Сканирующее устройство управления лучом лазера для обработки растений в период вегетации

Сканирующее устройство включает лазер, призму строчной развертки, воспринимающую луч лазера и развертывающую его в горизонтальную строчную лучевую плоскость, и оптомеханический блок кадровой развертки, преобразующий горизонтальную строчную лучевую плоскость на ряд вертикально-горизонтальных лучевых плоскостей. Оптомеханический блок кадровой развертки выполнен в виде валика с двойной усеченной зеркальной четырехгранной пирамидой, установленной выше горизонтальной лучевой плоскости строчной развертки, для получения кадровой развертки луча. Устройство обеспечивает эффективную обработку растений за один цикл. 3 ил.

 

Изобретение относится к области сельского хозяйства, в частности, к методам обработки больших площадей вегетирующих растений лазерным излучением с квадрокоптера, и может быть использовано в биологии, медицине для исследования влияния доз и интенсивностей, электромагнитных полей оптического диапазона большой площади на биологические объекты.

Известно «Устройство для лазерной обработки семян и растений» (см. RU №2202869, МПК А01С 1/00, A01G 7/04, 21.05.2001), включающее лазерный генератор, размещенный в корпусе, сканирующее устройство, содержащее зеркало, приводимое в движение от электропривода, отличающееся тем, что оно дополнительно снабжено блоком управления, соединенным с лазерным генератором и электродвигателем, и штангой, на которой закреплен корпус лазерного генератора, а сканирующее устройство установлено на корпусе лазерного генератора со стороны излучателя и содержит установленный на корпусе лазерного генератора неподвижный стакан с отверстием, ось которого совпадает с оптической осью излучателя, платформу, установленную с помощью подшипника на стакане с возможностью ее вращения от электродвигателя, стойку, жестко закрепленную на платформе перпендикулярно ее поверхности, снабженную двумя параллельными между собой осями, установленными с помощью подшипников в стойке на расстоянии друг от друга по длине стойки параллельно поверхности платформы, два шкива, закрепленных на этих осях и связанных между собой ременной передачей, элемент для передачи вращения одной из осей стойки, закрепленный на ней и кинематически связанный с поверхностью неподвижного стакана, а зеркало жестко закреплено на второй из осей так, что его поверхность параллельна этой оси и пересекается с оптической осью излучателя.

Основными недостатками устройства является обработка не всей поверхности растений, а отдельных секторов с темновыми паузами после каждого поворота зеркала на 180°, а также сложность в эксплуатации и массивность устройства.

Наиболее близким к заявляемому устройству является, взятое за прототип, «Сканирующее устройство управления лучом лазера для предпосевной обработки семян» (см. RU №2321032, MПК G02B 6/12, А01С 1/06, 10.08.2004). Сканирующее устройство развертки луча лазера, включающее лазер, призму строчной развертки, воспринимающую луч лазера и развертывающую его в горизонтальную лучевую плоскость, и оптомеханический блок кадровой развертки, преобразующий горизонтальную лучевую плоскость в несколько вертикальных лучевых плоскостей, отличающееся тем, что оптомеханический блок кадровой развертки выполнен в виде валика с многогранными призмами, причем призма строчной развертки и валик с многогранными призмами расположены по разные стороны транспортера с семенами и валик с многогранными призмами преобразует горизонтальную лучевую плоскость в ряд (по числу многогранных призм) вертикальных лучевых плоскостей, пересекающих транспортер с семенами таким образом, что семена на движущемся транспортере последовательно облучаются несколькими импульсами с темновыми интервалами времени, соответствующими дискретному поглощению энергии семенам и.

Основным недостатком устройства является ограниченность ширины кадровой развертки, обусловленной количеством зеркальных призм.

Задачей изобретения является создание сканирующего устройства управления лучом лазера для обработки больших площадей растений с квадрокоптера в период вегетации за одноцикловую обработку.

Изобретение поясняется чертежами.

На фиг. 1 представлен общий вид двойной усеченной зеркальной четырехгранной пирамиды.

На фиг. 2 представлен пример выполнения двойной усеченной зеркальной четырехгранной пирамиды.

На фиг. 3 представлен общий вид сканирующего устройства.

Поставленная задача достигается тем, что в сканирующем устройстве управления лучом лазера для обработки растений в период вегетации, включающем лазер, призму строчной развертки, воспринимающую луч лазера и развертывающую его в горизонтальную лучевую плоскость, и оптомеханический блок кадровой развертки, преобразующий горизонтальную лучевую плоскость в вертикально-горизонтальную лучевую плоскость, оптомеханический блок кадровой развертки выполнен в виде валика с двойной усеченной зеркальной четырехгранной пирамидой, что обеспечивает формирование прямоугольного пятна площадью S=a⋅b, где а и b - длины сторон прямоугольного кадра для обработки больших площадей вегетирующих растений сканирующим кадровым лазерным излучением с высоты полета квадрокоптера.

В сканирующем устройстве управления излучением лазера для стимуляции больших площадей вегетирующих растений применяется двойная усеченная зеркальная четырехгранная пирамида (фиг. 1), обеспечивающая отклонения луча лазера по стороне а - до 140°, по стороне b - 54°. Таким образом, двойная усеченная зеркальная четырехгранная пирамида позволяет сформировать прямоугольный кадр площадью S=a⋅b, где а и b - длины сторон прямоугольного кадра (фиг. 3).

Двойная усеченная зеркальная четырехгранная пирамида изготовлена из высокопрочного сплава, обеспечивающего минимальную деформацию граней под действием центробежных сил. так как вращение призмы осуществляется со скоростью 3600 об/мин.

Сканирующее устройство управления лазерным лучом для обработки больших площадей растений в период вегетации (фиг. 3) состоит из лазера 1, четырехгранной зеркальной призмы 2, принимающей луч лазера и развертывающей его в горизонтальную строчную лучевую плоскость, вращающегося валика 3 с двойной усеченной зеркальной четырехгранной пирамидой 4, преобразующей строчную лучевую плоскость в строчно-кадровую развертку и позволяющей увеличить угловой сектор отраженного луча по стороне а до 140*. При нахождении устройства развертки на высоте h=10 м до вегетируюших растений появляется возможность сформировать прямоугольный кадр площадью S=а⋅b=50×10 ≈ 500 м2. При этом ось вращения валика 3 с двойной усеченной зеркальной четырехгранной пирамидой 4 установлена выше горизонтальной лучевой плоскости строчной развертки (на 1/2 радиуса пирамиды 4) для получения кадровой развертки луча.

Сканирующее устройство управления лазерным лучом для обработки растений работает следующим образом.

Луч лазера 1 подается на вращающуюся четырехгранную зеркальную призму 2. отражается и развертывается в горизонтальную лучевую плоскость, которая, падая на вращающуюся двойную усеченную зеркальную четырехгранную пирамиду 4 и, отражаясь от граней которой, разлагается на ряд вертикально-горизонтальных лучевых плоскостей и, пройдя окно 5, обеспечивает формирование прямоугольного кадра 6 площадью S=a⋅b, где а и б длины сторон прямоугольного кадра.

Предложенная конструкция сканирующего устройства позволяет проводить одноцикловую обработку растений в период вегетации, что обеспечивает необходимую эффективную дозу лазерной низкоинтенсивной бестравмирующей обработки при минимуме энерго- и трудозатрат.

Пример. В качестве исходного материала для опыта была взята, морковь сорта «Анастасия F1», как одна из основных овощных культур, районированных в Северо-Западном регионе. Лазерная обработка моркови осуществлялась сканирующим устройством, укрепленным на БПЛА с высоты полета 10 метров, была использована призма с размерами, указанными на фиг. 2.

Сформированным прямоугольным световым пятном размером 50×8 метров в вечернее время в (с 2400 до 100 часа) обрабатывали дважды в период вегетации в фазу роста розетки листьев и корней.

Результаты опыта показали существенное превышение по урожайности в опытном варианте по отношению к контролю. Так, урожай корнеплодов в контрольном варианте составил 2,3 кг/м2, а в вариантах с лазерной обработкой урожай составил 3,30-5,35 кг/м2, что выше контроля на 32-114%.

Анализ элементов структуры урожайности корнеплодов моркови дает основание судить о том., что урожай был сформирован за счет более высокой густоты стояния растений перед уборкой 43,7 шт./м2, что выше контроля на 105%. А также некоторым повышением массы корнеплода относительно контроля на. 4%, длины на 20% и массы листьев (ботвы) на 140%.

Сканирующее устройство управления лучом лазера для обработки растений в период вегетации, включающее лазер, призму строчной развертки, воспринимающую луч лазера и развертывающую его в горизонтальную лучевую плоскость, и оптомеханический блок кадровой развертки, преобразующий горизонтальную лучевую плоскость в вертикально-горизонтальную лучевую плоскость, отличающееся тем, что оптомеханический блок кадровой развертки выполнен в виде валика с двойной усеченной зеркальной четырехгранной пирамидой, что обеспечивает формирование прямоугольного пятна площадью S=а⋅b, где а и b - длины сторон прямоугольного кадра для обработки больших площадей вегетирующих растений сканирующим кадровым лазерным излучением с высоты полета квадрокоптера.



 

Похожие патенты:

Изобретение относится к области сельского хозяйства. Способ включает обработку клубней стабилизированным электрохимически активированным католитом с рН 7-9 и редокс-потенциалом Eh=-400÷-500 мВ, стабилизированным аминокислотой глицином в концентрации 0,01 мас.

Изобретение относится к области сельского хозяйства и может быть использовано при электростимуляции вегетации растений в открытом и защищенном грунте. Предложено устройство электростимуляции растений для открытого и защищенного грунта, включающее электропроводник, соединяющий минусовую и плюсовую клеммы источника питания с растением, регулятор подачи тока, приборы регистрации силы тока и напряжения, питательную среду для выращивания растения, связанную с плюсовым углеродосодержащим электродом, при этом оно снабжено светодиодным индикатором и клипсой-зажимом с углеродосодержащим электропроводным войлоком, регулятор подачи тока выполнен в виде микросхемы, подключенной к потенциометру, а источник питания выполнен в виде батареи постоянного тока.

Изобретение относится к области сельского хозяйства. Способ предусматривает осеннюю обработку почвы, внесение минеральных удобрений и нарезание гребней, весеннюю посадку картофеля, уход за растениями, полив и уборку.

Изобретение относится к области светотехники и сельского хозяйства. Способ включает проведение экспериментальных исследований фактического гармонического состава тока и коэффициента мощности источников света.

Изобретение относится к области сельского хозяйства. Система содержит светодиодные светильники, под которыми размещают растения, осуществляют воздействие светоизлучения на них.

Изобретение относится к области сельского хозяйства. Способ заключается в облучении листовой пластины растительных объектов излучением ближнего инфракрасного диапазона, и измерении мощности отраженного электромагнитного излучения от поверхности листьев.

Изобретение относится к области сельского хозяйства, растениеводства и может быть использовано для стимуляции жизнедеятельности растений. Устройство представляет собой не менее двух полимерных гибких электродов 1, 2, внесенных в почву 4.

Изобретение относится к светотехнике, а именно к светодиодным светильникам, предназначенным для искусственного освещения растений разноспектральным световым полем с эффектом фотобиологического действия.

Изобретение относится к светотехнике, а именно к светодиодным светильникам, предназначенным для искусственного освещения растений разноспектральным световым полем с эффектом фотобиологического действия.

Изобретение относится к области сельского хозяйства. Способ включает воздействие магнитного поля.

Изобретение относится к области сельского хозяйства. Способ включает обработку клубней стабилизированным электрохимически активированным католитом с рН 7-9 и редокс-потенциалом Eh=-400÷-500 мВ, стабилизированным аминокислотой глицином в концентрации 0,01 мас.
Наверх