Устройство для измерения параметров электрической изоляции

Изобретение относится к технике электрических измерений и предназначено для профилактических испытаний изоляции крупных электрических машин и аппаратов, имеющих большую постоянную времени. Устройство в процессе заряда изоляции фиксирует через равные промежутки времени три значения тока, протекающего через изоляцию, и значение напряжения, прикладываемого к изоляции. Для этого в устройство, содержащее источник испытательного напряжения, эталонный резистор, зарядный ключ, испытуемый объект, разрядный ключ, разрядный резистор, выходные выводы, к которым подключают испытуемый объект, масштабный преобразователь напряжения, вольтметр, три устройства слежения-хранения, три слаботочных управляемых ключа, четыре делителя напряжений, блок умножения напряжений, четыре суммирующих усилителя, блок логарифмирования, блок возведения в квадрат и переключатель на четыре положения, дополнительно введены слаботочный управляемый ключ, устройство слежения-хранения, два делителя напряжений и два индикатора, Устройство позволяет определять установившиеся значения тока утечки и сопротивления изоляции, максимальное значение тока абсорбции, постоянную времени, а также значение емкости, обусловленной внутренним поглощенным зарядом испытуемого объекта, и значение активного сопротивления, обусловленного потерями электроэнергии при поляризации неоднородной изоляции. По этим параметрам оценивают качество электрической изоляции. Технический результат: расширение функциональных возможностей и повышение объективности оценки качества изоляции. 2 ил.

 

Изобретение относится к технике электрических измерений, в частности к измерениям параметров высоковольтной изоляции электрооборудования и может быть использовано для контроля качества неоднородной высоковольтной изоляции электрических машин и аппаратов, имеющих большую постоянную времени.

Известно, что качество высоковольтной изоляции определяют по пятнадцатисекундному и одноминутному значениям сопротивления изоляции, а также по значениям напряжения саморазряда и возвратному напряжению [1, стр. 29-35, 41-49, 89-109].

Известен аналог - устройство для контроля качества электрической изоляции [2], с помощью которого качество изоляции определяют по пятнадцатисекундному и одноминутному значениям сопротивления изоляции, а также по значениям напряжения саморазряда и возвратному напряжению.

Недостатком этого устройства является то, что измеренное сопротивление, напряжение саморазряда и возвратное напряжения зависят от времени заряда изоляции. Правила устройства электроустановок в России предписывают проводить измерение сопротивления высоковольтной изоляции в течение одной минуты, т.е. процесс заряда изоляции длится ровно одну минуту. Однако, у электрических машин и аппаратов с большой постоянной времени процесс заряда изоляции не успевает полностью закончиться через одну минуту. Неполный заряд изоляции приводит к погрешностям при измерении как установившегося значения сопротивления изоляции, так и напряжения саморазряда и возвратного напряжения [1]. В то же время, чтобы использовать результаты измерений сопротивления изоляции для целей диагностики, они должны быть приведены к одинаковым базовым условиям, к сопоставимому виду [3]. Следовательно, для объективной оценки состояния изоляции требуется знать именно установившееся значение сопротивления изоляции. Чтобы зафиксировать истинное установившееся значение сопротивления изоляции в этих случаях, на измерение приходится затрачивать значительное время - до одного часа и более [4] или мириться с возникающими погрешностями.

Наиболее близким техническим решением - прототипом к предлагаемому изобретению является устройство для контроля качества электрической изоляции [5], содержащее источник испытательного напряжения, эталонный резистор, зарядный ключ, испытуемый объект, разрядный ключ, разрядный резистор, выходные выводы, к которым подключают испытуемый объект, масштабный преобразователь напряжения, вольтметр, три устройства слежения-хранения, три слаботочных управляемых ключа, четыре делителя напряжений, блок умножения напряжений, четыре суммирующих усилителя, блок логарифмирования, блок возведения в квадрат и переключатель на четыре положения, причем первый вывод источника испытательного напряжения через зарядный ключ соединен с первым входным выводом масштабного преобразователя напряжения и первым выходным выводом устройства, второй вывод источника испытательного напряжения через эталонный резистор присоединен к второму входному выводу масштабного преобразователя напряжения и второму выходному выводу устройства, первый вывод разрядного ключа подключен к первому выходному выводу устройства, а второй вывод разрядного ключа через разрядный резистор подключен к второму выходному выводу устройства, подвижные контакты трех слаботочных управляемых ключей соединены с общей точкой соединения второго вывода источника испытательного напряжения и эталонного резистора, неподвижные контакты первого, второго и третьего слаботочных управляемых ключей соединены соответственно с входами первого, второго и третьего устройств слежения-хранения, выход первого устройства слежения-хранения соединен с прямым входом первого суммирующего усилителя и прямым входом третьего суммирующего усилителя, выход второго устройства слежения-хранения соединен с прямым входом второго суммирующего усилителя и с инвертирующим входом третьего суммирующего усилителя, выход третьего устройства слежения-хранения соединен с инвертирующим входом второго суммирующего усилителя, выход второго суммирующего усилителя соединен с первым входом первого делителя напряжений, выход третьего суммирующего усилителя соединен с вторым входом первого делителя напряжений и первым входом второго делителя напряжений, выход первого делителя напряжений соединен с входом блока возведения в квадрат, с первым входом блока умножения напряжений, с прямым входом четвертого суммирующего усилителя и инвертирующим входом блока логарифмирования, инвертирующий вход четвертого суммирующего усилителя соединен с выходом блока возведения в квадрат, выход четвертого суммирующего усилителя соединен с вторым входом второго блока деления напряжений, выход которого соединен с вторым входом блока умножения напряжений и третьим неподвижным контактом переключателя на четыре положения, выход блока умножения напряжений соединен с инвертирующим входом первого суммирующего усилителя, выход которого соединен со вторым входом четвертого делителя напряжений и вторым неподвижным контактом переключателя на четыре положения, выход четвертого делителя напряжений соединен с четвертым неподвижным контактом переключателя на четыре положения, выход блока логарифмирования соединен со вторым входом третьего делителя напряжений, на первый вход которого подан постоянный сигнал, пропорциональный промежутку времени Δt, через который производятся измерения тока испытуемого объекта, выход третьего делителя напряжений соединен с первым неподвижным контактом переключателя на четыре положения, подвижный контакт которого соединен с входом вольтметра.

Процесс определения параметров электрической изоляции поясняется рисунком 1. На нем показан ток i заряда изоляции, состоящий из двух слагаемых (рис. 1):

Здесь Iу - установившееся значение тока утечки, iа - ток абсорбции, Iam - максимальное значение тока абсорбции в начальный момент времени при t=0, Т=r⋅ΔС - постоянная времени заряда изоляции, ΔС - емкость, обусловленная внутренним поглощенным зарядом испытуемого объекта, r -внутреннее сопротивление, обусловленное потерями при поляризации. Как следует из формулы (1), ток абсорбции iа с течением времени t уменьшается по экспоненциальному закону, стремясь к нулю. Это устройство - прототип позволяет за кроткое время, не более одной минуты, определить установившиеся значения тока утечки и сопротивления изоляции Iу, а также постоянную времени заряда изоляции Т и максимальное значение тока абсорбции Iam. Для определения этих данных в процессе заряда изоляции производят три замера тока i1, i2, i3 через равные промежутки времени Δt. В результате получают три уравнения с тремя неизвестными:

Решая уравнения (2)-(4), получим значения искомых параметров:

Зная указанные выше параметры Iу, Iam и Т, можно определить всю кривую изменения тока в процессе заряда изоляции, т.е. вычислить истинное значение установившегося тока, не прибегая к его измерению в течен6ие длительного времени.

Недостатком указанного прототипа является то, что после отключения зарядного ключа значения испытательного напряжения и установившегося значение сопротивления утечки не сохраняются. Кроме того, не выводится важная информация о параметрах элементов: емкости конденсатора ΔС и сопротивления резистора r последовательной цепочки ΔCr в схеме замещения неоднородной испытуемой изоляции. В этой цепочке емкость конденсатора ΔС обусловлена зарядом внутреннего поглощения или поглощенным зарядом абсорбции неоднородной изоляции испытуемого объекта. Этот заряд создается за счет протекания тока абсорбции. Сопротивление резистора r учитывает внутренние потери энергии при создании заряда абсорбции. Параметры ΔС и r являются важными для диагностики технического состояния неоднородной высоковольтной изоляции.

Цель изобретения - расширение функциональных возможностей устройства для более объективного контроля качества электрической изоляции за счет измерения параметров элементов схемы замещения, учитывающей обратимое и необратимое внутреннее поглощение заряда абсорбции.

Эта цель достигается тем, что в устройство для контроля качества электрической изоляции, содержащее источник испытательного напряжения, эталонный резистор, зарядный ключ, испытуемый объект, разрядный ключ, разрядный резистор, выходные выводы, к которым подключают испытуемый объект, масштабный преобразователь напряжения, вольтметр, три устройства слежения-хранения, три слаботочных управляемых ключа, четыре делителя напряжений, блок умножения напряжений, четыре суммирующих усилителя, блок логарифмирования, блок возведения в квадрат и переключатель на четыре положения, причем первый вывод источника испытательного напряжения через зарядный ключ соединен с первым входным выводом масштабного преобразователя напряжения и первым выходным выводом устройства, второй вывод источника испытательного напряжения через эталонный резистор присоединен к второму входному выводу масштабного преобразователя напряжения и второму выходному выводу устройства, первый вывод разрядного ключа подключен к первому выходному выводу устройства, а второй вывод разрядного ключа через разрядный резистор подключен к второму выходному выводу устройства, подвижные контакты трех слаботочных управляемых ключей соединены с общей точкой соединения второго вывода источника испытательного напряжения и эталонного резистора, неподвижные контакты первого, второго и третьего слаботочных управляемых ключей соединены соответственно с входами первого, второго и третьего устройств слежения-хранения, выход первого устройства слежения-хранения соединен с прямым входом первого суммирующего усилителя и прямым входом третьего суммирующего усилителя, выход второго устройства слежения-хранения соединен с прямым входом второго суммирующего усилителя и с инвертирующим входом третьего суммирующего усилителя, выход третьего устройства слежения-хранения соединен с инвертирующим входом второго суммирующего усилителя, выход второго суммирующего усилителя соединен с первым входом первого делителя напряжений, выход третьего суммирующего усилителя соединен с вторым входом первого делителя напряжений и первым входом второго делителя напряжений, выход первого делителя напряжений соединен с входом блока возведения в квадрат, с первым входом блока умножения напряжений, с прямым входом четвертого суммирующего усилителя и инвертирующим входом блока логарифмирования, инвертирующий вход четвертого суммирующего усилителя соединен с выходом блока возведения в квадрат, выход четвертого суммирующего усилителя соединен с вторым входом второго блока деления напряжений, выход которого соединен с вторым входом блока умножения напряжений и третьим неподвижным контактом переключателя на четыре положения, выход блока умножения напряжений соединен с инвертирующим входом первого суммирующего усилителя, выход которого соединен со вторым входом четвертого делителя напряжений и вторым неподвижным контактом переключателя на четыре положения, выход четвертого делителя напряжений соединен с четвертым неподвижным контактом переключателя на четыре положения, выход блока логарифмирования соединен со вторым входом третьего делителя напряжений, на первый вход которого подано постоянный сигнал, пропорциональный промежутку времени Δt, через который производятся измерения тока испытуемого объекта, выход третьего делителя напряжений соединен с первым неподвижным контактом переключателя на четыре положения, подвижный контакт которого соединен с входом вольтметра, дополнительно введены слаботочный управляемый ключ, устройство слежения-хранения, два делителя напряжений и два индикатора, причем подвижный контакт четвертого слаботочного управляемого ключа соединен с выходным выводом масштабного преобразователя напряжения, а неподвижный контакт четвертого слаботочного управляемого ключа соединен с входом четвертого устройства слежения-хранения, выход которого соединен с первыми входами четвертого и пятого делителей напряжений, второй вход пятого делителя напряжений соединен с выходом второго блока деления напряжений, выход пятого блока деления напряжений соединен с первым индикатором и вторым входом шестого блока деления напряжений, первый вход шестого блока деления напряжений соединен с выходом третьего блока деления напряжений, выход шестого блока деления напряжений соединен с вторым индикатором.

Структурная схема устройства для измерения параметров электрической изоляции представлена на рисунке 2. Устройство содержит источник испытательного напряжения 1, зарядный ключ 2, испытуемый объект 3, разрядный ключ 4, эталонный резистор 5, масштабный преобразователь напряжения 6, разрядный резистор 7, управляемые слаботочные ключи: первый 8, второй 9, третий 10, четвертый 20, устройства слежения-хранения: первое 11, второе 12, третье 13, четвертое 21, суммирующие усилители: первый 26, второй 14, третий 15, четвертый 18, делители напряжений: первый 16, второй 19, третий 28, четвертый 22, пятый 23, шестой 29, блок логарифмирования 27 с инвертированием знака, блок возведения в квадрат 17, умножитель напряжений 25, вольтметр 31, переключатель на четыре положения 32, выходные выводы 33 и 34 устройства, два индикатора: первый 24 и второй 30, конденсатор 35, представляющий собой геометрическую емкость СГ испытуемого объекта, резистор 36, представляющий собой сопротивление утечки изоляции RУ испытуемого объекта, конденсатор 37, представляющий собой емкость ΔС, обусловленную поглощенным зарядом испытуемого объекта и резистор 38, представляющий собой внутреннее сопротивление r в схеме замещения испытуемого объекта. В этой схеме по резистору 36 протекает установившийся ток утечки, а по ветви, содержащей конденсатор 37 и резистор 38 во время переходного процесса заряда изоляции протекает ток абсорбции, создающий заряд внутреннего поглощения. В блоках деления напряжений принято, что на первый вход подается делимое, а на второй вход - делитель.

Устройство работает следующим образом. В исходном состоянии ключ 4 замкнут, а ключ 2 разомкнут и электрические емкости 35 и 37 объекта испытания 3 разряжаются через разрядный резистор 7, имеющий малое сопротивление. Необходимость введения разрядного резистора 7 вызвана соображениями электромагнитной совместимости, так как в разрядной цепи без разрядного резистора 7 в момент замыкания разрядного ключа 4 возникают большие экстратоки, электромагнитные помехи от которых могут приводить к сбою электронной аппаратуры.

После разряда конденсаторов 35 и 37 в течение одной минуты в соответствии с правилами устройства электроустановок блок управления (на схеме не показан) подает сигнал сначала на размыкание ключа 4 и затем на замыкание ключа 2. При указанном положении ключей 2 и 4 начинается процесс заряда испытуемой изоляции, т.е. заряд конденсаторов 35 и 37 объекта испытания 3. При этом конденсатор 35 заряжается очень быстро, а конденсатор 37 - медленно с постоянной времени Т. Изменение тока от времени в процессе заряда изоляции представлено на рис. 1.

Спустя очень малый промежуток времени после замыкания зарядного ключа 2, когда затухает экстраток заряда конденсатора 35, блок управления посылает сигналы на включение слаботочных управляемых ключей 8, 9, 10 и 20 и входы трех устройств слежения-хранения 11, 12, и 13 подключаются к выходу датчика тока, которым служит эталонный резистор 5, а вход четвертого устройства слежения-хранения 21 подключается к выходу масштабного преобразователя 6. Напряжение на эталонном резисторе пропорционально току заряда изоляции. Через первый заданный промежуток времени Δt ключ 8 выключается и первое устройство слежения-хранения 11 переходит в режим хранения. Оно запоминает и хранит сигнал, пропорциональный току i1. Через промежуток времени 2Δt (рис. 1) размыкается ключ 9 и второе устройство слежения-хранения 12 переходит в режим хранения. Оно запоминает значение тока i2. Через промежуток времени 3Δt размыкается ключ 10 и третье устройство слежения-хранения 13 переходит в режим хранения. Оно запоминает значение тока i3. Через одну минуту размыкается управляемый ключ 20 и четвертое устройство слежения-хранения 21 переходит в режим хранения,

После этого выключается ключ 2 и замыкается ключ 4. Процесс измерения заканчивается. На выходе первого суммирующего усилителя 26 присутствует сигнал, равный установившемуся значению тока утечки IУ, а на выходе четвертого делителя напряжений 22 - установившемуся значению сопротивления изоляции RУ. На выходе третьего делителя напряжений 28 сигнал равен значению постоянной времени Т заряда изоляции, а на выходе второго делителя напряжений 19 - максимальному значению тока абсорбции Iам. Указанные параметры измеряют вольтметром 31, переключая переключатель 32 на четыре положения. На выходе пятого делителя напряжений 23 сигнал равен значению сопротивления r внутреннего поглощения энергии при поляризации изоляции. На выходе шестого делителя напряжений 29 сигнал равен значению емкости ΔС, накапливающей заряд внутреннего поглощения при поляризации изоляции. Значения r и ΔС измеряются первым 24 и вторым 30 индикаторами. Все измеренные значения далее используют для диагностики испытуемой изоляции.

Технико-экономический эффект определяется уменьшением времени и повышением точности измерения параметров для контроля качества электрической изоляции крупных электрических машин, имеющих большую постоянную времени.

Источники информации

1. Серебряков А.С. Электротехническое материаловедение. Электроизоляционные материалы. Учебное пособие для вузов ж.-д. транспорта. - М: Маршрут. 2005. - 280 с.

2. Авт.св. 767667, кл. G01R 27/02

3. Сви П.М. Методы и средства диагностики оборудования высокого напряжения. - М.: Энергоатомиздат, 1992.

4. Кулаковский В.Б. Работа изоляции в генераторах. Возникновение и методы обнаружения дефектов. - М.: Энергоатомиздат, 1981.

5. Патент РФ 2490652 кл. G01R 27/02

Устройство для измерения параметров электрической изоляции, содержащее источник испытательного напряжения, эталонный резистор, зарядный ключ, испытуемый объект, разрядный ключ, разрядный резистор, выходные выводы, к которым подключают испытуемый объект, масштабный преобразователь напряжения, вольтметр, три устройства слежения-хранения, три слаботочных управляемых ключа, четыре делителя напряжений, блок умножения напряжений, четыре суммирующих усилителя, блок логарифмирования, блок возведения в квадрат и переключатель на четыре положения, причем первый вывод источника испытательного напряжения через зарядный ключ соединен с первым входным выводом масштабного преобразователя напряжения и первым выходным выводом устройства, второй вывод источника испытательного напряжения через эталонный резистор присоединен ко второму входному выводу масштабного преобразователя напряжения и второму выходному выводу устройства, первый вывод разрядного ключа подключен к первому выходному выводу устройства, а второй вывод разрядного ключа через разрядный резистор подключен ко второму выходному выводу устройства, подвижные контакты трех слаботочных управляемых ключей соединены с общей точкой соединения второго вывода источника испытательного напряжения и эталонного резистора, неподвижные контакты первого, второго и третьего слаботочных управляемых ключей соединены соответственно с входами первого, второго и третьего устройств слежения-хранения, выход первого устройства слежения-хранения соединен с прямым входом первого суммирующего усилителя и прямым входом третьего суммирующего усилителя, выход второго устройства слежения-хранения соединен с прямым входом второго суммирующего усилителя и с инвертирующим входом третьего суммирующего усилителя, выход третьего устройства слежения-хранения соединен с инвертирующим входом второго суммирующего усилителя, выход второго суммирующего усилителя соединен с первым входом первого делителя напряжений, выход третьего суммирующего усилителя соединен со вторым входом первого делителя напряжений и первым входом второго делителя напряжений, выход первого делителя напряжений соединен с входом блока возведения в квадрат, с первым входом блока умножения напряжений, с прямым входом четвертого суммирующего усилителя и инвертирующим входом блока логарифмирования, инвертирующий вход четвертого суммирующего усилителя соединен с выходом блока возведения в квадрат, выход четвертого суммирующего усилителя соединен со вторым входом второго блока деления напряжений, выход которого соединен со вторым входом блока умножения напряжений и третьим неподвижным контактом переключателя на четыре положения, выход блока умножения напряжений соединен с инвертирующим входом первого суммирующего усилителя, выход которого соединен со вторым входом четвертого делителя напряжений и вторым неподвижным контактом переключателя на четыре положения, выход четвертого делителя напряжений соединен с четвертым неподвижным контактом переключателя на четыре положения, выход блока логарифмирования соединен со вторым входом третьего делителя напряжений, на первый вход которого подано постоянный сигнал, пропорциональный промежутку времени Δt, через который производятся измерения тока испытуемого объекта, выход третьего делителя напряжений соединен с первым неподвижным контактом переключателя на четыре положения, подвижный контакт которого соединен с входом вольтметра, отличающееся тем, что в него введены слаботочный управляемый ключ, устройство слежения-хранения, два делителя напряжений и два индикатора, причем подвижный контакт четвертого слаботочного управляемого ключа соединен с выходным выводом масштабного преобразователя напряжения, а неподвижный контакт четвертого слаботочного управляемого ключа соединен с входом четвертого устройства слежения-хранения, выход которого соединен с первыми входами четвертого и пятого делителей напряжений, второй вход пятого делителя напряжений соединен с выходом второго блока деления напряжений, выход пятого блока деления напряжений соединен с первым индикатором и вторым входом шестого блока деления напряжений, первый вход шестого блока деления напряжений соединен с выходом третьего блока деления напряжений, выход шестого блока деления напряжений соединен со вторым индикатором.



 

Похожие патенты:

Изобретение относится к области оценки технического состояния наружного изоляционного покрытия подземных трубопроводов. Сущность: на магистральном трубопроводе выбирают участок контроля состояния изоляционного покрытия между двумя точками контроля.

Ячейка для исследования высокотемпературной проводимости твердых веществ. Технический результат заключается в реализации внешнего воздействия оптического излучения на образец одновременно с воздействием температуры и газовой среды.

Изобретение относится к контрольно-измерительной технике, в частности к способам определения параметров двухполюсников. Сущность способа заключается в проведении трех этапов измерений.

Изобретение относится к радиотехнике, в частности к радиотехническим измерениям параметров катушек индуктивности, применяемых в радиотехнических устройствах различного назначения.

Изобретение относится к контрольно-измерительной технике и может быть использовано для контроля и определения параметров двухполюсников. Технический результат: повышение точности при дистанционных измерениях за счет уменьшения составляющей погрешности от ошибки значения емкости соединительной линии и от нестабильности этой ёмкости.

Изобретение относится к измерительной технике в области исследований электрических параметров изделий и предназначено для измерения объемного электрического сопротивления различных изделий, в том числе для изделий из высокоэлектропроводных материалов.

Изобретение относится к области контрольно-измерительной техники и может быть использовано для подключения параметрических датчиков различного типа (резистивных, индуктивных, емкостных, смешанного типа) к генератору сигнала и снятия информативных электрических сигналов для последующей обработки в различных информационно-измерительных телеметрических системах.

Изобретение относится к измерительной технике и позволяет контролировать целостность электрических цепей. Согласно изобретению способ автоматизированного измерения сопротивлений с помощью четырехконтактного устройства заключается в том, что контакты располагают последовательно на произвольном расстоянии друг от друга, при помощи ключей двухпроводного мультиплексора проводят восемь коммутаций между контактами 1 и 2, 3 и 4, 1 и 3, 2 и 4 при прямом и обратном токе, измеряют восемь промежуточных значений сопротивления R1, R1обр, R2, R2обр, R3, R3обр, R4, R4обр соответственно и вычисляют значение сопротивления по формуле Rизм = [(R4+R3-R2-R1)+(R4обр+R3обр-R2обр-R1обр)]/4.

Изобретение относится к области измерения электрических величин, а именно к электроизмерительной технике, и может быть использовано для измерения сопротивления изоляции кабелей, конденсаторов и других объектов.

Изобретения относятся к электроизмерительной технике, а именно к измерению активного, реактивного и полного сопротивления двухполюсника, и могут быть использованы для измерения параметров пассивных электрических цепей.
Наверх