Способ рафинации кукурузного масла

Изобретение относится к масложировой промышленности. Способ рафинации кукурузного масла, включающий стадию сорбционной рафинации в нейтрализаторе с перемешиванием, отстаиванием масла и отделением осадка, последующие стадии отбелки, вымораживания и дезодорации. На стадии сорбционной рафинации перед нейтрализатором обработку нерафинированного кукурузного масла ведут в динамическом смесителе при критерии Рейнольдса мешалки 3900-10900 и температуре 30-50°С водным раствором метасиликата натрия концентрацией 45-65 массовых %. Изобретение позволяет повысить качество получаемого кукурузного масла, а именно уменьшить содержание фосфорсодержащих веществ, увеличить скорость осаждения осадкой в нейтрализаторе, а также сократить продолжительность циклов отстаивания и перемешивания. 1 табл., 4 пр.

 

Изобретение относится к способам рафинации растительных масел реагентами и может быть использовано для очистки кукурузного масла от сопутствующих веществ на предприятиях масложировой промышленности.

Известен способ рафинации растительного масла (патент РФ на изобретение №2224786 «Способ рафинации растительного масла» опубл. 27.02.2004 года.), включающий последовательные этапы выведения фосфолипидов, свободных жирных кислот и воскоподобных веществ, осуществляемые путем смешения нерафинированного масла с водными растворами лимонной кислоты и хлорида натрия, экспозиции смеси, последующего ввода водных растворов лимонной кислоты и силиката натрия, экспозиции смеси, повторного ввода водного раствора силиката натрия и экспозиции смеси с последующим отделением рафинированного масла от осадка в поле гравитационных или центробежных сил.

Основным недостатком известного способа рафинации растительного масла является многоэтапность обработки масла реагентами, что увеличивает продолжительность цикла рафинации и соответственно уменьшает производительность периодической линии рафинации, а также обуславливает повышенные расходы реагентов.

Наиболее близким к заявляемому способу является способ рафинации кукурузного масла (патент РФ на изобретение №2624414 «Способ рафинации жидких растительных масел», опубл. 03.07.2017 года). Известный способ предусматривает выведение свободных жирных кислот, фосфолипидов, частично красящих соединений, восков и воскоподобных веществ на стадии сорбционной рафинации с использованием гелевого раствора, который готовят растворением в воде метасиликата натрия с добавлением в него диоксида кремния для повышения силикатного модуля до 1,5, и коагулянта. Нерафинированное кукурузное масло, предварительно охлажденное до температуры 16-20°С, закачивают в нейтрализатор и при перемешивании грабельной мешалкой при ее частоте вращения 18-20 об/мин обрабатывают приготовленным раствором метасиликата натрия. Затем в кукурузное масло вводят дополнительно коагулянт, перемешивают 25-30 минут, останавливают мешалку и производят отстаивание в течение 9 часов. Отстоявшееся кукурузное масло сливают из нейтрализатора и подают на следующие стадии обработки: отбелку, вымораживание и дезодорацию.

Основным недостатком известного способа является достаточно высокое остаточное содержание фосфоросодержащих веществ в получаемом кукурузном масле - 0,04%, что связано и с низкой интенсификацией процесса перемешивания грабельной мешалкой в нейтрализаторе высоковязкой среды при достаточно низкой температуре 16-20°С. Поэтому, на следующей стадии очистки требуется проведение тщательной отбелки дорогостоящими адсорбентами. Наличие фосфоросодержащих веществ в масле при дезодорации приводит к нагару на внутренних поверхностях дезодоратора. Нагар является одной из причин получения некачественного рафинированного дезодорированного кукурузного масла. Удаление нагара мойкой различными растворами и вручную являются трудоемкими и продолжительными операциями. В зависимости от конструкции дезодоратора продолжительность этих операций может достигать до десяти и более дней. Кроме этого, продолжительные циклы отстаивания масла на стадии сорбционной рафинации, закачки охлажденного кукурузного масла в нейтрализатор и перемешивания требуют повышенных энергетических затрат с одной стороны, а с другой - снижают производительность линии. В целом эти недостатки обусловлены совокупностью следующих причин. Во-первых, высокое значение кинематической вязкости кукурузного масла при температуре 20°С, которое составляет 72,3×10-6 м2/сек, существенно снижает эффективность перемешивания взаимодействующих фаз и приводит к не полному выведению таких трудно удаляемых сопутствующих веществ, как фосфоросодержащие. Во-вторых, при высокой вязкости кукурузного масла циклы закачивания насосом в аппарат и перемешивания в нем довольно продолжительные. При этом время отстаивания кукурузного масла в аппарате после ввода реагентов существенно увеличивается, т.к. скорость осаждение частиц осадка обратно пропорциональна вязкости среды. В-третьих, применение диоксида кремния для приготовления гелевого раствора и коагулянта для улучшения процесса отстаивания увеличивают продолжительность общего цикла периодической сорбционной рафинации и повышают себестоимость получаемой продукции.

Задачей изобретения является усовершенствование способа рафинации кукурузного масло, позволяющее повысить технологическую эффективность стадии сорбционной рафинации.

Техническим результатом являются повышение качественных показателей - снижение содержания фосфоросодержащих веществ в получаемом кукурузном масле, а также сокращение продолжительности циклов отстаивания и перемешивания, снижение энергетических затрат на охлаждение кукурузного масла и увеличение производительности линии в целом.

Технический результат достигается тем, что способ рафинации кукурузного масла включает стадию сорбционной рафинации в нейтрализаторе с перемешиванием, отстаиванием масла и отделением осадка, с последующими стадиями отбелки, вымораживания и дезодорации, на стадии сорбционной рафинации перед нейтрализатором обработку нерафинированного кукурузного масла ведут в динамическом смесителе при критерии Рейнольдса мешалки 3900-10900 и температуре 30-50°С водным раствором метасиликата натрия концентрацией 45-65 массовых %.

Обработка нерафинированного кукурузного масла в динамическом смесителе при критерии Рейнольдса 3900-10900 позволяет существенно интенсифицировать процесс сорбционного взаимодействия сопутствующих веществ с раствором метасиликата натрия концентрацией 45-65% при температуре 30-50°С. В результате в получаемом масле практически в два раза по сравнению с прототипом уменьшается содержание фосфоросодержащих веществ. С другой стороны, при температуре 30-50°С кинематическая вязкость кукурузного масла составляет соответственно 45,9×10-6-21,2×10-6 м2/сек, что почти в двое меньше, чем в прототипе (72,3×10-6 м2/сек при температуре 20°С). Поэтому заметно увеличивается скорость осаждения осадка в нейтрализаторе, образовавшегося в процессе сорбционной рафинации. Это обусловлено тем, что скорость осаждения осадка обратно пропорциональна кинематической вязкости сплошной среды и прямо пропорциональна разности плотностей частички и среды. Кроме этого, снижение кинематической вязкости уменьшает продолжительность закачивания масла и перемешивания. При этом отпадает необходимость в охлаждении кукурузного нерафинированного масла перед стадией сорбционной рафинации по сравнению с прототипом, т.к. при получении в прессовом или экстракционном цехе его охлаждают по общепринятым требованиям до температуры не выше 40°С и подают в цех рафинации. Поэтому по сравнению с прототипом на 1 тонну кукурузного масла при охлаждении его с 40°С до 20°С экономия составляет 9,68 кВт.

Таким образом, совокупность вышеуказанных факторов позволяет снизить содержание прежде всего трудно удаляемых фосфоросодержащих веществ в получаемом кукурузном масле, уменьшить продолжительность циклов осаждения, заполнения аппарата маслом, подаваемым насосом, и перемешивания мешалкой масла в аппарате, а также за счет исключения затрат на охлаждение масла перед стадией сорбционной рафинации снизить энергетические затраты и в целом повысить производительность линии.

Поэтому, совокупность указанных признаков в формуле изобретения позволяет достичь желаемый технический результат.

В стендовых условиях образцы кукурузного нерафинированного масла с кислотным числом 3,3-4,2 мг КОН/г, цветным числом 60-70 мг. йода, перекисным числом 3,4-3,6 ммоль О2/кг, массовой долей фосфолипидов 1,65-1,8% и влажностью 0,18-0,2%, обрабатывали в динамическом смесителе при критерии Рейнольдса мешалки 3900-10900 и температуре 30-50°С водным раствором метасиликата натрия с силикатным модулем 1,04 и концентрацией 45-65 мас. % с дозировкой, обеспечивающей заданное выведение свободных жирных кислот и других сопутствующих веществ. Обработку масла вели в течение 4 минут, затем его переносили в лабораторный нейтрализатор в количестве 500 грамм (±1 гр.) и отстаивали при температуре 30-50°С в течение 4-7 часов. Увеличение температуры кукурузного масла более 50°С или уменьшение ниже 30°С нецелесообразно, т.к. приводит к увеличению содержания в получаемом масле фосфоросодержащих веществ. С другой стороны многочасовое отстаивание при повышенных температурах приводит к увеличению перекисного числа, что особенно нежелательно, если исходное масло было с повышенным значением перекисного числа. Снижение температуры ниже 30°С увеличивает продолжительность отстаивания, т.к. заметно увеличивается кинематическая вязкость кукурузного масла. Применение водного раствора метасиликата натрия концентрацией более 65 мас. % не приводит к заметному изменению качественных показателей получаемого масла. Использование раствора метасиликата концентрацией менее 45 мас. % увеличивается продолжительность процесса отстаивания и ухудшается разделение фаз, т.к. плотность реагента уменьшается.

Заявляемый способ поясняется следующими примерами.

Пример 1. В стендовых условиях в динамическом смесителе в течение 4 минут при Reм.=10900 нерафинированное кукурузное масло массой 500 грамм с температурой 50°С, имеющего Кч=3,7 мг КОН/г; влажность 0,2%; перекисное число 3,5 ммоль активного кислорода/кг; цветное число 70; и массовую долю фосфолипидов 1,77%, обрабатывали водным раствором метасиликата концентрацией 45 мас. % в количестве необходимом для выведения сопутствующих веществ. Затем масло отстаивали в течение 4,8 часа и гелевый осадок отделяли от него.

Пример 2. В стендовых условиях в динамическом смесителе в течение 4 минут при Reм.=8040 нерафинированное кукурузное масло массой 500 грамм с температурой 40°С, имеющего Кч=3,3 мг КОН/г; влажность 0,18%; перекисное число 3,4 ммоль активного кислорода/кг; цветное число 70 ед. йода; и массовую долю фосфолипидов 1,8%, обрабатывали водным раствором метасиликата концентрацией 55 мас. % в количестве необходимом для выведения сопутствующих веществ. Затем масло отстаивали в течение 6,2 часа и гелевый осадок отделяли от него.

Пример 3. В стендовых условиях в динамическом смесителе в течение 4 минут при Reм.=3900 нерафинированное кукурузное масло массой 500 грамм с температурой 30°С, имеющего Кч=4,2 мг КОН/г; влажность 0,18%; перекисное число 3,6 ммоль активного кислорода/кг; цветное число 70 ед. йода; и массовую долю фосфолипидов 1,65%, обрабатывали водным раствором метасиликата концентрацией 65 мас. % в количестве необходимом для выведения сопутствующих веществ. Затем масло отстаивали в течение 7 часов и гелевый осадок отделяли от него.

Пример 4. В стендовых условиях в динамическом смесителе в течение 4 минут при Reм.=3900 нерафинированное кукурузное масло массой 500 грамм с качественными показателями аналогичные примеру 3 при температуре 30°С обрабатывали водным раствором метасиликата концентрацией 45 мас. % в количестве необходимом для выведения сопутствующих веществ. Затем масло отстаивали в течение 7 часов и гелевый осадок отделяли от него.

Качественные показатели рафинированного недезодорированного кукурузного масла, полученного в примерах 1-4, приведены в таблице 1.

В предлагаемом способе рафинации кукурузного масла повышение технологической эффективности стадии сорбционной рафинации по сравнению с прототипом достигается, во-первых, за счет снижения содержания фосфоросодержащих соединений, как наиболее трудноудаляемых веществ. Во-вторых, за счет сокращения продолжительности циклов перемешивания и уменьшения времени отстаивания (в прототипе 9 часов) уменьшаются энергетические затраты на эти процессы и увеличивается производительность периодической линии рафинации масла. В-третьих, сокращаются затраты на охлаждение кукурузного масла, т.к. в прототипе необходимо масло охлаждать до температуры 16-20°С. В-четвертых, в предлагаемом способе применяется только один реагент, что позволяет исключить дополнительные реагенты - диоксид кремния и коагулянт.

Способ рафинации кукурузного масла, включающий стадию сорбционной рафинации в нейтрализаторе с перемешиванием, отстаиванием масла и отделением осадка, с последующими стадиями отбелки, вымораживания и дезодорации, отличающийся тем, что на стадии сорбционной рафинации перед нейтрализатором обработку нерафинированного кукурузного масла ведут в динамическом смесителе при критерии Рейнольдса мешалки 3900-10900 и температуре 30-50°С водным раствором метасиликата натрия концентрацией 45-65 мас.%.



 

Похожие патенты:
Изобретение относится к масложировой промышленности. Способ получения адсорбента для очистки подсолнечного масла включает смешивание в интенсивном смесителе 100 ч.

Изобретение относится к масложировой промышленности. Способ очистки окисленных жиров и масел с использованием природного наноструктурированного композиционного термомодифицированного адсорбента включает охлаждение или нагревание термообработанного жира или масла до температуры не выше 50-70°С, пропускание его через колонку, имеющую фильтр с краном, одетую в тепловую рубашку и заполненную адсорбентом.

Изобретение относится к области биотехнологии. Предложен способ экстракции продуцируемых конгломератом прокариотических и эукариотических микроорганизмов в реакторе ферментации карбоновых кислот с числом атомов углерода от двух до девяти.

Изобретение относится к фракционированию минерального или синтетического масла, загрязненного парафином. Способ фракционирования неочищенной смеси, содержащей по меньшей мере одно масло и по меньшей мере один парафин включает этап a) предварительного фракционирования посредством кристаллизации слоев неочищенной смеси, содержащей по меньшей мере одно масло и по меньшей мере один парафин, либо неочищенной смеси с растворителем, полученной посредством добавления перед этапом предварительного фракционирования растворителя в количестве не более 100% по весу относительно веса неочищенной смеси, для получения первой фракции, содержащей масло с низким содержанием парафина, и второй фракции, содержащей парафин с низким содержанием масла; первый этап b) кристаллизации, включающий первый подэтап b1) кристаллизации суспензии, на котором первая фракция, содержащая масло с низким содержанием парафина, используется для получения третьей фракции, содержащей депарафинированное масло, и четвертой фракции; и второй подэтап b2) кристаллизации суспензии, на котором смесь четвертой фракции, полученной на этапе b1) способа, и второй фракции, содержащей парафин с низким содержанием масла и полученной на этапе (а) предварительного фракционирования, используется для получения пятой фракции, содержащей сырой парафин, и шестой фракции.

Изобретение относится к масложировой промышленности. Способ адсорбции и экстракции связывающих воду органических липофильных индуцирующих мутность агентов из водорафинированных липидных фаз характеризуется: a) обеспечением липидной фазы, содержащей связывающие воду органические липофильные индуцирующие мутность агенты, где липидную фазу подвергают по меньшей мере одной водной очистке нейтральным или щелочным раствором; b) контактированием адсорбирующего агента с липидной фазой со стадии a); c) отделением адсорбированных связывающих воду органических липофильных индуцирующих мутность агентов со стадии b) посредством фазового разделения.

Изобретение относится к масложировой промышленности. Способ адсорбционной рафинации погонов дистилляции растительных масел предусматривает нагрев суспензии, состоящей из погонов дистилляции растительных масел и адсорбента, взятого в количестве 1-5% к массе погонов, до температуры 90-110°С при постоянном перемешивании под вакуумом при остаточном давлении 10-200 мБар, циркуляцию суспензии через пакет плоскопараллельных электродов, на которые подают переменный ток с частотой 100-200 кГц в течение 30-40 минут, разделение полученной суспензии на отбеленные погоны дистилляции растительных масел и отработанный адсорбент.

Изобретение относится к масложировой промышленности. Очистка нерафинированных растительных масел предусматривает физическое воздействие магнитным полем генерированного неодимового магнита, находящегося непосредственно в масле соосно направлению потока, а адсорбционную фильтрацию проводят сорбентом, расположенным на границе после зоны влияния магнитного поля, представляющим собой обогащенный природный минерал глауконит с выраженной парамагнитной намагниченностью.

Изобретение относится к масложировой промышленности. Способ дегуммирования триглицеридсодержащей композиции, представляющей собой неочищенное растительное масло или предварительно дегуммированное растительное масло, включающий стадии: (а) контактирования триглицеридсодержащей композиции с по меньшей мере одним солюбилизатором, представляющем собой полигидроксильное соединение с асимметричной молекулярной структурой; (b) удаления фазы смол из триглицеридсодержащей композиции.

Изобретение относится к масложировой промышленности. Способ переработки отработанного фильтровального порошка предусматривает загрузку в технологическую емкость фильтрационного осадка и растворителя, имеющего температуру 85-100°С, перемешивание для образования смеси фильтрационного осадка и растворителя, после окончания перемешивания осуществляют отстаивание смеси до образования трех слоев готовых продуктов: верхний слой - жировая масса, средний слой - водный щелочной раствор и нижний - слой восстановленного фильтровального порошка, далее выгружают готовые продукты, а именно откачивают жировую массу в накопительную емкость, слой водного щелочного раствора сливают в другую емкость и выгружают восстановленный фильтровальный порошок.
Изобретение относится к масложировой промышленности. Применение выпаривания с выбором кратчайшего пути для уменьшения в дезодорированных триглицеридных маслах содержания пропаноловых компонент, выбранных из хлоропропанолов, эфиров хлоропропаноловых жирных кислот, эпоксипропанолов, эфиров эпоксипропаноловых жирных кислот и комбинаций из двух или более из них.
Наверх