCAGCTTAACATTCCGCCCA-3'-BHQ1 - зонд,

Mus-F: 5'-GTTGCTTTGTCTACTGAG-3' - прямой праймер,

Mus-R: 5'-ACCTGAAACATTGGAGTA-3' - обратный праймер,

Mus-P: FAM-5'-TCGCAGTCATAGCCACAGCA-3-BHQ1 - зонд,

взятые в объемном соотношении 1:1:1.



 

Похожие патенты:

Изобретение относится к биотехнологии, в частности к способам проведения пренатальной и постанатальной генетической диагностики числовых хромосомных аномалий у эмбрионов человека и ДНК-микрочипам для их осуществления.

Изобретение относится к биотехнологии, в частности к способам проведения пренатальной и постанатальной генетической диагностики числовых хромосомных аномалий у эмбрионов человека и ДНК-микрочипам для их осуществления.

Изобретение относится к области биотехнологии. Изобретеение представляет собой способ включает в себя выделение ДНК исследуемого образца, включающего ДНК M.

Изобретение относится к области биотехнологии. Изобретение представляет собой тест систему для идентификации ДНК ткани ткани дятла (Picidae) в сухих кормах и мясных полуфабрикатах, включающую буфер для проведения полимеразной цепной реакции, смесь для ее проведения, состоящая из дезоксинуклеозидтрифосфатов, олигонуклеотидных праймеров и флуоресцентных зондов специфичные для участка генома животного и для внутреннего контрольного образца; смесь ферментов из ДНК полимеразы с антителами, ингибирующих активность фермента, TAQ POLYMERASE, внутренний контрольный образец в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, отрицательный контрольный образец, представляющий собой смесь рекомбинантных плазмидных ДНК, содержащих фрагмент генома животного и фрагмент генома бактериофага Т4 с нуклеотидной последовательностью, взятых в объемном соотношении 1:1, согласно изобретению для внутреннего контрольного образца используют фаголизат бактериофага Т4, а для положительного контрольного образца используют фрагменты геномов нативного бактериофага Т4 и дятла (Picidae) со следующей нуклеотидной последовательностью.

Изобретение относится к области биотехнологии. Изобретение представляет собой тест-систему для идентификации ДНК ткани ежа обыкновенного (Erinaceus europaeus) в сухих кормах и мясных полуфабрикатах, включающую буфер для проведения полимеразной цепной реакции, смесь для ее проведения, состоящую из дезоксинуклеозидтрифосфатов, олигонуклеотидных праймеров и флуоресцентных зондов специфичных для участка генома животного и для внутреннего контрольного образца; смесь ферментов из ДНК полимеразы с антителами, ингибирующих активность фермента, TAQ POLYMERASE, внутренний контрольный образец в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, отрицательный контрольный образец, представляющий собой смесь рекомбинантных плазмидных ДНК, содержащую фрагмент генома животного и фрагмент генома бактериофага Т4 с нуклеотидной последовательностью: T4F: 5`-TACATATAAATCACGCAAAGC-3` - прямой праймер; T4R: 5`- TAGTATGGCTAATCTTATTGG-3` - обратный праймер; Т4Р: НЕХ-5`-ACATTGGCACTGACCGAGTTC-3`-BHQ1 - зонд, взятых в объемном соотношении 1:1, согласно изобретению для внутреннего контрольного образца используют фаголизат бактериофага Т4, а для положительного контрольного образца используют фрагменты геномов нативного бактериофага Т4 и ткани ежа обыкновенного (Erinaceus europaeus) со следующей нуклеотидной последовательностью: Hed-F: 5`-AGTCTATTGATTCGAATAGAGC-3` - прямой праймер; Hed-R: 5`-CATGAGAGGTACTAACCAGT-3` - обратный праймер; Hed-P: FAM-5`-CAGGAGCTTTATTAGGTGATGATCAG-3-BHQ1 – зонд.

Изобретение относится к области биотехнологии. Изобретение представляет собой тест-систему для идентицикации ДНК ткани перепелки обыкновенной (Coturnix coturnix) в сухих кормах и мясных полуфабрикатах, включающую буфер для проведения полимеразной цепной реакции, смесь для ее проведения, состоящую из дезоксинуклеозидтрифосфатов, олигонуклеотидных праймеров и флуоресцентных зондов, специфичных для участка генома животного и для внутреннего контрольного образца; смесь ферментов из ДНК полимеразы с антителами, ингибирующих активность фермента, TAQ POLYMERASE, внутренний контрольный образец в виде суспензии бактериофага Т4 с концентрацией 5×103 фаговых частиц на 1 мкл, отрицательный контрольный образец, представляющий собой смесь рекомбинантных плазмидных ДНК, содержащую фрагмент генома животного и фрагмент генома бактериофага Т4 с нуклеотидной последовательностью: - прямой праймер, - обратный праймер, - зонд, взятые в объемном соотношении 1:1, для внутреннего контрольного образца используют фаголизат бактериофага Т4, а для положительного контрольного образца - фрагменты геномов нативного бактериофага Т4 и ткани перепелки обыкновенной Coturnix coturnix) со следующей нуклеотидной последовательностью: - прямой праймер; - обратный праймер; - зонд.

Изобретение относится к биотехнологии, в частности предложен способ анализа образцов. Способ включает: (a) фильтрование жидкого образца, содержащего продукты амплификации по типу катящегося кольца (АКК), с применением пористой капиллярной мембраны, с помощью которого получают массив продуктов АКК на мембране; при этом образец содержит по меньшей мере первую совокупность продуктов АКК и вторую совокупность продуктов АКК, причем первая и вторая совокупности меченых продуктов АКК мечены различно; и (b) определение количества первой меченой совокупности продуктов АКК и количества второй меченой совокупности продуктов АКК в области мембраны.

Изобретение относится к биотехнологии, в частности предложен способ анализа образцов. Способ включает: (a) фильтрование жидкого образца, содержащего продукты амплификации по типу катящегося кольца (АКК), с применением пористой капиллярной мембраны, с помощью которого получают массив продуктов АКК на мембране; при этом образец содержит по меньшей мере первую совокупность продуктов АКК и вторую совокупность продуктов АКК, причем первая и вторая совокупности меченых продуктов АКК мечены различно; и (b) определение количества первой меченой совокупности продуктов АКК и количества второй меченой совокупности продуктов АКК в области мембраны.

Изобретение относится к области медицины, в частности к неврологии, и предназначено для прогнозирования индивидуального риска развития посттравматической эпилепсии.

Изобретение относится к биотехнологии. Описан способ идентификации потенциальных агентов, включающий: (a) предоставление библиотеки потенциальных агентов, в которой каждый потенциальный агент присоединен к уникальному маркеру-нуклеиновой кислоте, имеющей последовательность маркера, где потенциальные агенты выбраны из группы, состоящей из белков, нуклеиновых кислот, клеток и небольших молекул, где небольшие молекулы выбраны из группы, состоящей из потенциальных ингибиторов ферментов, потенциальных антибиотиков, потенциальных противовирусных агентов, потенциальных пестицидов, потенциальных гормонов, потенциальных активаторов клеточной сигнализации, потенциальных ингибиторов клеточной сигнализации и потенциальных активаторов ферментов; (b) присоединение библиотеки потенциальных агентов к твердой подложке, включающей праймеры нуклеиновых кислот, посредством гибридизации маркеров-нуклеиновых кислот с праймерами нуклеиновых кислот с образованием массива потенциальных агентов; (c) приведение массива потенциальных агентов в контакт с агентом для скрининга, при котором один или более из потенциальных агентов массива реагирует с агентом для скрининга, где агент для скрининга реагирует с одним или более потенциальными агентами посредством связывания с одним или более потенциальными агентами или блокировки связывания между потенциальным агентом и аналитом, имеющим сродство к потенциальному агенту; (d) исследование массива во время или после контакта массива с агентом для скрининга для установления того, что по меньшей мере один потенциальный агент, находящийся в массиве, реагирует с агентом для скрининга, где исследование массива включает обнаружение агента для скрининга, который связан с одним или более потенциальными агентами, где агент для скрининга является люминесцентным, а обнаружение представляет собой обнаружение люминесценции от массива; (e) секвенирование маркеров-нуклеиновых кислот в массиве для определения последовательности маркера, который присоединен к каждому из потенциальных агентов; и (f) идентификацию по меньшей мере одного потенциального агента в массиве, который реагирует с агентом для скрининга, на основании определенной последовательности маркера.
Наверх